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ON CONVERGENCE OF CLOSED SETS IN A METRIC SPACE
AND DISTANCE FUNCTIONS

GERALD BEER

Let CL(X) denote the nonempty closed subsets of a metric space

X . We answer the following question: in which spaces X is

the Kuratowski convergence of a sequence {C } in CL(.X) to a

nonempty closed set C equivalent to the pointwise convergence

of the distance functions for the sets in the sequence to the

distance function for C ? We also obtain some related results

from two general convergence theorems for equicontinuous families

of real valued functions regarding the convergence of graphs and

epigraphs of functions in the family.

Let ( X, d) be a metric space, and let CL(X) denote the collection

of closed nonempty subsets of X . For each C € CL(X) the distance

function d(-, C) : X •+ [0, °°) for C is defined by the formula

d(x, C) = inf{d(x, z) : z € C} . In this note we examine the relationship

between the convergence of a sequence of such distance functions and the

convergence of the sequence of the underlying sets themselves.

DEFINITION. Let {C } be a sequence of closed sets in a metric

space. Then Li C (respectively Ls C ) is the set of points y each

neighborhood of which meets all but finitely (respectively meets

Received 26 November 198k.

Copyright Clearance Centre, Inc. Serial-fee code: OOC-lt-9727/85
$A2.00 + 0.00.

421

https://doi.org/10.1017/S0004972700009370 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009370


422 Gerald Beer

infinitely) many sets C .

Clearly Li C c Ls C , and both Li C and Ls C are closed sets
n n n n

(although possibly empty). We say {C } Kuratowski converges [9] to a

closed set C if Li C = Ls C = C ; equlvalently, Ls C c C c Li C .

n n J n n

When X is separable and locally compact, Kuratowski convergence is

actually convergence with respect to a certain metrizable topology on

CL(^T) C8], but we vill proceed more generally here. Suppose

{C, C , C , ...} c CL(Z) and \d[', C )} converges pointwlse to
d(', C) . For each x in C the condition lim d[x, C ) = 0 implies

rt-x»
x € Li C , so that C a Li C . On the other hand, if x € Ls C , there

n n n

exists a sequence {x, } convergent to x and an increasing sequence of

integers \nh} such that, for each k , x, € C . W e have
K K nk

lim d[x, C ) = 0 , and it follows from the pointwise convergence of the

distance functions that x € C , that is, Ls C c C . Thus, pointwise

convergence of {<i(*, C )} to d( •, C) forces Kuratowski convergence of

{C } to C . The converse obviously fails.

EXAMPLE 1. Let X = (0, 2) as a subspace of the line, and let

C = (0, 1] u (2-(l/n)} . Clearly {C } Kuratowski converges to (0, l] ,

whereas lim d[l/h, C ) = l/U < 3/1* = d[l/h, (0, l]) .

What conditions on X ensure the equivalence of the two modes of

convergence ?

THEOREM 1. Let (X, d> be a metric space. The following are

equivalent:

(1) whenever {c } is a sequence in CL(Af) Kuratowski

convergent to a closed nonempty set C , then {d[-, C )}

converges pointwise to d(•, C) ;

(2) for each p in X , whenever {x } is a sequence in X
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Convergence of closed sets 423

with no cluster point, then, for each x in X ,

dip, x) 2 lim inf d{p, x ) .

Proof, (l) -> (2). Suppose (2) fails. Choose points p and x in

X and a sequence {x } in X with no cluster point for which

lim inf d[p, x ) < dip, x) . By passing to a subsequence we may assume

that for some e > 0 and each n , d{p, x ) < d(p, x) - e . For each n

let C = {x, x } . Clearly Li C = Ls C = {x} . However, with
n l n' n n

C = {x} ,

lim sup d{p, C ) = lim sup d[p, x )

< dip, x) - e

= dip, C) - e .

Thus \d(', C J} fails to converge pointwise to d(•, C) .

(2) -»• (l). Let {C } be a sequence in ChiX) Kuratowski convergent

to C # 0 . Fix p € X . Since C c Li C , it is evident that

lim sup d{p, C ) 5d(p, C) with no assumptions on X . It remains to show

dip, C) £ lim inf d[p, C ) : For each n choose x € C for which

d(p, x ) < d(p, C ) + 1/rt . Then there exists a subsequence {x } of
n n nk

{x } for which lim d{p, x ) = lim inf d[p, C ) . If {x } has a

cluster point x , then x 6 Ls C - C , and by the continuity of d ,

dip, C) S dip, x) = lim inf d[p, C ) . Otherwise, for each x in X ,

dip, x) 5 lim inf d[p, x ) = lim inf d{p, C ) . In particular, this is

true for each x in C , whence dip, C) S lim inf d[p, C ) .

It is easy to check that if X satisfies condition (2) above, then X

must be both locally compact and complete. Also, compactness of each

closed and bounded subset of X guarantees (2): each sequence {x } in

X without a cluster point eventually lies outside of each ball, whence,

for each p in X , lim inf d(x , p) = °° . The class of spaces for whic

(2) holds also includes the zero-one metric spaces and others.
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EXAMPLE 2. For each j € Z+ l e t e . be the sequence tha t takes the
3

value one at j and is zero otherwise. Let X be the metric subspace of

Z.°° defined by X = [e . : j € Z+} u {(l/j)e . : j (. Z+} u {o} . For each
0 0

sequence {a; } in J without a cluster point and for each p in X , we

have d[p, x ) = 1 eventually. Since the diameter of X is one, for each

x in X we have d(p, x) 5 1 = lim inf d(p, x ) . If we replace

{e . : j € Z+} in X by { [j/(j+l))e . : j € Z+} , the space still
d 3

satisfies condition (2); however, if we replace it by
{[(j+l)/j)e . : Q € Z } , it no longer does.

3

Does the pointwise convergence of the distance functions corresponding

to a sequence of closed sets bear any relationship to the Kuratowski

convergence of the functions, viewed as sets themselves"! Most naturally,

we can identify a real valued function f on X with its graph in

X x R . With this identification, the Kuratowski convergence of a sequence

of continuous functions {/ } to a continuous function f can be

expressed as follows:

(1) for each x in X there exists {x } convergent to x

for which f(x) = lim f [x ) , and
ft-KO

(2) whenever \{x,, f [x/])} converges to (x, y) , then

K. nk K

h = fix) .

Indeed, condition (l) is equivalent to f c Li / , whereas (2) is

equivalent to Ls / c f . However, this is not the only identification

that can be made, and from the point of view of applications, it is often

not the most useful (see, for example, [7] or [77]). As an alternative,

we can associate a continuous f with its epigraph, the closed set defined
by

epi f = {(x, a) : a > f(x)} .

I t is an easy exercise to show that Kuratowski convergence of epigraphs is

equivalent to the following pair of conditions:
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condition (l) above, and

(2) for each x in X , whenever {x } -> x , then

fix) < lim inf fn[xn) .

Of course, continuous functions are not the only ones with closed

epigraphs; this larger class of functions is precisely the class of lower

semicontinuous functions on X [2]. The study of Kuratowski convergence

of epigraphs originated with Wijsman [79], and has its roots in convex

analysis. This mode of convergence is now usually called epiconvergence in

the literature (see, for example, [70] or [75]).

The distance functions corresponding to a collection of closed sets in

a metric space are each Lipschitz with a common Lipschitz constant.

Familiar weaker requirements are next described.

DEFINITION. A collection fl of real valued functions on a metric

space X is called pointwise equicontinuous if for each p in X and

£ > 0 there exists 6 > 0 , depending on £ and p , such that whenever

d(.x, p) < 6 then \f(x)-f(p)\ < e for all f € Q . If the same 6 can

be chosen for each p in X , we call J2 equicontinuous.

The relationship between pointwise convergence of distance functions

and the convergence of distance functions as sets in X x R falls out of

the next theorem.

THEOREM 2. Let \f } be a pointwise equicontinuous sequence of real

valued continuous functions on a metric space X , and let f : X -*• R be

continuous. The following are equivalent:

(1) whenever {x } is a sequence in X convergent to x , then

limfjxj = f(x) ;

(2) {/ } converges to f uniformly on compact subsets of X ;

(3) {/ } converges pointwise to f ;

CO {/ } Kuratowski converges to f ;

(5) {fn\ epiconverges to f .
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Proof. The equivalence of (l) (usually called continuous convergence)

and (2) is well known [7], and each condition alone implies pointwise

equicontinuity so that this assumption is superfluous here. In view of our

local description of (k) and (5), it is evident that (l) implies (3), (U),

and (5), again, without an equi continuity assumption. To see that each of

these implies continuous convergence, fix x in X and let {x } be a

sequence convergent to x . If any of the last three conditions hold,

there exists {w } convergent to x for which f(x) = lim f [w ) .

Choose 6 > 0 such that if d(x, s) < 6 , then, for each n ,

\f (x)-f (s)| < e/3 . For all n sufficiently large, we can guarantee

that \fn[wn)-f{x)\ < e/3 , d[xn>
 x) < 8 » and diwn> * ) < < $ , whence

\fn[xn)-f{x)\ < e .

With no assumptions on the sequence of functions, none of (3), (U), or

(5) need imply either of the other two, even if X is compact. It is easy

to modify the standard construction [13] of a sequence of nonnegative

characteristic functions on [0, l] that converges in measure to the zero

function but nowhere converges pointwise to yield a sequence of piecewise

linear (continuous) functions with the same property; this sequence will

satisfy (5) but neither (3) nor (h). If / : [0, l] •*• R has as its graph

the line segments joining (0, 0) to (l/2n, -l), (l/2n, -l) to

(1/n, 0) , and (l/n, 0) to (l, 0) , then {/ } satisfies (3) but

neither (k) nor (5)- To see that (h) may hold without either (3) or (5),

let X = {o} u {l/fe : k € Z } as a subspace of the line, and for each

n € Z define / : X •* if to be -n times the characteristic function

of {0} u {l/k : k > n} . Note that the only point at which {/ } fails

to converge is x = 0 . However, one can produce a sequence {/ } on the

Cantor set that satisfies (h) but converges nowhere pointwise [5]. One

might guess that if X were connected, then (h) would force (3) and/or

(5), but Example 1 of [5] shows this need not occur. What is needed is

local connectedness. With this assumption on X , (h) not only yields (3)

and (5), it also buys (2), and thus (l) [53. On the other hand, if X is

compact and connected, (h) will also buy (l) [43. Finally, (3) and (5) are

equivalent with just a pointwise equi-lower semicontinuity assumption [75].
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A stronger type of convergence for closed sets is convergence with

respect to Hausdorff distance. We pause for a moment to describe this

notion. For each point x in X le t B [x] denote the closed ball of

radius £ with center x , and if C € CL(X) , denote U B [x] by
xiC

B [C] . If K is another nonempty closed set, then the Hausdorff distance

//, between C and K is given by

Hd(C, K) = inf{e : B^C] D X and B£[K] => C} .

The distance H , defines an infinite valued metric on CL{X) . If d' is
a

another metric on X which defines the same uniformity (in other words,

the identity map from (X, d) to <X, d' > is bi-unifonnly continuous),

then H-, and #,, are equivalent on CL(X) . Hausdorff metric

convergence always forces Kuratowski convergence in CL(X) ; the converse

holds precisely in those metric spaces that are compact. For example, if

C = [0, l] u {«} , then {C } is a Kuratowski convergent sequence in the

line which fails to converge in the Hausdorff metric. More facts about

Hausdorff distance can be found in [2] and in [6].

Now let C{X, R) denote the continuous real valued functions on X .

Equip X x R with the box metric, defined by

p[(x1, o^) , (x2, a2)2 = max{d(x1, x^\ , Iĉ -otgl} . We consider three

infinite valued metrics on the function space C(X, R) :

D^f, g) = sup{|/(x)-5(x)| : x € X} ;

D2(f, g) = Hp(f, g) ;

D3(f, g) = ffp(epi /, epi g) .

With no assumptions on X , D convergence in C(X, R) ensures pointwise

convergence, whereas D convergence does not, even if X = [0, l] . Note

that metrics equivalent to D and D result if we define distance in

V 2 2~f^
X x R to be \d[x , x ) +(a -a ) , and so on. It is well known [2]

that the mapping C •*• d{ •, C) is an isometry from ^CL(A'), Hj\ into
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(C(X, R), D \ . Thus Hausdorff metric convergence of a sequence of closed

sets in X is equivalent to the uniform convergence of their distance

functions.

THEOREM 3. Let ft be an equicontinuous family of real functions on

a metric space (X, d> . Then D , D- and D are equivalent as infinite

valued metrics on ft .

Proof. We first show that D is at least as strong as D , in

fact, that D Af, g) 5 DAf, g) . Suppose Dx(f, g) = X . Let (x, a) be

an arbitrary point of epi / and set 3 = ot - f{x) . Then

[x, g(x)+&) € epi g , and p[(x, g(x)+&) , (x, a)] = \g(x)-f(x)\ < X . This

shows epi fez S,[epi g] . Similarly, epi g c B^fepi f] .

We next show that D is at least as strong as D . Let e be

positive; we produce X > 0 such that for all f,g in ft ,
DJ^f> g) < ̂  implies D' (/, g) 2 e . Choose 6 > 0 such that for each

h € U whenever d(u, z) < & then \h{w)-h(z)\ < e/3 , and set

X = (l/2)min{6, e/3) . Suppose D (f, g) < X but D {f, g) > e . Without

loss of generality we can assume there exists x for which

[x, f(x)) I B
Et?] • Choose (3, a) € epi g for which

p£(z, a ) , [x, f(x))2 < X . We must have g{z) < f{x) - e , or else

p[(s, g(z)), [x, f(x))2 < e . Since X < 6 , we have

g(x) < [f(x)-e) + e/3 = f(x) - (2/3)e . For the same reason whenever

d(x, w) 5 X , we have f(w) > f(x) - e/3 . Hence, if d{x, w) S X and

(w, 6) 6 epi f , we obtain

p[(x, g(x)), {w, 9)] = max{d(x, w), Q-g{x)}

> max{d(a;, w), e/3>

= e/3 > X .

We have shown (x, g(x)) ̂  B, [epi /] , in violation of DAf, g) < X .

Finally we show that D is at least as strong as D . Let e be

positive, and choose 6 > 0 such that for each h in ft , whenever

d(z, w) < 6 then \h{z)-h{w)\ < e/2 . Set X = (l/2)min{6, e} . Suppose

DAf, g) < X and x € X is arbitrary. There exists w € X for which
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b o t h d(x, w) < X a n d \f(x)-g(w)\ < X . S i n c e X < 6 we g e t

\g{x)-g(w)\ < e / 2 , whence \f(x)-g(x)\ < X + e / 2 S t . As a r e s u l t ,

D^f, g) 5 e .

COROLLARY. let < A", d> he a metric space, and let

{c, C , C-, ...} c CL(x) . Let p be a metric on X x if compatible with

the product uniformity. The following are equivalent:

(1) {C } converges to C with respect to H -, ;

(2) {<i(», C )} converges to {d{ •, C)} with respect to H ;

(3) {epi <i(*, C )} converges to {epi d(•, C)} with respect

to Hp .

Proof. The family {d(«, C ) : n € Z+} u {d(•, C)} is equi-

continuous, and the box metric is compatible with the product uniformity.

Any other such metric, by definition, is uniformly equivalent to the box

metric, and thus determines the same Hausdorff metric topology on

CL(* x R) .

We note that the proof of Theorem 3 shows that D , D , and D are

uniformly equivalent metrics on each equicontinuous family £2 . With no

assumptions on fi , D is at least as strong as D- , and D is at

least as strong as D . If ft is merely pointwise equicontinuous, Z?2

may be weaker than D , and D may be weaker than D .

EXAMPLE 3. Let X = {n+(l/n) : n = 2, 3, U, ...} u Z+ , as a sub-

space of the line. Let / = X • I f > f o r e a c n n > 1 , f : X -*• R is
Z+ n

defined by

i if x = n + 1/n ,

/ (x) = • 0 if x = n ,

f(x) otherwise,

then D2[f , f] = 1/n . However, for each n , D [f , f) = 1 . Instead,

if g is the zero function on X and for each n > 1 , g = X{ \ > then
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D
3(

a
n> 9) = l/« whereas V^g^ g] = 1 . Clearly {/, fg, /3, •••} and

{<y, g2> g , ...} are both pointwise equicontinuous families.

If X is compact, then the proof of (2) -»• (l) in Theorem 3 can be

adapted to show that D -convergence in C(X, R) forces D -convergence.

Thus, in this case, D and D are equivalent (but not uniformly-

equivalent) finite valued metrics [72]. In fact, if X has finitely many

components, the equivalence of D and D_ on C(X, R) characterizes

compactness for the domain [4]. A comprehensive study of the approximation

of functions with respect to D has been underway for over twenty years

by Sendov, Popov, Veselinov and their associates in Sofia (see, for

example, [16] or [77]), whereas this author has produced analogs of some of

the fundamental approximation theorems of Stone [7S] with respect to £L

(see, for example, [3]).

In closing we mention that the convergence of sequences of closed

convex sets in a normed linear space and their associated support

functionals has been particularly well studied (see [74] and the references

therein).
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