A NOTE ON SOME INEQUALITIES

by T. M. FLETT
(Received 17th May, 1958)

1. In the course of some recent work on Fourier series [5, 6] I had occasion to use
a number of integral inequalities which were generalizations or limiting cases of known
results. These inequalities may perhaps have other applications, and it seems worth while to
collect them together in a separate note with one or two further results of a similar nature.

For any number k, used as an index (exponent), and such that £>1, we write &' =k/(k - 1),
so that k and &' are conjugate indices in the sense of Holder’s inequality.

We use B to denote a positive constant depending on the parameters ¢, d, ... concerned
in the particular problem in which it appears. If we wish to express the dependence explicitly,
we write B in the form B(c, d, ...). We use 4 to denote a positive absolute constant. These
constants are not necessarily the same on any two occurrences. We also use suffixes to dis-
tinguish particular B’s which retain their identity throughout.

Inequalities of the form

L < B(cd,..)R

are to be interpreted as meaning “ if the expression R is finite, then the expression L is finite
and satisfies the inequality .

2.1. The first of our inequalities is the following generalization of Hardy’s inequality.}
THeoREM 1. Let f(t) =0 int =0, and let

Fit)= f:)f(u)du >-1), F()= f;” fwydu (y<-1).

Ifg=p=1and y+# -1, then

0 F\1 e 0 1p
{f {—1-or (—t-> d} < B {f g1-vy fP dt} © eeeereseniesseaenins (2.1.1)
0 0

The case ¢ = of this inequality is due to Hardy [8], while the case ¢>p>1, y= - 1/p is
due to Hardy and Littlewood [9]. Hardy and Littlewood also conjectured the exact value of
the constant B in this latter case, and their conjecture was proved by Bliss [1]. The complete
result above is stated without proof in [6)].

The case y < -1 of Theorem 1 is an easy deduction from the case y > - 1. Forif y < -1,
and if

1 1 ,/1
t= p and ;f(;) = ¢(x),

then
0 =" twan=[ 53 o = [ o) v = 610,
t o U\ 0
say. Applying (2.1.1) to ¢ (with y replaced by -y -2 > —1), we obtain

t Hardy’s inequality is the case g=p>1, y= —1/p of Theorem 1 (see Hurdy, Littlewood, and Pélya
[14, Theorem 327]).
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{fm t—l—qy <F_§t_)_)th} ta = lfw x—1+qy+20<GLx))qull/q < B{J‘m x—l'f'p(7+2)qp(x) dx e
0 0 z 0 |

-B ! f : £-1-97 f(3) dt,”p,

and this is the result of the theorem for f.t

To prove the inequality (2.1.1) when y > — 1, we may reduce the general case ¢=p to the
special case ¢ =p considered by Hardy. Alternatively, we may generalize the inequality by
introducing fractional integrals, and then we obtain the following theorem.

THEOREM 2. Let f(t) = 0 int = 0, and let F, () be the a-th Riemann-Liouville integral of
S with origin 0, 1.e.

F. @) = ﬁﬂ) (t —u)o f(u) du.

. : 1 1 .
If eitherq=zp>1 and >1—)-—§,orq>p>l anda:%-—%,and if v > =1, then

w0 F\¢ /g © 1/p
{ f -1-ov (T) dt} < B{ f - fvdz} e, 2.1.2)
0 0
Various cases of this theorem are known. Thus the case ¢>p>1, y= -1/p is due to

Hardy and Littlewood [10, Theorem 4], the case ¢ =p>1, y = ~1/p to Knopp} [15], and the
case ¢=p=1, y=0 to Bosanquet [2]. Hardy and Littlewood have given a proof of a result
[10, Theorem 7] which implies (2.1.2) for —1<y<0, but their proof here appears to be
incomplete.§ They have also stated the case g=p=>1, y=0 as the integral analogue of an
inequality for series [13, Theorem 5].

The general result (2.1.2) can be proved by appropriate specialization of an argument
used by Hardy and Littlewood [12] to prove an inequality for series. However, in one of our
later applications we require an explicit value for the constant B in one particular case of
(2.1.2), and it seems advisable therefore to give the proof of Theorem 2 in full.)

2.2. Suppose first that g = p>1. Let

© 1/p
J={ f t-l'Wf"dt} ,

0

let a>1/p-1/gq, and let A and » be numbers, to be chosen later, such that A<1/p’, 0<n<1,
and p'(«-1)(1 -n)> -1. Applying Hélder’s inequality with indices ¢, p’, and pq/(q - p),
we have 9

F (1) = T_}&—)J‘; (8 — w1 f(u) du

t This argument is given by Hardy [8].

! See also Hardy, Littlewood, and Pélya [14], Theorem 329.

§ Their Theorem 7 depends on their Theorem 6, and the discussion of the region A4’ in part (i) of the proof
of the latter theorem does not seem to be valid.

|l T have used this same argument in [7] to prove the series analogue of Theorem 2, but have not
attempted there to determine an explicit value for the constant.

4] The last factor in (2.2.1) is to be omitted if p =q.
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= %J‘; {¢t- u)la=Dn ua+(1+py)(a—p)/(pq)fp/q(u)} {t- )1 0-n u {u—l—wfp(u)}(q—p)/(m) du

1/p’

¢ 1
< _1_ {f (t - u)ete-1tn uaa+(1+w)(a—»)/pfp(u) du} qu't (£ - u)? (@D -m) 4—p'A du}
() J o 0

( (g-)(pg)
X {f w~1=Py f(y) du} ............ (2.2.1)
0 .
< BlJl—p.'a g(a—l)(l—v)—l\+1/r’{ft (t —u)9la~1)n uaa+(1+1w)(v—p)/nfp(11,) du} e s
0
where
B, = —1— {fl(l ~ )P =D 1-0) 4=p'2 i (2.2.2)
= Tl C 2.
Write now p = g(a- 1)y and w = ¢(A+y+1/p). Then we have
t
t1-er-ex P4(3) < By Jo-r t‘l—“““’J (= w)# uo =P fo(u) du,
0
whence
© Fa q 0
f . t‘l“'“'(t—a> dt < BjJ q‘”fo w~1P fo(u) k(u) du,
where
© 1
k(u) = u“’f glmmme(f —u)e dt =f vl — i dy = By, s8Y. .cevenennnn (2.2.3)
% 0

Thus, provided that w > 0 and p > -1, we obtain (2.1.2) with B = B,B'/%.  Choose 7 so that
gn = p'(1 —7), i.e. so that n = p’/(p’ +¢). Then 0 < <1 and

11 < 1 1) 1 1
a—1>——~—1=—- —S+-)=-—= —-—F—,
P g P q @ p(l-n)
as required. Choose also A so that A<1/p’ and w=q(A+y +1/p)>0 (this is possible, since
y+1>0). The various conditions which we have imposed on A and » are therefore satisfied,
and this completes the proof in this case. A similar argument appliesif g=p=1, a>1/p —-1/q.
(Take A=0, =1, and omit the second bracketed factor in (2.2.1).)

2.3. We digress for a moment to determine a value for the constant B in (2.1.2) when
¢>p>1, a=1-1fq, y=-1/p, and p'>q. We are actually interested only in the order of
magnitude of B when p —1, and it is convenient to choose values of A and 5 different from those
given above. From (2.2.2) and (2.2.3) the constant B is here given by

B_ppi__ 1 ([l-pQA-mjgrQ —p'»}l/v' D) I(L —n)}”"
T A T Te-p A -ng-pA) | \T@+1-9)]

and A and 7 have to satisfy the conditions

0<pA<l,0<y<land p' (1 =9)fg<l. .crierrrriiriinnnn. 2.3.1)

Choose A and 7 so that p’A=p’(1 —n)/g=4. Then the conditions (2.3.1) are satisfied (since
g<p'), and, by the duplication formula for the I'function,t

1 See, for example, Copson [3], § 9.23.
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q /g q 1/q
oo [P)]" e [ ()
(1-1/g) p(ﬂ) ra-lfg 9alp’-1 p(_q_, +1>
P 2p" 2
2p"\'" _ _B(g)
e 4 2L B = AT RSURUROIPPO 3.
<B@gT °(2p') < B(g) ( . ) S I — (2.3.2)

where the constants B(q) depend only on q.

2.4. We return now to the remaining case of Theorem 2, namely ¢>p>1, a=1/p - 1/q.
Write

2 it !
T)F.(t) = f (- )i ) du = f T+ f =G0+ H).
Then
3t t
G(t) < Bt f i < B f fdu = BEFy(),

whence, by the case already proved,

I R O e
0 0 0

It is therefore now enough to prove that

{ j :t- -w( > dt}”q < B{ j :z-l—w Iz dz}”". ..................... 2.4.1)

To prove this, it is sufficient, by the converse of Hélder’s inequality, to prove that

© 0 Yp( foo g
f Y Y: dt<B{ f L dt} { f o dz} .................. (2.4.2)
0 0 0

for every % belonging to L% (0, o). The integral on the left of (2.4.2) is equal to
f t-Va-v=a p(t) dt J (6 — )= f(u)
0

f f —llp—yf l)ul 'p+y (—lla-y—a (l _ )a =1 dt
it

<f J w U=y flu) B(t) (E —u)*tdudt (2.4.3)
0J

(since in the region of integration wl/?+¥< Bf/ptv = Bgllatr+e), Since a —1=1[/p+1/g' -2, it
follows by a well-known theorem of Hardy and Littlewood [10, Theorem 3]f that the last
integral in (2.4.3) does not exceed the right-hand side of (2.4.2) (for some B). This completes
the proof of (2.4.1), and of Theorem 2.

2.5. We note in passing that the case ¢=p>1 of Theorem 2 is a particular case of the
following general inequality (Hardy, Littlewood, and Pélya [14, Theorem 319] ).

TaEOREM A. Suppose that p>1, that K (t, u) is non-negative and homogeneous of degree —1,
that}

1 See also Hardy, Littlewood, and Pélya [14], Theorem 382.
1 The equality of the two integrals in (2.5.1) is a consequence of the homogeneity of K.
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J.wK(J, w) wVP du =me(t, Ve dt =k, coviviniieeanenn (2.5.1)
0 0

and that f(t) = 0int > 0. Then

f: dt U:K(t, ) f (u) du)” < ’“pf:f" Qb

Taking K(t, u) = t-Vp-r-aqd/pty (4 _y)=-1 in 0 < u < ¢, and 0 elsewhere, and observing

that

Lla) Iy +1)

0 1
K(1 e dy = Y(1 —u)~ldu =
fo (1, w)u u fou (1 — ) i Tty D)

when a > 0 and y > -1, we obtain (2.1.2) with

F(oc) I'y+1)
a+y+1) -’

2.6. Theresult of Theorem 2} enables us to fill a gap in a theorem of the author on frac-
tional integrals. Let f be periodic with period 2= and integrable in ( -, ), let

$(8) = Dy(t) = f(8+1)+f(8 1) and A (1) = fgbdu

and for >0 let

2.0 = 7 [ - du (> 0)

and

1 .
Aa(t)=1,(a__l)f0(t—u) 2 A,(u)du (a>1)

(so that @, and A4, are the ath and (« - 1)th integrals of ¢ and A,, respectively). Then we have

THEOREM 3. Let f be periodic with period 2m and integrable in ( -, ), and let the mean
value of f over this interval be 0. Let also

Sk, o U |x @& ””"dt} g

where either x=, and « =0, or y=A, and « = 1. Then for 1 <k <2 and p>1

([[117a0)"™ < B{[" sp.a8)" 45" 11100

This is proved in [6] for y = &, and « > 1/k and for x = A4, and « > 1+1/k. Since
Sk s < Bk, o, B) §k, . for B> « (by Theorem 2), the complete result follows.

3.1. We pass next to some results which are substitutes for Theorems 1 and 2 when one (or
more) of the parameters takes a limiting value. We have first

THEOREM 4. Let f(£)=0 i 0<t<a, where a is finite, and let F,(t) be the ath Riemann-
Liouville integral of f with origin 0. If ¢>1 and a=1 -1/g, then

t We require only the case ¢ =p>1 considered in § 2.5,
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a 1/ a
{ f ngz} "< B f flog +f)vedt + B,
0 0

where the B’s depend only on q and a. .

This result is the substitute for Theorem 2 when all three of the parameters p, «, y have
their limiting values (i.e. p=1, «a=1-1/g, y= -1). Zygmund [18] has proved the corres-
ponding result for the Weyl fractional integral, and has remarked that his proof can be
modified to apply to the Riemann-Liouville integral. We give here an alternative proof of
Theorem 4 which is somewhat simpler than that of Zygmund.}

Setting f=0 in ¢ > a, we see from §2.3 that when 1 < p < Min (g, ¢') and a=1-1/g,
a 1/q a
([ pea™ < Bigy (- 130 ([ )
0 0
Since 1% > Min (¢, 1) in 0 < ¢ < a, we have therefore

‘ f :Fg dt,m< Bla, q) (p - 1)1 { f 0 f7 dt}

for 1 <p<<Min(g, ¢’) and «=1—1/g, and the result of Theorem 4 now follows immediately
from the following extrapolation theorem.

i/p

1/p

THEOREM 5. Let T be a transformation which transforms a real function infegrable in
(0, @), where a is finite, into a function measurable in (0, a), and has the properties

(i) ITH=1T(-H1
(1) for any real f, and f,,

FT R+ I <I T [+ T(f) ],
(iii) for any infinite sequence of non-negative functions f,,

7(31.)| <3| 70

(iv) there exist constants k>0, p>1, q=1, and C>0, such that for every real f of L?(0, a},
where 1<p<p,,

L

o
<X
1

a 1/q o Wy
([17ra)” <ow-1+ [ 1spaf™.
0 0
Then, for any integrable f,

U:l () dt}”" <BJ:|fl (log *| f])*dt + B,

where the constants B depend only on k, py, and C.
The case ¢ =1 of this result is due to Yano [17].f The proof of the general case is similar
to that given by Yano, but for the sake of completeness we give the proof here.
We may suppose f=2, for, if this is not so, write
_f+2 it f>0, | 2 if f=0,
fl‘{ 2 if f<0, fz_{—f+2 if f<0.
1 In our proof we use only the relatively simple case a =1 ~1/g, y= —1/p of Theorem 2 discussed in
§§ 2.2-3. Zygmund, on the other hand, makes use of the case ¢>p>1,a=1/p - 1/q, y = — 1/p of Theorem 2,

which depends on a difficult theorem of Hardy and Littlewood (see § 2.4).
1 It is also implicit in work of Titchmarsh [16].

https://doi.org/10.1017/52040618500033773 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500033773

A NOTE ON SOME INEQUALITIES 13

Then f,=2, f,=2, f=f, —f,, and in virtue of (i) and (ii) it is enough to prove the theorem for

Sfiand f,.
Suppose then that f=2. Let E, be the subset of (0, a) in which n - 1<f<n, and let f,, be
equal to fin E, and to O elsewhere. Then, by (iii) and Minkowski’s inequality,

([121a)™ < ([ (E1z¢a) " < E{ 12 eaf”,

both sides possibly being +0co. If now we take p=1 +8/log » in (iv), where 8 is positive and
so small that 1+ &/log n<p, for n==3, we obtain

a g C a p C
vy pedd < —< {17, "dt} <Y _njm, o
olzumrea)” < o2 {1 (-1 7]

= C8*n(logn)*|E,| 1-8/(8+1og n)
< Bn{logn)*| E, | + Bn2(log n)k,
wheve both B’s are of the form B(C, k,8) [to prove that
IEn ' 1-8/(8-+1og n) gBlEn ' + Bn-3,

consider the cases | K, | > 1/n® and | E, | << 1/n® separately]. Hence

{f“| () |vdt}”" < BY n(logn)*| E, | + B
0 3

8

< BX (n-1){log(n-1)}*|E,|+B

< Bf“f(log +f)Edt+ B,
(1]

w

where again both B’s are of the form B(C, k, 3), and this proves the theorem.

3.2. If we combine Theorem 4 with the case p =¢>1, y = —1/p of Theorem 2, and observe
that (F,)g=F,,p for «>0 and B>0, we obtain the case ¢g>>1 of the following result, which was
stated without proof in [6].

t
THEOREM 6. Let f(1)>0 in 0<t<a, where a is finite, and let F' (1) = f fdu. Ifg>1,
0

then

a 1/ a
{ f t—lpgdt} ‘<B, f F(log *f)ta de + B,
0

0
where By and B, are of the form B(a, q).

This result is, of course, a substitute for Theorem | when p=1and y= ~1. The case¢=1
has been proved by Hardy and Littlewood [11] by an application of Young’s inequality,
and their method extends easily to give an alternative proof of the case g>>1. Another proof
of the case ¢ =1 is given in [4], and this shows that in this case we may take the constants B,
and B, to be of the form 4 and Aa, respectively.

3.3. We conclude this note by using the case ¢ =1 of Theorem 6 to prove a substitute for
Theorem A in the case p=1. This was stated without proof in [5].

THEOREM 7. Suppose that K (t, u) is non-negative and homogeneous of degree -1, that
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1
sup K(l,u) =k <oo and f K(t, 1)dt = ky < o0,
0

o<ukl
and that f(t)=0 1n (0, a), where a is finite. Then
Ja dt {fa K(t, w) fu) (lu} < Ak, + Ic2)<faflog Hdt+ a}
0 o . 0
and

Uo dt (fZK(t, ) f(u) du>“ }”“ < Bk, by, a, ,u)f:fdt 0<p<l)

In addition to the result of Theorem 6 we require also the following inequality (Zygmund
[19, §10.22]) : if f=01n (0, @), where a is finite, and if 0<u<1, then

{ f ‘ (%)“ dt}”“ < Bla, u) f R — (3.3.1)

0

For 0 <t < a we have
[Cx6 0 du = 3] K, )+ || &t ) o du = P+ Q).
0 tJo 1

say. Writing  =tv, where 0 <<v<1, we have
tK(t,u) =tK(t, tv) = K(1,2) <k,
so that

> ky [t F\@)
1(t)<—t-‘f0fdu=kl( . )

Hence, by the case ¢ =1 of Theorem 6 (with constants as determined in [4] ) and (3.3.1),
(1 a
f Pdt< Aklf flog*+fdt+ Aak,
0 0
and

a 1/ a
U Pudz} * < Bla, ) klf fat.
0 0
Next, we have

a 1/u a
U Qv dt} < Bla, p) J Qdt
0 0
for 0 <p <1, and

J:Q dt =J:f(u) duf:K(t, u) dt =th(u) duf;uK(uv, u) dv
a 1 a
=J0f(u) dufOK(v, l)dv = k2f0f(u) du
<Ak2fa flog *fdu + kya,
0

and the result now follows from these relations and the fact that

a a 12 a (]

fdzU K(t,u)f(u)du} < f P"dt+f Qrds

0 0 0 0
for0<p <L
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