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by T. M. FLETT
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1. In the course of some recent work on Fourier series [5, 6] I had occasion to use
a number of integral inequalities which were generalizations or limiting cases of known
results. These inequalities may perhaps have other applications, and it seems worth while to
collect them together in a separate note with one or two further results of a similar nature.

.For any number k, used as an index (exponent), and such that &>1, we write k' =k/(k -1),
so that k and k' are conjugate indices in the sense of Holder's inequality.

We use B to denote a positive constant depending on the parameters c, d, ... concerned
in the particular problem in which it appears. If we wish to express the dependence explicitly,
we write B in the form B(c, d, ...). We use A to denote a positive absolute constant. These
constants are not necessarily the same on any two occurrences. We also use suffixes to dis-
tinguish particular B's which retain their identity throughout.

Inequalities of the form
L^B(c,d, ...)R

are to be interpreted as meaning " if the expression R is finite, then the expression L is finite
and satisfies the inequality ".

2.1. The first of our inequalities is the following generalization of Hardy's inequality.f

THEOREM 1. Let f(l) > 0 w l > 0 , and let

F(t) = f /(«) du (y> -1), F(t) = {M f(u) du (y<-1).
Jo J t

If Q ŝ  P ^ 1 and y i* -11

The case q =p of this inequality is due to Hardy [8], while the case g>jp>l, y = - 1/p is
due to Hardy and Littlewood [9]. Hardy and Littlewood also conjectured the exact value of
the constant B in this latter case, and their conjecture was proved by Bliss [1]. The complete
result above is stated without proof in [6].

The ease y < - 1 of Theorem 1 is an easy deduction from the case y > - 1. For if y < - 1 ,
and if

t = - and - j / f - ) = g(x),

then
rX^f(z)dv=fX 9(v)dv = G(x),

say. Applying (2.1.1) to g (with y replaced b y - y - 2 > - 1), we obtain

f Hardy's inequality is the case q=p>l, y— - 1/p of Theorem 1 (see Httrdy, Littlewood, and P61ya
[14, Theorem 327]).
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- u : 1/p

and this is the result of the theorem for /.f
To prove the inequality (2.1.1) when y > - 1, we may reduce the general case q^p to the

special case q =p considered by Hardy. Alternatively, we may generalize the inequality by
introducing fractional integrals, and then we obtain the following theorem.

THEOREM 2. Letf(t) ^ O i n l ^ O , and let Fa(t) be the a-th Riemann-Liouville integral of
f with origin 0, i.e.

I (a)

If either q 3s p >• 1 awd a > . or o > » > 1 awrf a = , and if y > - 1, then
J 1 r PI P 9

1/9 ( /•«> )1/P

Various cases of this theorem are known. Thus the case g > p > l , y= -l/p is due to
Hardy and Littlewood [10, Theorem 4], the case q =p> 1, y = - l/p to KnoppJ [15], and the
case q=p = l, y^O to Bosanquet [2]. Hardy and Littlewood have given a proof of a result
[10, Theorem 7] which implies (2.1.2) for - K y < 0 , but their proof here appears to be
incomplete.§ They have also stated the case q^p^l, y=0 as the integral analogue of an
inequality for series [13, Theorem 5].

The general result (2.1.2) can be proved by appropriate specialization of an argument
used by Hardy and Littlewood [12] to prove an inequality for series. However, in one of our
later applications we require an explicit value for the constant B in one particular case of
(2.1.2), and it seems advisable therefore to give the proof of Theorem 2 in full.|j

2.2. Suppose first that q > p > 1. Let

HJ:
let u>l/p-l/q, and let A and JJ be numbers, to be chosen later, such that X<ljp', 0<7;<l,
and p'(a-l)(l -rj)> - 1 . Applying Holder's inequality with indices q, p', and pql(q-p),
we have f̂

1 WJ o
t This argument is given by Hardy [8].
J See also Hardy, Littlewood, and Polya [14], Theorem 329.
§ Their Theorem 7 depends on their Theorem 6, and the discussion of the region A' in part (i) of the proof

of the latter theorem does not seem to be valid.
|| I have used this some argument in [7] to prove the series analogue of Theorem 2. but have not

attempted there to determine an explicit value for the constant.
11 The last factor in (2.2.1) is to be omitted if p=g.
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1 f1 f<
— ((t-u^'-^iw
'(a)Jo(( '
1 / /*< \ i / 9 | rt

w Uo ; U o

•><• I I «—1—py fvlfi,\ /7o/l 190 i\

Uo i

- I Cl I 1 ' ' '
U 0 /

wliere
I f f 1 1 ''*'

/? / I M n)\p'(0t—l)(l — TJ) 7)~P'A /7n)l /O O O\

^ - r w l J o 1 1 w) w dvf (2'2-2)

Write now /x = q(a- l)ij and w = ?(A + y+l/p) . Then we have

t-l-qy-q, jp?(n ^ W Jq-P ^-l-^-o, j ,{ _ y\M wo,-l-py /p(,t\ ^M

Jo
whence

P <-i-9y(^yrf< ^ w ji-v pM-i-Pvyp(w) ^(Mj rfW)
Jo V <•* / Jo

where

Thus, provided that w > 0 and ^ > - 1, we obtain (2.1.2) with B = B^Hf- Choose r; so that
qrj = p'(l -7]), i.e. so that -q = p'/{p' +q). Then 0 < -q < 1 and

/•oo ri

k(u) = W°\ tr1-"-"^-u)"dt = v-i+^l -v)»dv = B2, say (2.2.3)
J u Jo

as required. Choose also A so that \<ljp' and w=q(X + y + l/p)>0 (this is possible, since
y +1>0). The various conditions which we have imposed on A and •>? are therefore satisfied,
and this completes the proof in this case. A similar argument applies if q^p = 1, a > l / p -ljq.
(Take A =0, rj = 1, and omit the second bracketed factor in (2.2.1). )

2.3. We digress for a moment to determine a value for the constant B in (2.1.2) when
q>p>l, a = l -1/q, y= -lip, and p'>q. We are actually interested only in the order of
magnitude of B when p —> 1, and it is convenient to choose values of A and 17 different from those
given above. From (2.2.2) and (2.2.3) the constant B is here given by

r(2-p'(l-v)/q-p'\) I
and A ajid r; have to satisfy the conditions

l (2.3.1)

Choose A and 77 so that p'X=p'(l -i?)/g = | . Then the conditions (2.3.1) are satisfied (since
q<p'), and, by the duplication formula for the /"-function,!

t See, for example, Copson [3], § 9.23.
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where the constants J5 (9) depend only on q.

2.4. We return now to the remaining case of Theorem 2, namely q>p>\, a = l/p - l/g.
Write

(a)f.(0 = f(«-«)-7(M)d«= f" + f =
Jo J 0 J it

Then
rtt ft

<?(<) < JSt0-1 /dw < Bt"1 fdu =
Jo Jo

whence, by the case already proved,

It is therefore now enough to prove that

To prove this, it is sufficient, by the converse of Holder's inequality, to prove that

trVi-y-'kHcU^Bll t-^pdn h"'dt\ (2.4.2)
Jo U 0 I U 0 J

for every h belonging to L"'(0, 00). The integral on the left of (2.4.2) is equal to

r /-1/9-v-a m) dA (t _ M)a-i y(w) rfw
Jo J u

rx rt
u-1lp-Yf(u)h{t)ul!l'^t-^'1-y-x{t-u)a-1dudt

J o J i t

< f ° fM-1»>-''/(M)fe(O(<-M)"-1dMd« (2.4.3)
J 0 J if

(since in the region of integration u1lp+v^Btlll'+v =Bt1lq+v+'). Since a - 1 = \jp + l/g' - 2, it
follows by a well-known theorem of Hardy and Littlewood [10, Theorem 3]f that the last
integral in (2.4.3) does not exceed the right-hand side of (2.4.2) (for some B). This completes
the proof of (2.4.1), and of Theorem 2.

2.5. We note in passing that the case g=^»>l of Theorem 2 is a particular case of the
following general inequality (Hardy, Littlewood, and P61ya [14, Theorem 319]).

THEOREM A. Suppose that p> I, that K (t, u) is non-negative and homogeneous of degree -1,
that%

t See also Hardy, Lifctlewood, and P61ya [14], Theorem 382.
I The equality of the two integrals in (2.5.1) is a consequence of the homogeneity of K.
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flfl.itlr 'Wti = [X K{t, \)t-V*dt = k, (2.5.1)
Jo Jo

and that f(t) 5= 0 in t > 0. Then

[X' dt ( r' K(t, u)f(u) duY < & [mf»dt.

Taking K(t, u) = <-I/P-V-« WI/JH-V y - ?<)«-i in 0 < u < t, and 0 elsewhere, and observing

that

J o ' Jo

when a > 0 and y > - 1, we obtain (2.1.2) with

2.6. The result of Theorem 2f enables us to fill a gap in a theorem of the author on frac-
tional integrals. L e t / be periodic with period 2v and integrable in ( -n, n), let

and for <>0 let

and

= 0o(t) =f(8 + t)+f(9-t) and A^t) = Ufa) - f+du,
J o

* . W = 7̂ -T f' (t - u)-14>{u) du (a > 0)

•* ( a - UJ 0
(so that <Pa and ^1a are the ath and (a - l)th integrals of <j> and Au respectively). Then we have

THEOREM 3. Let f be periodic with period 2n and integrable in ( -IT, V), and let the mean
value of f over this interval be 0. Let also

where either x = (&a nn<l a > 0, or ^ = Aa and a > 1. Then for 1 < & < 2 ared p > 1

) B ( J « f d f l )
This is proved in [6] for x = ^a and a > V^ an<i f° r X — Aa and a > 1 + 1/fc. Since

^ t p < B(k, a, j8)^t „ for p > a (by Theorem 2), the complete result follows.

3.1. We pass next to some results which are substitutes for Theorems 1 and 2 when one (or
more) of the parameters takes a limiting value. We have first

THEOREM 4. Let f(t)^O in 0<<<a, where a is finite, and let Fx(t) be the ath Riemann-
Liouville integral off with origin 0. / / g > l and a = 1 - l/q, then

t We require only the case q =p>\ considered in § 2.5.
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where the B's depend only on q and a. •
This result is the substitute for Theorem 2 when all three of the parameters p, <x, y have

their limiting values (i.e. p — \, <x = l - l / g , y= -1 ) . Zygmund [18] has proved the corres-
ponding result for the Weyl fractional integral, and has remarked that his proof can be
modified to apply to the Riemann-Liouville integral. We give here an alternative proof of
Theorem 4 which is somewhat simpler than that of Zygmund.f

Setting f—0 in t > a, we see from § 2.3 that when 1 < p < Min (q, q') and a = 1 - ]./</,
\Vq I f« \Up

j B ( ) ( l ) * \ j f d ]
Since t~ltv' > Min (cr1, 1) in 0 < t < a, we have therefore

j j QFIdj < B(a, q)(p- l)-i/« (J J*dj
for Kp<Min(q, q') and a = l — \jq, and the result of Theorem 4 now follows immediately
from the following extrapolation theorem.

THEOREM 5. Let T be a transformation which transforms a real function integrable in
(0, a), where a is finite, into a function measurable in (0, a), and has the properties

(i) \T{f)\=\T(-f)\,
(ii) for any real fx and f2,

(iii) for any infinite sequence of non-negative functions /„ ,

( 00 \ I 00

(iv) there exist constants &>0, po>i, q^l, and C>0, such that for every real f of Lv (0, a),
where Kp<p0,

)

Then, for any integrable f,

where the constants B depend only on k, p0, and C.
The case q = 1 of this result is due to Yano [17]. J The proof of the general case is similar

to that given by Yano, but for the sake of completeness we give the proof here.
We may suppose/^2, for, if this is not so, write

|/+2 if/>0, | 2 if/>0,
Jl~\ 2 if/<0, h~\-f+2 if /< 0.

t In our proof we use only the relatively simple case a = 1 - 1/?, y = - 1/p of Theorem 2 discussed in
§§ 2.2-3. Zygmund, on the other hand, makes use of the case q>p>\, a = l /p -ljq,y= - 1/p of Theorem 2,
which depends on a difficult theorem of Hardy and Littlewood (see § 2.4).

{ I t is also implicit in work of Titchmarsh [16],
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Then f - ^ - 1 , / 2 ^ 2 , /= / j -/2, and in virtue of (i) and (ii) it is enough to prove the theorem for
fi&ndft.

Suppose then that/>2. Let En be the subset of (0, a) in which n - 1 </<w, and let/n be
equal to / in En and to 0 elsewhere. Then, by (iii) and Minkowski's inequality,

{Jow>i«*
both sides possibly being + oo. If now we take p = 1 + 8/log n in (iv), where 8 is positive and
so small that 1 + 8/log n<p0 for n^3, we obtain

U/j n I ra U/p Q

} {/i/P*} i£i1"

)* | En |

where both .B's are of the form B(C, k;h) [to prove that

consider the cases \En\^ l/n3 and | ̂ n | ^ 1/w3 separately]. Hence

|T(/)|^4 ^^S
' 0 I 3u:

where again both JB'S are of the form B(C, k, 8), and this proves the theorem.
3.2. If we combine Theorem 4 with the case p = q> 1, y — -1/poi Theorem 2, and observe

that (Fa)p = Fx+p for a>0 and jS>0, we obtain the case g> 1 of the following result, which was
stated without proof in [6].

THEOBEM 6. Letf(t)^O in 0<<<a, ivhere a is finite, and let i\(<) = fdu. If q > 1,
Jo

then

j J H J I d«J < B3 J ̂  (log

«7iere JB3 a?i<i Bt are of the form B(a, q).

This result is, of course, a substitute for Theorem 1 when p = 1 and y = - 1 . The case q = 1
has been proved by Hardy and Littlewood [11] by an application of Young's inequality,
and their method extends easily to give an alternative proof of the case q> 1. Another proof
of the case q = 1 is given in [4], and this shows that in this case we may take the constants B3

and JB4 to be of the form A and Aa, respectively.

3.3. We conclude this note by using the case q = 1 of Theorem 6 to prove a substitute for
Theorem A in the case p = l. This was stated without proof in [5].

THEOREM 7. Suppose that K(t, u) is non-negative and homogeneous of degree -1, that
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sup K{1, u) = fcj < oo and K(t, 1) dt = k2 < oo,
0<u^l Jo

thatf(t)&zO in (0, a), where a is finite. Then
ra I ra \ I fa

dt{\ K(t, u)f(u) du] < A(kx + k2)\ /log +fdt 4
Jo Uo ) Uo

and

U dt(\ K(t,u)f(u)du\ ^B(kl,k.2,a,n)\

In addition to the result of Theorem 6 we require also the following inequality (Zygmund
[19, § 10.22] ) : iff^O in (0, a), where a is finite, and if 0</x<l, then

( J 0 ( T ) dt) <B(a,r)jnfdt (3.3.1)

For 0 < t < a we have

f X(«, u)f(u) du = \C tK(t, u)f(u) du + f tf (J, M)/(M) rfw = P(t) + Q(t),
Jo Uo J«

say. Writing u=tv, where 0<«<l , we have

tK(t, u) = tK(t, tv) =

so that

and

Next, we have

for 0 < ix < 1, and

Hence, by the case q = l of Theorem 6 (with constants as determined in [4] ) and (3.3.1),

Fpdt^Ak! f"/log +/dt + Aakx
Jo Jo

P"dt\ ^B(a,fi)kA fdt.
Uo I Jo

<J3(o>/t)J Qdt

faQ dt = (""/(«) ^w f"-^(f>u) dt = [af{u) du [ uK(uv, u)
Jo Jo Jo Jo Jo

= f7(tt) du [lK{v, l)dv = k2 \
af(u) du

Jo Jo Jo
ra

^AkA /log +fdu + k2a,
Jo

and the result now follows from these relations and the fact that
fa I ra \JJ ra ra

dt\\ K(t,u)f(u)du\ < P»dt+\ Q"dt
Jo Uo ) Jo Jo

fo rO<><l .

dv
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