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A CUBIC ANALOGUE OF THE RSA CRYPTOSYSTEM

MOHAMAD RUSHDAN M D SAID AND JOHN LOXTON

In this paper, we investigate a public key cryptosystem which is derived from
a third order linear recurrence relation and is analogous to the RSA and LUC
cryptosystems. The explicit formulation involves a generalisation of the rule for
composition of powers and of the calculus of the Euler totient function which
underlie the algebra of the RSA cryptosystem. The security of all these systems
appears to be comparable and to depend on the intractability of factorisation but
the systems do not seem to be mathematically equivalent.

1. PUBLIC KEY CRYPTOSYSTEMS BASED ON RECURRENCES

Public key cryptography was invented by Diffie and Hellman in 1976 in their paper
New directions in cryptography [5] and, since then, many articles have been published
dealing with this concept. Some have proposed crytosystems that are practical to
implement, although not all of these have proved resistant to attack. The best known
survivor is the RSA (Rivest, Shamir and Adleman) cryptosystem ([10]). The strength
of this system arises from the intractability of the problem of factorising certain large
integers. No other general attack on the RSA cryptosystem is known. However, because
of the rapid increases in factorising power and attacks based on the special structure of
RSA, it is still of interest to look for variations of the original idea. That is the theme
of our paper.

A. T H E RSA CRYPTOSYSTEM. In the RSA system, each user places in a public file an
encryption key (e, N) where e and N are positive integers and TV" is the product of
two large primes p and q which are not revealed. The decoding key d is determined
by ed = 1 mod (j>(N) and is kept secret by the owner of the public key (e, N). (Here,
(p(N) = (p - l)(g — 1) is the Euler totient function.) To encrypt a message, the sender
raises the message P to the e-th power modulo N. Thus, the encryption function is

E(P) = Pe = C mod N,

where C is the ciphertext which is sent to the owner of the public key (e,N). To
decrypt, the receiver raises C to the d-th power, that is the decryption function is

D{C) = Cd= (Pe)d = P mod N.

(The last congruence follows from Euler's theorem, as long as P and N are relatively
prime.)
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B. T H E LUC CRYPTOSYSTEM. The LUC cryptosystem [11] is a similar scheme based
on the Lucas sequence. The encryption function is defined by

E(P) = Ve(P,l) = C mod N,

where N = pq as before and Ve(P, 1) is the e-th term of the Lucas sequence derived
from the second order recurrence relation Vn+2 = PVn+\ — Vn mod N, with the initial
values Vo = 2 and Vi = P. (See [8].) As in the RSA system, (e,N) is the public key
and the decoding key d is chosen so that de = 1 mod S(N), where

and (D/p) and (D/q) are the Legendre quadratic residue symbols with D — P2

- 4. The holder of the secret key is able to determine both Legendre symbols from the
ciphertext Ve without knowing P and D. Indeed, if Un is defined by the same recur-
rence relation as Vn but with initial values UQ = 0 and U\ = 1, then DU2 = V2 — 4
which implies that (D/p) — ({V2 — 4) /p) . To decrypt the ciphertext C, we invoke the
following two crucial relationships for the Lucas sequence:

Vd(Ve(P,l),l) =

and
VkS{N)+i(Pl) =

The decryption function is therefore

D(C) = Vd(C, 1) = Vd(Ve(P, 1), 1) = Ved(P, 1) = VkSlN)+i(P, 1) = P mod N

and this recovers the original message P. (In the second last step, ed = kS(N) + 1 for
some integer k by the definition of d.)

The characteristic equation of the Lucas sequence introduced above is the quadratic
x2 — Px + 1 = 0 with discriminant D. For the case of interest here, the coefficient P

is an integer, the discriminant is non-zero and the quadratic has distinct roots, say a

and (9. The Lucas sequences Un and Vn associated with the quadratic are given by
Un(P, 1)-= (an - / 3 " ) / ( a - 0) and Vn(P, 1) = a" + fin respectively. These formulae
provide one way to derive the various identities mentioned above.

C. T H E CUBIC CRYPTOSYSTEM. The main purpose of this paper is to investigate ver-
sions of these cryptosystems based on higher order recurrence sequences and, in partic-
ular, on cubic recurrences.
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We define the recurrence sequences in question in section 2, describe the neces-
sary algebra for the investigation in section 3 and set up the cryptosystem in section
4. We shall see in section 5 that the higher order systems are not significantly more
complex computationally. For example, decryption will take at worst twice as long as
for an RSA system with similar block size. All these systems rely for their security on
the computational intractability of factorisation and all have similar weaknesses to a
chosen message attack as shown in section 6. The additional parameters in the higher
order systems may allow choices which increase the cryptographic randomness of the
underlying operations and so strengthen the cryptosystem. We plan to return to this
question in a subsequent paper.

2. CUBIC ANALOGUE OF THE LUCAS SEQUENCE

By analogy with the Lucas sequence, we consider the cubic equation

(1) x3 - Px2 + Qx - R = 0

with integer coefficents P, Q, R and roots a, 0,7 and we define the following sequences
of numbers:

(2) Un{P,Q,R) = an+ujpn + u>2'yn

Wn(P, Q, R) = an+ u>20n + w7
n

where w = ( -1 + \ / -3 ) /2 is a cube root of unity. The sequences Vn,Un and Wn all
satisfy the linear recurrence

Xn+z = PXn+2 — QXn+i + RXn

with characteristic equation (1). All the Vn are integers, because the first three terms
Vo, Vi and V2 are integers, namely V0(P, Q, R) = 3, Vi(P, Q, R) = a + 0 + 7 = P , and

V2(P, Q, R) = a2 + P2 + 72 = (a + 0 + 7)2 - 2(a/3 + ory + 0-y)

= V2(P,Q,R)-2Q = P2-2Q.

The quadratic and cubic versions of these Lucas sequences can be extended to
Kummer fields of any prime order q as shown by Williams [14]. Here, if a0, ati,... , aq-i

are a complete set of conjugates (and hence distinct) in a Kummer field Q(A1/*) and
w = e2itl/q, then the sequences

9-1

3=0
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form an integer basis for the set of related recurrences of order q whose characteristic
polynomial has oto, oti,... , a,_i as its roots. These extended Lucas sequences satisfy
similar identities to the familiar properties for the quadratic case. In particular, they
exhibit divisibility properties which can be exploited in primality tests and in certain
cryptosystems. We shall see in later sections how this works in the cubic case.

3. CYCLES AND TOTIENTS

As with RSA and LUC, the cryptosystem will be derived from the terms of a
recurrence sequence taken modulo N. A recurrence sequence modulo N is periodic and
an obvious necessary condition for a secure system is that the period is large. In this
section, we investigate the computation of the period of a recurrence sequence modulo
N. By the Chinese remainder theorem, the general result can be pieced together from
the case of a prime power modulus and we build up to this by first studying the case
of a prime modulus p.

A. CYCLIC STRUCTURE FOR A PRIME MODULUS. Let f(x) — x3 - Px2 + Qx - R be

the characteristic polynomial of the cubic recurrence sequence Vn = PVn-i — QVn_2

+ RVn-3 as defined previously.
The factorisation of f(x) modulo p is unique and, following Ward [12], can be

classified into five different cases or types:

I. type t[3] — f(x) is irreducible,
II. type t[2,1]—f(x) factors as an irreducible quadratic times a linear factor,

and

III. type t[l] — f(x) factors into three linear factors.

In this last case, we have three possibilities namely:

III. 1. type £[1,1,1]—three distinct roots,
111.2. type t[l2,1]—a double root and a single root, and
111.3. type t[l3]— a triple root.

k

Let F p denote the finite field of order p. In general, if f(x)= ]J fi{x)E* modp, where
i=i

the fi (x) are distinct and irreducible of degree d, over F p , we say that / is of type
tldl1,... , dfjf]. For convenience, we take d\ ^ d2 ^ . . . ^ dk •

The following proposition contains a characterisation of the period of a general
recurrence sequence. We then restate it as Proposition 1A in the simplified form in
which it is applied later in the paper to cubic recurrences and sketch the proof of the
special case.

PROPOSITION 1. Suppose the polynomial f(x) in Fp[x] has degree d and fac-
k

torisation f(x) = J | fi(xY' over FP[:r], where the fi(x) are distinct and irreducible of
i l
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degree d{ and / (0) ̂  0 mod p . Let oiij (1 ̂  j> ̂  d*) be t i e roots of fi(x) in its splitting
field over F p . The general solution (Xn) of the recurrence relation with characteristic
polynomial f(x) has the shape

where pij (x) is a polynomial of degree at most £j — 1.

Suppose dij has order e* in F£ , that is e* is the least positive integer such that

ai} = 1 mod p . Then e{ \ p
di - 1 and, in case fi(0) = ( - l ) d < , e, | 1 + p H h p ^ " 1 .

The period of Xn modulo p is the least common multiple of the periods of the

terms pij{n)ot"j and the periods of these terms have the respective shapes pr'-?ej for

some integers Tij.

COMMENTS. The form of the general solution of a recurrence relation over a field is
well known.

Let if be a finite field extension of F p . If f(x) is an irreducible polynomial
in Fp[a;], then we have the following result from Galois theory (see, for example,
[4, p. 287]): If f(x) in Fp[x] is irreducible of degree d, K is a finite field exten-
sion of F p , and a in if is a root of f(x), then in K[x], f(x) = (x - a) {x - ap)

(x-aP2)...(x-aP"~1).

Consider a typical factor fc in the Proposition. The splitting field has degree di

over F p and the set of conjugates a^- has the shape a, ap, av , . . . ap ' , so each ay-

has the same order ei and &i \ pdi - 1. Since ( -1) */t(0) = a 1 + p + p + " , we see that

d | 1 + p + p2 + • • • + p ^ - 1 if £(0) = ( - l ) d i .

PROPOSITION 1A. The periods of the recurrence sequences Un,Vn,Wn modulo

p defined in (2) divide (a) p 3 - 1 in Case I, (b) p2 - 1 in Case II and (c) p - 1 in Case

III.

PROOF: In Case III, the orders of the roots a, b and c of the characteristic cubic
equation (1) divide p — 1 by Fermat's Little Theorem. This implies that the period
of each of Un,Vn, Wn divides p - 1. The result here is simple because the particular
recurrences Un,Vn,Wn only admit constant coefficients in the general solution Xn

considered in Proposition 1.

For Case I, we invoke the result from Galois theory cited in the comment above.
2

If a is one root of the cubic equation (1), then the other roots are (3 = ap, 7 = ap

n 3 3 3

and R = a1+p+p modulo p . Therefore we have ap = a, /3P = ft, 7P = 7 modulo

p and so the period modulo p of any of the simple recurrence sequences in (2) divides

p3 - 1 and even divides 1 + p + p2 if R = ( - l ) 3 / (0 ) = 1 -
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In Case II, the cubic polynomial in (1) can be written as f(x) — (x2 + Ax + B)
(x — c) where x2 + Ax + B is an irreducible quadratic and its two roots are given by
a = (-A+VA2-4B)/2 and /3 = ( - ^ 1 - VA2-4B)/2. Instead of calling on the
Proposition, we give a simple explicit calculation:

a» = (i(-A+ y/tf^tS)} = \(-A+ (^^j^A^lB^ modp,

and similarly for /3P, where ((.A2 — 4B)/p) is the Legendre Symbol. Since x2+Ax + B

is irreducible modulo p , ((A2 — 45) /p) = ± 1 . Therefore, ap = a, /3P = /? mod p when
A2 — 41? is a quadratic residue and ap = /3 mod p,fip m a mod p when J42 — 4£ is

2 2 2

a non-residue, and in either case, ap = a, /3P = /3modp. Of course, cp = cp = c
modulo p . Thus, the period of the recurrence sequence divides p2 — 1.

For cases I, II and III.l, these results apply to any solution of the recurrence and
not just to the simple solutions Un, Vn, Wn- In case III.2 and III.3, we must allow for
the possibility of repeated roots so that the general solution has the form

Xn = (rn + s)an + tbn or Xn - (rn2 + sn + t)an

and the period divides ps(p — 1) for some integer <5. D

B. CYCLIC STRUCTURE FOR A PRIME POWER MODULUS. The passage to a prime power
modulus is elementary. The following proposition gives a general result which we then
restate as Proposition 2A in the simplified form in which it is applied later for cubic
recurrences. Again we only sketch the argument in the special case.

PROPOSITION 2 . Suppose a is a root of an irreducible polynomial f in Fp[x],
/ has degree d and /(0) ^ 0 mod p . Let e denote the order of a modulo p m . Then
e | p m - 1 ( p d - l ) and, in case /(0) = ( - l ) d , e | p m ~ 1 ( H - p + • • •+ p d " 1 ) .

COMMENT. The period of the recurrence sequence modulo p m is therefore determined
in the same way as in Proposition 1, except that ej is now the order of QJJ modulo p m .

PROPOSITION 2A. The periods ofthe recurrence sequences Un,Vn,Wn modulo

p m divide (a) p " 1 " 1 ^ 3 - l) in Case I, (b) p " - 1 ^ - l) in Case II, and (c) pm-x{p - 1)

in Case III.

PROOF: Consider Case I. If a is one root of the cubic equation (1), then the other
2

= ap

congruence to the power of pm~x gives

2 2

roots satisfy P = ap and 7 = ap and we have R = a 1 + p + p modp. Raising the last

2 \Pm~1 m-1 m-1

(ap +P+I j = (/<; m o d py =(R + pOf for some integral 6
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mwhere all the terms apart from B?m are divisible by pm. Therefore,

and, by Euler's Theorem,

aP—X(PS-I) = flP—^-D =

The other roots of the polynomial satisfy the same congruence. The other two types
can be dealt with in the same way. D

C. GENERALISATION OF THE EULER TOTIENT FUNCTION. The Lehmer totient func-
tion, S(N), is the generalisation of the Euler totient function for the Lucas functions.
(See [7].) In the case of third order linear recurrence sequences, an analogue of this func-
tion can be constructed following a similar procedure. In order to extend this theory,
the value of the constant coefficient R of the cubic (1) is restricted to 1.

Consider the cubic f(x) = x3 - Px2 + Qx — 1 with roots a, /3 and 7 and the
corresponding linear recurrence sequence Vn — an + /3n + 7" as defined previously.
Suppose that AT is a positive integer, written in its canonical form,

where the pi are distinct primes and the a* are positive integers.
If the cubic f(x) is of type t[3] modulo Pi and a is one of its roots in its splitting

field over FP i , then for any positive integer k, akptl (PI+P<+1) = RkPi* = 1 modulo
p"*, using the calculation in the proof of Proposition 2A and the assumption that R = 1.
The other two conjugates give the same result. Therefore,

Similarly, for a cubic of type t[2,l] modulo Pi, afcp«l ipi~1)+1 = amodp"' which
leads to

Finally, for a cubic of type t[l] modulo p<, the congruence afcp> * (P>~1)+1 = a mod p"'
yields

V.at-i. ,, = P m o d p ? \

We define the totient
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where

( Pi + Pi + 1 if / (z ) is of type t[3] modulo pi

Pi - 1 if f(x) is of type t[2,1] modulo pi

Pi - 1 if f{x) is of type t[l] modulo Pi.

Since V ai-i x = P m o d p " * for each i = 1,2, . . . ,r and any integer k, we have

= Pmodp"* which implies that Vk^N)+i = P mod N. We have thereforeproved the following Proposition.

PROPOSITION 3 . Let N = p^p? •••p?r where the p{ are distinct primes and
at arepositive integers and let f{x) — x3-Px2+Qx-l be the characteristic polynomial
of the recurrence sequence Vn = Vn{P, Q, 1). Then Vk$(N)+l = Vt mod N and, in
particular,

Vk^{N)+1{P,Q,l) = P mod N,

where <3>(iV) is the totient function defined above.

D. COMPOSITION OF RECURRENCES. We state here some properties of the sequence
(V)n which are straightforward consequences of the definition. The identity (3) which
is the rule for the composition of powers for the third order function is of particular
importance in what follows.

Let a, /3 and 7 be the roots of the equation z3 — Px2 + Qx — R = 0 and let
Vn(P, Q, R) = an + /3n + 7". By exploiting the relations between the roots a, ft,7 and
the coefficients P,Q,R, we find

V_k(P,Q,R) = a~k + /3~k +7~k = Vk{QR-\PR-\R-1)

because the cubic corresponding to the last recurrence, namely x3 - QR~1x2 +
— R~l has roots a~1,/3~1 and 7"1 . Similarly,

Vk(Q,PR,R2) = (a/3)fc

Using this identity, we see that the cubic with roots ak, /3k and j k is z 3 - Vk(P, Q, R)x2

+ Vk(Q,PR,R2)x-Rk so

(3) Vnk(P,Q,R) = ank + pnk + 7"fc = Vn(Vk(P,Q,R),Vk(Q,PR,R2),Rk).

Finally, by direct calculation and the evaluation of Vk (Q, PR, R2) above,

Vk(P, Q, Rf = V2k(P, Q, R) + 2Vk (Q, PR, R2)

E. INVERSION OF RECURRENCES. We can now formulate an inverse operation. Con-
sider the sequence Vn(P, Q, 1) and suppose ed = 1 mod $(N), that is ed = k$(N) + 1
for some integer k. Then, by (3) and Proposition 3,

(4) Vd(Ve(P, Q, 1), Ve{Q, P, 1), 1) = Ved(P, Q, 1) = VkHN)+1(P, Q,l) = P mod N,
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and, for the same reason,

Vd(Ve(Q, P, 1), Ve(P, Q, 1), 1) = Q mod N.

There is an obvious difference between Euler's function cf>(n) and its extension
<3>(n). The function <j>(n) depends only on the prime factors of n , whereas the function
3>(n) also depends on the type of the characteristic polynomial f(x). If we replace
each pi respectively in the definition of $(AT) by lcm (pi — l,p2 — l,p? + pi + l) we
get a new uniform 'totient' function, R{N) say, which works in each case and enables
us to do away with determining the type of the polynomial. The drawback is that the
new function is generally larger and, in the interests of computational efficiency, it is
desirable to avoid moduli which are larger than necessary.

For the quadratic f(x) = x2 —Px+1, the additional information needed to compute
S(N) is the set of Legendre symbols (D/p), where D — P2—4 is the discriminant of the
quadratic and p runs through the prime factors of N. In discussing LUC, we observed
that the inversion relation involves the quantity Vd(Ve(P, 1), 1) which comes from the
recurrence associated with the quadratic g(x) = x2 — Ve(P, l )x + 1 with discriminant
Ve(P, l ) 2 - 4. However, ((P2 - 4)/p) = ((V2 - 4 ) /p ) , so the type of the decoding
polynomial g(x) is the same as the type of f(x) and it can be found directly from the
cipher Ve(P, 1) without decoding.

We wish to investigate the extension of this phenomenon to cubic equations. That
is, given P and Q and the arguments Ci = Ve(P,Q, 1) and C2 = Ve(Q,P,l) in (4),
we want to determine whether the type of the polynomial g(x) = x3 — C\x2 + C2x — 1
is in any way related to the type of the polynomial f(x) = x3 — Px2 + Qx - 1.

PROPOSITION 4 . Let p be a prime and consider the cubic polynomials f(x)
= x3-Px2 + Qx-l and g(x) = x3 - Ve(P, Q, l)x2 + Ve(Q, P, l)x - 1.

(a) If (e,$(p)) = 1, then f and g have the same type.
(b) If the discriminant of g is non-zero modulo p, then f and g have the

same type.

(c) In any case, f and g have the same type except possibly in the cases
described in the table:

Type of f

3
2,1

1,1,1

Roots of f mod p
a,/3,7
a,P,c

a,b,c

Type of g
I3

IM
I3

iM
i 3

Roots of g
ae - Pe

ae = be

ae = be

modp

= ce

= ce

a,c 1° ae = ce
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COMMENT. We adopt the convention that a, 6, c denote elements of F p and a, /3,7
denote elements of the splitting field of / over F p .

PROOF: Note that if a, @, 7 denote the roots of / then, by the remark preceding
the identity (3), the roots of g are ae,@e,je.

(a) If (e, $(p)) = 1, then we can find d with ed = 1 mod $(p) and we have
aed = a mod p. Consequently, ae = /3e mod p if and only if a = /3 mod p.

If a and j3 are any two distinct conjugate roots of / , then as in the proof of
Proposition 1A and after interchanging a and /3 if necessary, we have P = ap mod p.
Consequently, if ae — a, say, is in F p , then 0e = ape = ap = a = ae mod p, contrary
to the assumption that a and 0 are distinct.

It follows that / and g have the same number of distinct roots and the same
number of roots in F p and so have the same type.

(b) If the discriminant of g is non-zero, then g has distinct roots. Further, by
the second remark in the proof of (a), if a and /3 are distinct conjugate roots of / ,
then ae and /3e are distinct conjugate roots of g. So, again, / and g have the same
type.

(c) The exceptional cases occur when the e-th powers of certain roots of / coin-
cide. Some combinations are impossible. For example, if / has type t[3] and conjugate

2
roots a, /3 = a p ,7 = ap and ae = a is in F p , then ae = /3e = j e = a modp so g
either has type t[3] or type t[l3]. D

F. AN ALGORITHM FOR COMPUTING THE TYPE. We sketch an algorithm in the form
of a decision tree to compute the type of a cubic polynomial f(x) = x3 — Px2 + Qx - R

in Fp[x].

STEP 1. Compute the discriminant of / . Let a, #,7 denote the roots of / . The
discriminant (see, for example, [4, p. 282]) is given by

D = (a - 0)2(P - 7)2(7 - a)2 = -27fi2 + 18PQR - 4Q3 + P2Q2 - 4P3R

and D = 0 modp if and only if / has a repeated root, that is / is of type i[l2,1] or

type«[l3].

IA. Type t[l3]: D = 0 mod p and either Q = P2/3, R = P3/27 mod p if p / 3 or

P = Q = 0modp if p = 3.

The specifications imply f{x) = (x - P/3)3 modp if p ^ 3 and /(x) = (x - R)3

mod p if p = 3.

IB. Type t[l2,1]. D = 0 mod p and the conditions of IA are not satisfied.

STEP II. Let D denote the discriminant of / and let r denote the number of irreducible
factors of / in Fp[x]. Suppose D ^ 0 mod p so that the type is t[l, 1,1], t[2,1], or t[3].
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The following theorem of Stickelberger can be used in deciding whether the function /
has an odd or even number of distinct irreducible factors. (See [4, p. 282].)

STICKELBERGER'S THEOREM. Let p be an odd prime, f(x) a monic polyno-
mial of degree d with coefficients in Fp[x] without multiple factors (D ^ 0 mod p). Let
r be the number of irreducible factors of f(x) in Fp[x]. Then r = d mod 2 if and only
if(D/p) = l.

IIA. Type t[2,1]. D ^ 0 mod p and either (D/p) = - 1 if p > 2 or P = Q mod 2
i/p = 2.

By Stickelberger's Theorem, in the case p > 2, r ^ 1 mod 2, so r = 2 and / has
type t[2,1]. The case p = 2 follows by enumerating all possibilities.

IIB. Type £[1,1,1] or type £[3]. D £ Omodp and either (D/p) = 1 if p > 2 or
P=Q mod 2 if p = 2.

STEP III. Let D denote the discriminant of / and suppose {D/p) = 1 so that the
type is £[1,1,1] or £[3]. In order to decide between the two possible types, we must
decide whether or not / factorises in F p .

Suppose first that p > 3. We can solve the cubic equation f(x) = 0 by Cardan's
formula: if y — x — P/Z, then

f{x) = y3 + Ay + B where A = Q - P2/3,

B = -R + PQ/3-2P3/27 and

D = -27B2 - AA3

and the roots are obtained from y = u-v where Suv = A and u3 — v3 = —B. Thus,
u and v can be determined by taking the cube root of

By hypothesis, D = (j?modp, say, so f(x) factorises in F p if and only if (-B
+ n/3\J-3)/2 is a cube modulo p. This question can be decided by computing a
cubic residue symbol and the law of cubic reciprocity provides an efficient mechanism
for doing so. Williams and Zarnke [16] give an explicit algorithm requiring O(log p)
steps.

The cases with p — 2 and p = 3 can be handled by enumerating all the possibilities.
This leads to the final step in the classification.

IIIA. Type £[1,1,1]. (D/p) = 1 and either (R - (PQ/3) + (2P3/27)

+ (v/D/3v/=3))/2 is a cube modulo p if p > 3 or R = 0 mod 3 if p - 3. [In

the latter case, P = 0 and Q = - 1 mod 3.]
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IIIB. Type t[3]. Either

(a) (D/p) = 1 and (i? - (PQ/3) + (2P3/27) + (\/D/3V=3))/2 is not a

cube modulo p if p > 3, or

(b) D= 1 and i? ^ 0 mod 3 if p = 3,or
(c) P^Q mod2 if p= 2.

This yields a computationally feasible way of determining the type of the polynomial /
and therefore also the function <3>(iV). Moreover, in the most important cases for the
application (cases (a) and (b) in Proposition 4), $(iV) has the same value whether it
is derived from / or g.

4. T H E CUBIC CRYPTOSYSTEM

In the previous section, we have obtained two results which will be used to develop
a public-key cryptosystem. These are the higher order analogues of the two equations
that were used in the LUC system:

1. the extension (3) of the rule for the composition of powers, and
2. the extension $(N) of the Euler totient function.

As in the RSA and LUC cryptosystems, the strength of the system that is to be
constructed, depends on the difficulty of factoring large numbers. Thus, it is necessary
to pick two large secret primes p and q, the product N of which is part of the public
key. The encryption key is (e, N) which is made public. Note that, e must be chosen
so that it is relatively prime to the function $(iV) = pq because it is necessary to solve
the congruence ed = 1 mod $(iV) to find the decoding key d. In practice, since $(N)
depends on the type of an auxiliary polynomial, we choose e prime to p — l,q - 1,
p+ l,q + l,p2 +p + 1 and q2 + q + 1 to cover all possible cases.

Another problem that needs to be addressed, which is not present in the LUC
cryptosystem, is that an extra term of the recurrence is required to effect the encoding
and decoding. In order to compute Ved(P, Q, 1) via the composition law (3), in addi-
tion to the term Ve(P,Q,l), we shall need to know V_e(P,Q, 1) = Ve(Q,P, 1). Since
Ve(Q, P, 1) is unknown to the receiver with only the knowledge of Ve(P, Q, 1), both

d = Ve{P,Q,l) and C2 = Ve(Q,P,l)

must be incorporated in the encoded message derived from P and Q.

A. T H E CUBIC CRYPTOSYSTEM DEFINED. With these preliminary observations, we

can now set up a public-key cryptosystem based on the cubic recurrence sequence Vn

derived from the cubic polynomial (1).

The encryption function is defined by

E(P, Q) = (Ve(P, Q, 1), Ve(Q, P, 1)) = (Ci, C2) mod N,
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where N = pq as above, Ve(P,Q, 1) is the e-th term of the cubic recurrence defined
by Vn+3 = PVn+2 - QVn+i + Vn mod N with initial values Vo = 3, Vi = P and
V2-P

2-2Q, and {P,Q) constitutes the message. The public key is {e,N).

The decryption key is (d, N) where d is the inverse of e modulo $(N). To decipher
the message, the receiver must know or be able to compute $(iV) and then calculate

D(d,C2) = (Vd(CuC2,l),Vd(C2,Cul)) = (P,Q) mod JV

which recovers the original message (P, Q). To see this, observe that

Vd{Ci, C2,1) = Vd(Ve(P, Q, 1), Ve(Q, P, 1), 1) = Ved(P, Q, 1) = VkHN)+1(P, Q,1) = P

modulo N. A similar calculation gives the other half of the assertion.
In decoding, we are given g(x) = x3 - C\x2 + C2x - 1 but not f(x) = x3

— Px2 + Qx — 1 and so we have to deduce the type of / in order to apply the al-
gorithm correctly. In the present circumstances, (e,$(iV)) = 1, so this is resolved by
Proposition 4(a). A similar question arises in the LUC cryptosystem where the decoder
needs the value of the Legendre symbol (D/p) = ((P2 — 4/p)) and must deduce this
from the cipher C = Ve(P, 1). This is resolved because (D/p) = (C/p) as remarked in
section 1.

B. AN EXAMPLE. TO illustrate this rather terse description and the details required
in the computations, we show how the system works in a particular case. (Of course,
the primes here are much too small to give any security and must be chosen very much
larger in any practical example.)

Let p = 29 and q — 41 be the two primes and thus, Af = 1189. Assume that the
plaintext messages are P = 15 and Q = 24. The function / is given by

f(x) = x3- 15a;2 + 24x - 1.

If the encrypting key is e = 13, the sender then calculates Vi3(15,24,1) mod 1189 and
Vi3(24,15,1) mod 1189 which are equal to Cx = 622 and C2 = 319 respectively. The
receiver thus constructs the function

g(x) = x3 - 622x2 + 319x - 1.

In order to determine the decrypting key d, the owner of the public key (13,1189) has
to determine the function <3>(iV) and, to this end, must deduce the type of the function
/ with respect to the primes p and q.

For the prime p = 29, the discriminant of g is D = 27 mod 29 which is non-zero
and this implies that / is of the same type as g, namely t[l, 1,1], since the function
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• g(x) = x3 - 622x2 + 319x - 1 = x3 - 13x2 - 1 = (x - 4)(x - 12)(x - 26) mod 29. (In
fact, / (x) = (x + 7)(x - 10)(x - 12) mod 29.)

In the case of the prime p — 41, the discriminant of g is D = 6 mod 41 which
is also non-zero and this implies again that / is of the same type as g, namely
t[2,1], since the function g{x) = x3 - 622x2 + 319x - 1 = x3 - 7x2 + 32x - 1
= (x- 40) (x2 + 33x + 40) mod 41. (Here, f(x) = (x + l)(z2 - 16x + l) mod 41.)

Therefore,

$(29 • 41) = (29 - 1) (412 - 1) = 47040

and d can be calculated to be 7237 by solving the congruence de = 1 mod 47040. The
cipher can now be readily decoded by computing

D(d, C2) = (^7237(622,319,1), VT237(319, 622,1)) mod 1189 = (15,24) mod 1189

which recovers the original message.

5. EFFICIENCY OF COMPUTATION

As in the LUC cryptosystem, the first obvious test of the efficiency of the extended
system is the ability to compute the e-th term of the third order linear recurrence
sequence, that is Ve(P, Q, 1) and Ve(Q,P, 1) — V_e(P,Q, 1), in a reasonable amount
of time, close to the efficiency of calculating the e-th power of an integer. Smith
and Lennon [11] claim that LUC is as efficient as RSA. Indeed, computation of Lucas
functions can be done efficiently by using the 'Doubling Rule'

V2n = Vf - 2, V2 n +i = VnVn+1 -P {Vn = Vn(P, 1)),

which is used in the same way as repeated squaring in the computation of powers of
integers by the so-called 'Russian peasant' method of multiplication. (See Knuth [6,
pp. 398-401].) This algorithm produces the value of Vn mod N in at most [log2ra]
steps, each of which involves a multiplication of two integers less than N, an addition
of a bounded integer and a reduction modulo N. An explicit algorithm of this type is
given by Williams in [15].

In the case of the cubic system, the doubling rule is given in section 3D:

V2n(P,Q, 1) - Vf(P,Q, l)-2V-n{P,Q, 1), K_2n(P,Q,l) = Vln(P,Q, l)-2Vn(P,Q, 1).

This formula provides for the simultaneous calculation of Vn(P, Q, 1) and Vn(Q,P, 1)
= V-n(P, Q, 1). Adams and Shanks [1] give an algorithm which takes only O(logn)
operations to compute Vn and V_n together. Define the signature of n mod N as

V-n-i, V_n> K-n+i, Vn-i, Vn, Vn+1 mod N.
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The idea is to compute the signature of n mod AT assuming we already have the signa-
tures of all m mod N with m < n. The doubling rule is used to compute

V_2m-2, V_2m, V_2m+2, ̂ 2*1-2, V2m, V2m+2 mod N.

The gaps in the above list can be filled by taking the equations:

V_am-1 = ^-2m+2 - PV-2m+i + QV-2m

V-2m+l = PV-2m ~ QV-2m-l + V-2m-2

and

V2m-i = V2m+2 - PV2m+1 + QV2m

V2m+i = PV2m - QV2m-i + V2m-2

and solving each of the two pairs simultaneously to obtain five successive values centred
around V-2m and V2m and thus giving the signature of 2m and 2m + 1 modulo N.

Suppose the integer n is written in binary and read from left to right one bit at
a time. The first (that is, most significant) bit is 1. If the first k bits produce some
number m, then the first k + 1 produce 2m or 2m + 1 according as the (k + l)-st
bit equals 0 or 1. In [log2 n] steps, we have the six values above, corresponding to the
signature of n. The main computation time in each step is the time used in computing
V£ for the doubling rule but it can be economised by using Toom-Cook arithmetic.
(See [6, pp. 260-266].)

Selecting the appropriate keys and finding suitable primes do not appear to be
any more difficult than in the case of the RSA or the LUC cryptosystems. Although
a maximal period is not guaranteed, iterating Pe or Ve(P, Q, 1) almost surely gives a
large orbit. Otherwise, the Pollard method factorises iV easily and leads to a successful
attack on the cryptosystem. (See, for example, Riesel [9, pp. 172-183 and 235].) A
specific result of this type is that if e < N and d < n1/4, then d can be easily
determined and thus N can be factorised (Wiener [13]). The only extra work needed is
to determine the type of the function / and thus find the appropriate <&(N). This has
been discussed in Section 4F where it was shown that the calculations can be handled
efficiently.

The decryption key d may have up to twice as many digits as in an RSA system of
similar block size because it is obtained by solving a congruence modolo <£(JV) ~ p2q2.
In this worst case, decryption may take about twice as long as in the similar RSA
system with the algorithms described above.
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6. SECURITY AGAINST A CHOSEN MESSAGE ATTACK

As one of the applications of their new ideas, Dime and Hellman [5] proposed a
scheme which uses a public key system to sign messages. For the RSA cryptosystem,
and in its simplest form, a user A whose public key is (e, N) and secret decoding key is d
signs a message M with the signature C = Md mod N. The signature can be checked
using the public key by computing Ce = M mod N. This RSA signature scheme is
susceptible to a chosen message attack. Suppose B wants to make A sign or decode the
message M without A's consent. B chooses a random integer k and asks A to sign
M' = Mke modN. This yields C" = Mdked = Mdk mod AT. Consequently, B can
compute the signature of M by means of C = Md ~ C'k'1 mod N.

It may appear from this description that the chosen message attack on RSA is
a consequence of its multiplicative structure. One reason for interest in the the LUC
cryptosystem was a suggestion [11] that it would manifest greater security because it
apparently lacked a multiplicative or another simple functional structure. Bleichen-
bacher, Bosma and Lenstra [2] showed that LUC does have a multiplicative structure
and that signatures for two chosen messages could be used to break the LUC cryp-
tosystem. This paper left open the possibility that LUC might be harder to attack
than RSA. However, Bleichenbacher, Joyce and Quisquater [3] recently showed how to
use one chosen message to make a successful attack on LUC. The argument is easily
adapted to our cubic cryptosystem. In this sense, the security of the cubic cryptosystem
is comparable to that of both RSA and LUC.

PROPOSITION 5 . The cubic cryptosystem is susceptible to a chosen message
attack.

PROOF: Suppose A uses the public key (e,N). Suppose B wants to make A sign
or decode the message M = (P, Q) without A's consent. Denote the secret decoding
key corresponding to this message by d.

B chooses a random integer k with (k, e) — 1 and (k, $(N) = 1) and finds in-
tegers r and s with kr + es = 1. B asks A to sign the message M' = (P',Q')

= (Vk(P,Q,l),Vk(Q,P,l)) and gets C = (C'ltCQ = {Vd(P',Q',l),Vd(Q',P',l)).

Note that, by Proposition 4, the type is the same for the messages (P, Q) and (P1, Q')

and, in particular, the same decoding key d applies.

B can now compute the signature C = (Ci, C2) = (Vd(P, Q, 1), Vd(Q, P, 1)) of M
by means of the equations

l , 1) + Ur(C[,C2,1)W.(P,Q, 1) + Wr(C[,C2,1)U.(P,Q, 1)]

= \ [Vr(C2, C[, 1)V.(Q, P, 1) + Ur(C2, C[, 1)W.(Q, P, 1) + Wr(C2, C[, l)U,(Q, P, 1)]
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To verify these equations, observe that from the definition (2), a direct calculation
gives

vn+m = ±(ynvm + unwm + wnum).

The observation leading to the identity (3) also gives

Unk(P,Q, 1) - Un(Vk(P,Q, 1), Vk(Q,P, 1), 1)

Wnk(P, Q, 1) = Wn (Vk(P, Q, 1), Vk(Q, P, 1), 1).

Now it is easy to verify that Vdkr{P, Q, 1) = Vr(C[, C'2,l) mod N with similar congru-
ences for U and W. Consequently,

Vd{P,Q, 1) - Vd(kr+ea)(P,Q, 1) = Vdkr+s(P,Q, 1)

= \{VdkTVa + UdkrWs + WdkrUa)(P, Q, 1) mod N

and this can be computed from C[ and C'2 without knowing d.
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