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Abstract

We show that a group that is hyperbolic relative to strongly shortcut groups is itself
strongly shortcut, thus obtaining new examples of strongly shortcut groups. The proof relies
on a result of independent interest: we show that every relatively hyperbolic group acts
properly and cocompactly on a graph in which the parabolic subgroups act properly and
cocompactly on convex subgraphs.

2020 Mathematics Subject Classification: 20F65, 20F67 (Primary)

1. Introduction

Strongly shortcut graphs and groups were introduced by the first named author [Hod18]
who later generalised the strong shortcut property to rough geodesic metric spaces [Hod20].
The strong shortcut property is a very general form of nonpositive curvature condition satis-
fied by many spaces of interest in geometric group theory, metric graph theory and geometric
topology. These include Gromov-hyperbolic spaces [Hod18], asymptotically CAT(0) spaces
[Hod20], hierarchically hyperbolic spaces, coarse Helly metric spaces of uniformly bounded
geometry [HHP20], 1-skeletons of finite dimensional CAT(0) cube complexes (i.e. median
graphs), 1-skeletons of quadric complexes (i.e. hereditary modular graphs), 1-skeletons of
systolic complexes (i.e. bridged graphs), standard Cayley graphs of Coxeter groups [Hod18]
and all of the Thurston geometries except Sol [HP, Kar11]. Despite this surprisingly uni-
fying nature, there are nonetheless important consequences for groups that act metrically
properly and coboundedly on strongly shortcut geodesic metric spaces: finite presentability,
polynomial isoperimetric function and thus decidable word problem [Hod18, Hod20].

The strong shortcut property is essentially about limitations on the scale and precision at
which subspaces can approximate circles. Specifically:
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Definition 1·1 (Strongly shortcut). A graph � is strongly shortcut if, for some K > 1 there
is a bound on the lengths of the K-bilipschitz combinatorial cycles in �. A group G is
strongly shortcut if G acts properly and cocompactly on a strongly shortcut graph.

This turns out to be equivalent to the existence of a metrically proper and cobounded G-
action on a strongly shortcut geodesic metric space, which we define in Section 4. Thus the
following classes of groups are all strongly shortcut: hyperbolic groups [Gro87], asymp-
totically CAT(0) groups [Kar11] (e.g. CAT(0) groups [BH99]), hierarchically hyperbolic
groups [BHS17, BHS19] (e.g. mapping class groups of surfaces [MM99, MM00]), coarse
Helly groups [CCG+20] (e.g. Artin groups of FC-type, weak Garside groups [HO19]),
the discrete Heisenberg group [HP], systolic groups (e.g. finitely presented C(6) small can-
cellation groups [Wis03]) and quadric groups (e.g. C(4)-T(4) small cancellation groups)
[Hod17].

Our main result is the following.

THEOREM 1·2. Let G be a finitely generated group that is hyperbolic relative to strongly
shortcut groups. Then G is strongly shortcut.

Theorem 1·2 allows us to obtain examples of strongly shortcut groups that are not known
to be strongly shortcut by any other means. For example, let G be the free product of two
copies of the discrete Heisenberg group and let 〈t〉 be a maximal cyclic subgroup generated
by a loxodromic element t of the Bass–Serre tree of G. Then the amalgamated free product
G ∗〈t〉 G is hyperbolic relative to discrete Heisenberg subgroups by Dahmani [Dah03] and
thus is strongly shortcut by Theorem 1·2 and [HP].

Our approach to proving Theorem 1·2 is to use properties of asymptotic cones of strongly
shortcut groups and relatively hyperbolic groups. A result of the first named author char-
acterises strongly shortcut groups as those whose asymptotic cones have no isometrically
embedded circles ([Hod20, theorem 3·7]), while a result of Osin and Sapir [DS05, theorem
A·1] guarantees that asymptotic cones of relatively hyperbolic groups are tree-graded. Thus,
any isometrically embedded circle in an asymptotic cone of a relatively hyperbolic group
has to be contained in a piece, which is impossible if the peripherals are strongly shortcut.

In the course of the proof of Theorem 1·2 we restrict the combinatorial horoball construc-
tion of Groves and Manning [GM08] to a sufficiently large finite number of levels, thus
obtaining the following result which may be of independent interest.

THEOREM 1·3. Let G be a finitely generated group that is hyperbolic relative to finitely
generated subgroups (Hi)i. For each i, let Si be a finite generating set for Hi. Then there is a
connected, free cocompact G-graph � with subgraphs (�i)i such that, for each i:

(1) �i is a Rips graph of Cayley(Hi, Si);

(2) Hi stabilises �i;

(3) the Hi action on �i is free and cocompact; and

(4) �i is convex in �.

We use Theorem 1·3 to prove Theorem 4·3, which says that G has a Cayley graph in
which the Hi are strongly shortcut subspaces.
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Structure of the paper. In Section 2, we recall the Groves and Manning combinatorial
horoball construction and their characterisation of relative hyperbolicity. Section 3 is devoted
to the proof of Theorem 1·3. In Section 4, we show that a relatively hyperbolic group with
strongly shortcut parabolics admits a Cayley graph in which the parabolics are strongly
shortcut subspaces. Finally, we recall the notion of asymptotic cones and prove the main
result Theorem 1·2 in Section 5.

2. Relative hyperbolicity à la Groves and Manning

Definition 2·1 (Groves and Manning [GM08]). Let � be a graph. The combinatorial
horoball based on �, denoted by H(

�
)
, is a graph constructed as follows:

(i) the vertex set is defined as H(
�

)(0) := �(0) ×N0, where �(0) is the vertex set of �;

(ii) there are two kinds of edges in H(
�

)
:

(i) for each n ∈N0 and each v ∈ �(0), there is a vertical edge in H(
�

)
between (v, n)

and (v, n + 1);

(ii) for each n ∈N0, and each pair of vertices (v, n) and (w, n), there is a horizontal
edge between (v, n) and (w, n) if and only if 0 < d�(v, w) ≤ 2n.

We denote by � × {k} the subgraph of H(�) spanned by the vertex set �(0) × {k}.
Definition 2·2. A rough isometry is a quasi-isometry with multiplicative constant 1.

Definition 2·3. Recall that, for each k ∈N, the Rips graph Ripsk(�) of a graph � is the
graph with vertex set �(0) and edges consisting of pairs of vertices at distance at most k
in �.

Remark 2·4. Observe that the bijection �(0)
∼=−→ �(0) × {n} ⊂H(�)(0) given by v �→ (v, n)

extends to an isomorphism Rips2n(�)
∼=−→ � × {n} ⊂H(�). In particular, � × {0} is isomor-

phic to � and, for each n, the subgraph � × {n} is roughly isometric to � with the metric
scaled by 1/2n.

Definition 2·5 (Groves and Manning [GM08]). Let � be a graph and (�α)α∈A be a family
of subgraphs of �. The augmented space H(

�, (�α)α∈A
)

is the graph obtained by attaching,
for each α ∈ A, the combinatorial horoball H(

�α

)
to � by identifying the subgraph �α ⊂ �

with the subgraph �α × {0} ⊂H(
�α

)
along the isomorphism �α

∼=−→ �α × {0} given by
v �→ (v, 0).

Definition 2·6. Let � be a graph and (�α)α∈A be a family of subgraphs of �. Then � is
hyperbolic relative to (�α)α∈A if the augmented space H(

�, (�α)α∈A
)

is δ-hyperbolic for
some δ. In that case, we call each �α = �α × {0} a parabolic subgraph of �.

Remark 2·7. The above definition for graphs is motivated by the characterisation of relative
hyperbolicity for groups by Groves and Manning (see Definition 2·11 below). Our definition
is likely equivalent to metric notions of relative hyperbolicity as investigated in [Sis12], but
we do not prove nor do we need such an equivalence for the purposes of this paper.
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Definition 2·8. Let � be a graph and (�α)α∈A be a family of subgraphs of �. The n-
restricted augmentation Hn

(
�, (�α)α∈A

)
is the subgraph of H(

�, (�α)α∈A
)

spanned by

the vertex set �(0) � ⊔
α∈A,k∈{1,...,n} �

(0)
α × {k}.

Similarly, the n-restricted horoball Hn
(
�

)
is the subgraph of the horoball H(

�
)

spanned
by the vertex set

⊔
k∈{1,...,n} � × {k}.

Remark 2·9. If a group G acts properly and cocompactly on � and (�α)α is G-invariant
then G acts properly and cocompactly on Hn

(
�, (�α)α∈A

)
. Moreover, the embedding of �

in Hn
(
�, (�α)α∈A

)
is G-equivariant and, for any α, the stabiliser of �α × {n} is equal to the

stabiliser of �α .

Remark 2·10. The graph � is hyperbolic relative to (�α)α∈A if and only if for each (any)
n ∈N0, Hn

(
�, (�α)α∈A

)
is hyperbolic relative to (�α × {n})α∈A. Thus, when we speak of

the parabolics of Hn
(
�, (�α)α

)
we will mean the top levels of the n-restricted horoballs

(�α × {n})α .

The following definition is due to Groves and Manning, who prove that it is equivalent to
strong relative hyperbolicity [Far98, Bow12]. We refer the reader to [GM08, theorem 3·25]
for a proof and more details. A detailed study and equivalences of various notions of relative
hyperbolicity was done by Hruska in [Hru10].

Definition 2·11. Let G be a finitely generated group and let H1, . . . , Hk be a family of
finitely generated subgroups of G. For 1 ≤ i ≤ k, let Si be a finite generating set for Hi and
let S be a finite generating set for G such that each Si ⊂ S. Denote by � the Cayley graph
Cayley(G, S) and, for 1 ≤ i ≤ k, and g ∈ G, denote by g�i the subgraph of � with vertex
set gHi and edges labelled by gSi. Then G is hyperbolic relative to {H1, . . . , Hk} if � is
hyperbolic relative to {g�i}1≤i≤k,g∈G.

3. Horoballs and convexity of parabolics

It is well known that given a relatively hyperbolic group, its parabolic subgroups are
quasiconvex [DS05, Lemma 4·15]. The goal of this section is to prove Theorem 3·5, which
says that a relatively hyperbolic graph can be modified so that its parabolic subgraphs are
convex subgraphs. We make use of several previously known results.

LEMMA 3·1 (See Bridson and Haefliger [BH99, theorem III·H·1·13]). Let � be a δ-
hyperbolic space and let r > 8δ + 1. Then there exists a constant K = K(δ, r) depending
only on δ and r such that the following holds. If γ is a path in � and every subpath of length
r of γ is a geodesic then γ is a (2δ, K)-quasi-geodesic.

THEOREM 3·2 (See Bridson and Haefliger [BH99, theorem III·H·1·7]). Let � be a δ-
hyperbolic graph. Let L > 0 and K ≥ 0. Then there exists a constant M = M(δ, L, K) such
that for any two (L, K)-quasigeodesics β1 and β2 with the same endpoints, the images im(β1)
and im(β2) are at Hausdorff distance at most M.

LEMMA 3·3. Let Hn
(
�

)
be an n-restricted horoball. Let v1, v2 ∈Hn

(
�

)
be given. The

following hold:

(i) there exists a geodesic β between v1, v2 whose image consists of at most two vertical
segments and one horizontal segment. If the horizontal segment is not contained in
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Fig. 1. The (� × {m})-distance between (x, m) and (y, m) is 8 while the (� × {m + 1})-distance
between (x, m + 1) and (y, m + 1) is 4.

� × {n}, then it is of length at most 3. Further, any geodesic between the two points
is at Hausdorff distance at most 4 from im(β);

(ii) if the horizontal segment of im(β) is contained in � × {K}, then the image of any
geodesic between v1 and v2 is disjoint from � × {K′} for all K′ > K.

(iii) Moreover, if k is the least number such that either v1 or v2 is contained in � × {k},
then the image of any geodesic between the points is contained in Hn

(
�

) \Hk−1
(
�

)
.

Lemma 3·3 is essentially a re-statement of Lemma 3·10 of [GM08] in the context of
restricted horoballs, and our proof below, given for the sake of completeness, is almost
identical to theirs.

Let us first make the convention that a vertical segment of a path γ is a subpath whose
image is the union of vertical edges in a horoball. Similarly a horizontal segment is a subpath
whose image is disjoint from the set of vertical edges.

Proof. We start the proof with a basic observation. Let 1 ≤ m < n and let (x, m) and
(y, m) be two points in � × {m}. If (x, m) and (y, m) are at (� × {m})-distance D, note that the
(� × {m + 1})-distance between (x, m + 1) and (y, m + 1) is

⌈
D/2

⌉
(see Figure 1). Similarly,

the (� × {m + k})-distance between (x, m + k) and (y, m + k) is
⌈

D/2k
⌉

. This observation
implies the following:

(1) Assume that a geodesic path contains a horizontal segment in � × {m} of length more
than one. Assume that this horizontal segment is not contained in a strictly larger hor-
izontal segment of the geodesic. Then the vertical segment immediately preceding
the horizontal segment is an ascending segment, in the sense that it is a vertical seg-
ment from some � × {m − k} to � × {m}. Similarly, the immediate successor of the
horizontal segment is a descending segment. See Figure 2 for an illustration.

(2) Any geodesic path with a descending segment at (x, m) cannot ascend back to � ×
{m} in the future (see Figure 3). In other words, no ascending segment follows a
descending segment.

(3) Any geodesic path contains at most two maximal descending (respectively ascending)
segments. See Figure 4.

Let γ be a geodesic between the points v1 and v2 in the statement. By the above obser-
vations, if γ contains a horizontal segment of length at least two at some � × {m}, then
im(γ ) is disjoint from � × {m′} for all m < m′ ≤ n. Thus, any horizontal segment in γ is
either of length one, or is contained in the maximum level � × {max} that intersects im(γ )
nontrivially.

In fact, it can be verified that apart from the horizontal segment at � × {max}, the image
of γ can have at most one more horizontal edge.

https://doi.org/10.1017/S0305004123000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000208


372 NIMA HODA AND SURAJ KRISHNA M S

Fig. 2. The thickened path between (x, m) and (y, m + 1) on the left is longer than the thickened
path on the right.

Fig. 3. The thickened path between (x, m) and (y, m) on the bottom panel is shorter than the one
on the top panel.

Fig. 4. The thickened path between (x, m) and (y, m − 3) on the left is longer than the one on the
right.

Another consequence of the above observations is that if γ contains a horizontal segment
of length at least 6, then this segment has to be contained in � × {n}, see Figure 5.

Assume that the horizontal edge not at � × {max} is an edge between (x, m) and (y, m)
and is followed by an ascending segment from (y, m) to (y, max) ∈ � × {max}. Let γ ′ be
the geodesic obtained from γ by replacing the above by a vertical segment from (x, m)
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Fig. 5. If m < n, then the thickened horizontal path between (x, m) and (y, m) in the top panel is
longer than the red path in the bottom panel.

to (x, max) followed by a horizontal edge to (y, max). If max < n and the only horizontal
segment of γ ′ contains 4 or 5 edges, then let β be the geodesic obtained by replacing this
horizontal segment by an ascending edge, a horizontal segment in � × {max +1} and a
descending edge back to � × {max}, similar to the procedure in Figure 5. We leave it as an
exercise to verify that β is as required.

Before stating the main result of this section, we recall a convexity result from [GM08]
which will be used in the proof.

LEMMA 3·4 ([GM08, lemma 3·26]). Let � be a graph that is hyperbolic relative to a
family (�α)α∈A of subgraphs. Let δ be the hyperbolicity constant of H(

�, (�α)α∈A
)
. Then

for any k > δ and any α ∈ A, H(
�α

) \Hk
(
�α

)
is convex in H(

�, (�α)α∈A
)
.

THEOREM 3·5. Let � be a graph that is hyperbolic relative to a family (�α)α∈A of
subgraphs. Then, for n large enough, the parabolics (i.e. the top levels) of the restricted
horoballs Hn

(
�, (�α)α∈A

)
are convex subgraphs.

Proof. Let δ be the hyperbolicity constant of H(
�, (�α)α∈A

)
. Let r = �8δ + 2� and

n ≥ 2r + M(δ, 2δ, K), where K is the constant from Lemma 3·1 and M is the constant
from Theorem 3·2 Fix α0 ∈ A and points x, y ∈ �α0 × {n}. Let γ : P →Hn

(
�, (�α)α∈A

)

be a geodesic (in Hn
(
�, (�α)α∈A

)
) between x and y. Since each n-restricted horoball in

Hn
(
�, (�α)α∈A

)
is a full subgraph, every subpath of γ whose image lies in an n-restricted

horoball is a geodesic in that horoball. We will therefore assume that each such geodesic
subpath of γ is of the form given by Lemma 3·3.

Denote by U ⊂Hn
(
�, (�α)α∈A

)
the set

⋃
α∈A Nr

(
�α × {n}). The path γ is a concatena-

tion γ1 · β1 · γ2 · · · γk, where each γi is a path with image in U and each βi is such that its
image is disjoint from U, except at the endpoints. See Figure 6 for an illustration.

Note that by Lemma 3·3, each βi is a path which satisfies the following:

(i) im(βi) is not contained in any single n-restricted horoball and thus has length at least
2(n − r) > 2r, and

(ii) for any α ∈ A, im(βi) ∩Hn
(
�α

)
is a union of components, where each compo-

nent is either a vertical segment between �α × {0} and �α × {n − r} (e.g., im(β2) ∩
Hn

(
�α2

)
in Figure 6), or the image of a geodesic between points of �α × {0} (e.g.,

im(β1) ∩Hn
(
�α1

)
in Figure 6). In the latter case, we note that this component is

disjoint from the image of any γj.
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Fig. 6. The path γ is a concatenation of the paths γi (geodesics that lie in the r-neighbourhoods
of the parabolics) and βj (geodesics between the γi).

Let ι : Hn
(
�, (�α)α∈A

)
↪→H(

�, (�α)α∈A
)

denote the inclusion map. For each i, let
γ ′

i be a geodesic path in H(
�, (�α)α∈A

)
between the endpoints of ι ◦ γi. Let γ ′ : P′ →

H(
�, (�α)α∈A

)
be the path obtained from ι ◦ γ by replacing each ι ◦ γi by γ ′

i . We will
denote ι ◦ βi by β ′

i . Thus γ ′ = γ ′
1 · β ′

1 · γ ′
2 · · · γ ′

k .

Claim. The path γ ′ is an r-local geodesic in H(
�, (�α)α∈A

)
.

Proof. Each γ ′
i is a geodesic, and therefore a local geodesic. Each β ′

i is an r-local geodesic
since the r-ball around any point in im(βi) is contained in Hn

(
�, (�α)α∈A

)
.

As observed above, the image of every subpath of β ′
i that lies in a horoball is either a ver-

tical segment or it does not meet any γ ′
j . This implies that any subpath of β ′

i−1 · γ ′
i · β ′

i whose

image lies in H(
�α

) \Hr
(
�α

)
is a geodesic in H(

�α

) \Hr
(
�α

)
. Since H(

�α

) \Hr
(
�α

)

is convex (by Lemma 3·4), each such subpath is in fact a geodesic in H(
�, (�α)α∈A

)
, and

therefore an r-local geodesic. This proves the claim.

Thus by Lemma 3·1, γ ′ is a (2δ, K)-quasi-geodesic and by Theorem 3·2, it lies in an M =
M(δ, 2δ, K) neighbourhood of any geodesic in H(

�, (�α)α∈A
)

between x and y. Since x, y ∈
�α0 × {n} with n − 1 > δ, we have that any geodesic between them in H(

�, (�α)α∈A
)

lies
in H(

�α0

) \Hn−1
(
�α0

)
(again, by Lemma 3·4). This implies that γ ′ lies in NM(H(

�α0

) \
Hn−1

(
�α0

)
) ⊂H(

�α0

) \H2r
(
�α0

)
.

We are thus forced to conclude that γ ′ = γ ′
1 (and therefore γ = γ1). Indeed, if not, then β1

is a geodesic in Hn
(
�, (�α)α∈A

)
with endpoints on �α0 × {n − r} and such that im(β1) ⊂

Hn
(
�α0

)
. But as observed above, im(β1) is not contained in any single n-restricted horoball,

which is a contradiction.
Using Lemma 3·3 once again, we conclude that γ ⊂ �α0 × {n}.
COROLLARY 3·6. Let � be a graph that is hyperbolic relative to a family (�α)α∈A of

subgraphs. Let n be such that the parabolics (�α × {n})α of Hn
(
�, (�α)α∈A

)
are convex

subgraphs, as in Theorem 3·5. Then for each α ∈ A, the subspace �
(0)
α × {0} is roughly

isometric to the subgraph �α × {n}.
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Proof. Let (x, 0), (y, 0) ∈ �α × {0} be vertices at the bottom level of the combinatorial
horoball based on �α in � and let (x, n), (y, n) ∈ �α × {n} be the corresponding vertices at
the nth level. We have

∣∣∣dHn

(
(x, 0), (y, 0)

) − dHn

(
(x, n), (y, n)

)∣∣∣ ≤ 2n

by the triangle inequality. It follows that the map (�(0)
α × 0, dHn) → (�(0)

α × {n}, dHn) given
by (x, 0) �→ (x, n) is a rough isometry and �

(0)
α × {n} is a convex subgraph of Hn.

We now recall and prove Theorem 1·3.

THEOREM 1·3. Let G be a finitely generated group that is hyperbolic relative to finitely
generated subgroups (Hi)i. For each i, let Si be a finite generating set for Hi. Then there is a
connected, free cocompact G-graph � with subgraphs (�i)i such that, for each i:

(i) �i is a Rips graph of Cayley(Hi, Si);

(ii) Hi stabilises �i;

(iii) the Hi action on �i is free and cocompact; and

(iv) �i is convex in �.

Proof. Let S be a finite generating set of G containing each of the Si. Let � be the Cayley
graph of G with respect to S. Then the Cayley graphs �′

i = Cayley(Hi, Si) are subgraphs of
� and G is hyperbolic relative to the family (g�′

i)g,i of G-translates of these subgraphs. By
Theorem 3·5, there is an n for which the parabolics of Hn

(
�, (g�′

i)g,i
)

are convex. For each
i, let �i be the parabolic in the restricted horoball with base �′

i . Then Hn and the �i satisfy
all the required conditions.

4. A Cayley graph with strongly shortcut parabolics

Let G be a finitely generated group that is strongly shortcut relative to strongly shortcut
subgroups (Hi)i. In this section we will show that there exists a generating set S for G such
that the Hi are strongly shortcut metric subspaces of the Cayley graph Cayley(G, S). In order
to do this, we will first need to define what it means for a metric space to be strongly shortcut.
The following definition appears in earlier work of the first named author under the name
nonapproximability of n-gons [Hod20, definition 3·2].

Definition 4·1. Let Cn denote the cycle graph of length n (i.e., a circle subdivided into n
edges and n vertices) and let C(0)

n denote the vertex set of Cn. A metric space X is strongly
shortcut if there exists a K > 1, an n ∈N and an M > 0 such that there is no K-bilipschitz
embedding of (C(0)

n , λdCn) in X with λ ≥ M.

THEOREM 4·2 ([Hod20, corollary 3·6]). A graph � is strongly shortcut as a graph if and
only if it is strongly shortcut as a metric space.

Our aim in this section is to prove the following.

THEOREM 4·3. Let G be a finitely generated group that is hyperbolic relative to a family
of strongly shortcut groups (Hi)i. Then G has a finite generating set S for which the Hi are
strongly shortcut metric subspaces of Cayley(G, S).
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In order to prove Theorem 4·3 we will rely on Theorem 3·5 and the following refined
version of the Milnor–Švarc Lemma. This version of the Milnor–Švarc Lemma gives us arbi-
trary control on the multiplicative constant of the quasi-isometry, up to scaling the metric on
the Cayley graph. This arbitrary control on the multiplicative constant of the quasi-isometry
comes at the cost of having to choose larger and larger finite generating sets and accepting
larger and larger additive quasi-isometry constants.

THEOREM 4·4 (Fine Milnor–Švarc Lemma [Hod20, theorem H]). Let (X,d) be a geodesic
metric space. Let G be a group acting metrically properly and coboundedly on X by
isometries. Fix x0 ∈ X. For t > 0 let St be the finite set defined by

St = {
g ∈ G : d(x0, gx0) ≤ t

}

and consider the word metric dSt defined by St. (For those t where St does not generate G,
we allow dSt to take the value ∞). Let Kt be the infimum of all K > 1 for which

(G, tdSt ) −→ X

g �−→ g · x0

is a (K, CK)-quasi-isometry for some CK ≥ 0. Then Kt → 1 as t → ∞.

LEMMA 4·5. Let G be a finitely generated group that is hyperbolic relative to finitely
generated subgroups (Hi)i. For each i, let Si be a finite generating set for Hi. Then, for any
L > 1, there is a t > 0 and a finite generating set S for G such that each inclusion

(Hi, dSi) ↪→ (G, tdS)

is a quasi-isometric embedding with multiplicative constant L, where dS and the dSi are the
word metrics.

Proof. Let S′ ⊇ ⋃
i Si be a finite generating set for G. Let �′ = Cayley(G, S′) and let

�g,i = gCayley(Hi, Si). By Theorem 3·5, for some n, the top level subgraphs �g,i × {n} of
the restricted horoballs of Hn =Hn

(
�′, {�g,i}g,i

)
are convex. Moreover, by Remark 2·9, the

group G acts properly and cocompactly on Hn.
By Corollary 3·6 and Remark 2·4, there is a rough isometry (�(0)

e,i × {0}, dHn) →(
Hi, 1/2ndSi

)
. By Theorem 4·4, there is a generating set S for G and a scaling factor t′ > 0

such that the inclusion (G, t′dS) ↪→Hn is a quasi-isometry with multiplicative constant L,
where dS is the word metric coming from S. But the image of Hi under this inclusion
is �

(0)
e,i × {0} and so the composition of the restriction (Hi, t′dS) ↪→ (�(0)

e,i × {0}, dHn) and

the rough isometry (�(0)
e,i × {0}, dHn) → (

Hi, 1/2ndSi

)
gives us a quasi-isometry (Hi, t′dS) →(

Hi, 1/2ndSi

)
with multiplicative constant L. Scaling the domain and the codomain by 2n,

taking the quasi-inverse and composing it with the isometric embedding (Hi, 2nt′dS) ↪→
(G, 2nt′dS) we obtain a quasi-isometry (Hi, dSi) ↪→ (G, 2nt′dS) with multiplicative factor L.

Finally, we will need the next two theorems about strongly shortcut spaces and groups.

THEOREM 4·6 ([Hod20, proposition 3·4]). Let X be a strongly shortcut metric space.
Then there exists an LX > 1 such that whenever Y is a metric space and C > 0 and f : Y → X
is an (LX , C)-quasi-isometry up to scaling, then Y is also strongly shortcut.
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THEOREM 4·7 ([Hod20, theorem C]). A group G is strongly shortcut if and only if G has
a finite generating set S for which Cayley(G, S) is strongly shortcut.

Proof of Theorem 4·3. Let G be a finitely generated group that is hyperbolic relative to
strongly shortcut groups (Hi)i. By Theorem 4·7, we can choose finite generating sets Si of
Hi so that the Cayley graphs Cayley(Hi, Si) are strongly shortcut. Then, by Theorem 4·6, for
each i, there exists an Li > 1 such that any metric space that, up to scaling, is quasi-isometric
to (Hi, dSi) with multiplicative constant Li is also strongly shortcut. By Lemma 4·5, there is
a finite generating set S of G and a t > 0 such that, for each i, if dS is the word metric coming
from S then (Hi, tdS) is quasi-isometric to (Hi, dSi) with multiplicative constant L = mini Li.
Thus each (Hi, dS) is strongly shortcut.

5. Asymptotic cones and the proof of the main result

In this section we will recall the definition of asymptotic cones of metric spaces. Then we
will state the theorem of Osin and Sapir on tree-gradedness of asymptotic cones of relatively
hyperbolic groups and a theorem of the second named author giving an asymptotic cone
characterization of the strong shortcut property. We will use these theorems and the results
of the previous sections to prove Theorem 1·2.

For an exposition of asymptotic cones, see Drutu and Kapovich [DK18].

Definition 5·1. A non-principal ultrafilter ω over N is a set of subsets of N satisfying the
following properties:

(i) for each A ⊆N, either A ∈ ω or N \ A ∈ ω, but not both;

(ii) no finite subset of N is in ω;

(iii) if A, B ∈ ω, then A ∩ B ∈ ω;

(iv) if A ∈ ω and A ⊆ B, then B ∈ ω.

The existence of non-principal ultrafilters is a consequence of Zorn’s Lemma (see [DK18,
lemma 10·18] for instance).

Definition 5·2. Let ω be a non-principal ultrafilter. Let (xn)n be a sequence of points in a
topological space X. An element x ∈ X is an ω-limit of (xn)n, denoted limω xn, if for every
open set U � x, the set AU = {n ∈N|xn ∈ U} is contained in ω.

Remark 5·3. If X is a Hausdorff space, then an ω-limit is unique whenever it exists. If X is
compact, then for every sequence, an ω-limit exists.

Let (X, d) be a metric space and let ω be a non-principal ultrafilter over N. Let (rn)n be a
sequence of real numbers such that limω rn = ∞. Fix a sequence of basepoints (pn)n ∈ XN.

Let d∞ : XN × XN → [0, ∞] be defined as d∞((xn)n, (yn)n) := limω (d(xn, yn)/rn). Let
XN

B ((rn)n, (pn)n) := {(xn)n ∈ XN|d∞((xn)n, (pn)n) < ∞}.
Remark 5·4. Note that (XN

B ((rn)n, (pn)n), d∞) is a pseudo-metric space.

Definition 5·5. The asymptotic cone Coneω(X, (rn)n, (pn)n) of X is the quotient of
XN

B ((rn)n, (pn)n) identifying (xn)n and (yn)n whenever d∞((xn)n, (yn)n) = 0. We let [xn]
denote the point of Coneω(X, (rn)n, (pn)n) represented by (xn)n.
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Remark 5·6. For a group G equipped with a left invariant metric, any asymptotic cone
Coneω(G, (rn)n, (pn)n) is isometric to Coneω(G, (rn)n, (1)n), where (1)n is the constant
basepoint sequence at the identity. Thus in this case we will simply write Coneω(G, (rn)n).

Definition 5·7. (Drutu and Sapir [DS05]) A complete geodesic metric space X is a tree
graded space with respect to a collection of closed geodesic subspaces, called pieces, if the
following two properties are satisfied:

(i) any two distinct pieces intersect in at most a single point, and

(ii) every non-trivial simple geodesic triangle (i.e., the concatenation of the three
geodesics is a simple loop) in X is contained in a piece.

THEOREM 5·8 (Osin and Sapir [DS05, theorem A·1]). Let G be a finitely generated group
and let dS be a word metric coming from a finite generating set S of G. If G is hyperbolic
relative to a family of subgroups (Hi)i then every asymptotic cone A= Coneω

(
(G, dS), (rn)

)

of (G, dS) is tree graded with respect to the ω-limits

lim
ω

(gnHi)n = {
[xn]n ∈A : xn ∈ gnHi

}

of the (gnHi)n with [gn]n ∈A.

Remark 5·9. The limω (gnHi)n are isometric to asymptotic cones of the (Hi, dS). Indeed, the
asymptotic cone A is a group with multiplication given by

[xn]n · [yn]n = [xnyn]n

and d∞ is a left-invariant metric with respect to this group structure. Thus limω (gnHi)n is
isometric to

[g−1
n ]n lim

ω
(gnHi)n = lim

ω
(Hi)n

which is Coneω

(
(Hi, dS), (rn)

)
.

A Riemannian circle C is S1 equipped with a geodesic metric of some length |C|. In other
words C is the quotient of R by the action of |C|Z.

THEOREM 5·10. ([Hod20, theorem 3·7]). A metric space X is strongly shortcut if and
only if no asymptotic cone of X contains an isometric copy of the Riemannian circle of unit
length.

We are now ready to prove our main result, which we first recall:

THEOREM 1·2. Let G be a finitely generated group that is hyperbolic relative to strongly
shortcut groups. Then G is strongly shortcut.

Proof. Let G be a finitely generated group that is hyperbolic relative to strongly shortcut
groups (Hi)i. By Theorem 4·3, there is a finite generating set S of G such that (Hi, dS) is
strongly shortcut for each i, where dS is the word metric coming from S. We will show
that the Cayley graph Cayley(G, S) is strongly shortcut. By Theorem 4·2 and Theorem 5·10
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it will suffice to prove that no asymptotic cone A of Cayley(G, S) contains a Riemannian
circle of unit length.

By Theorem 5·8, any embedded copy of C in A is contained in some limω (gnHi)n with
[gn]n ∈A. Thus it suffices to show that limω (gnHi)n does not contain an isometric copy
of the Riemannian circle of unit length. But by Remark 5·9, the ω-limit limω (gnHi)n is
isometric to an asymptotic cone A′ of (Hi, dS′), which is strongly shortcut. Hence A′ cannot
contain an isometric copy of the Riemannian circle of unit length, by Theorem 5·10.
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