Noboru Ito* Nagoya Math. J. Vol. 39 (1970), 23–28

NOTE ON THE CHARACTERS OF SOLVABLE GROUPS

NOBORU ITO*

§1.

Let \mathfrak{G} be a solvable group of order g. Let p be a prime and let $g = p^a g'$ with (p, g') = 1. In [4] we have tried to find sufficient conditions for \mathfrak{G} to possess an irreducible character of p-defect 0, that is, a character whose degree is divisible by p^a .

The following theorem (for arbitrary finite groups) is well-known ([1], (9F)).

I. If \mathfrak{G} possesses an irreducible character of p-defect 0, then \mathfrak{G} contains no non-trivial normal p-subgroup.

Now what actually was proved in the proof of the main theorem in [4] (Theorem 1) is the following theorem (cf. [5]).

II. Let \mathfrak{G} contain no non-trivial normal *p*-subgroup. (1) If *p* is odd and is not a Mersenne prime, then there exist two Sylow *p*-subgroups \mathfrak{P}_1 and \mathfrak{P}_2 such that $\mathfrak{P}_1 \cap \mathfrak{P}_2 = \mathfrak{E}$. (2) (1) also holds for a Mersenne prime *p*, provided that the order of \mathfrak{G} is odd. (3) (1) also holds for p = 2, provided that every odd prime divisor *q* of the order of \mathfrak{G} is not a Fermat prime and is congruent to 1 mod 4. (4) (1) also holds for any prime *p*, provided that elements of order *p* of a Sylow *p*-subgroup together with the identity forms a subgroup.

Since then Green ([2]) has proved the following theorem (for arbitrary finite groups).

III. If \mathfrak{G} possesses an irreducible character of *p*-defect 0, then there exist two Sylow *p*-subgroups \mathfrak{P}_1 and \mathfrak{P}_2 such that $\mathfrak{P}_1 \cap \mathfrak{P}_2 = \mathfrak{E}$. Namely, the conclusion of II, (1) holds without any restriction on *p*.

The following theorem (for arbitrary finite groups) is also well-known ([1], (6G)).

Received Nov. 15, 1968.

^{*} This work was partially supported by NSF Grant GP-6539.

IV. If \mathfrak{G} possesses an irreducible character of *p*-defect 0, then \mathfrak{G} contains an element *G* of *p*-defect 0, that is, an element *G* the order of whose centralizer is prime to *p*.

On the other hand, the following fact is noticed in [4] (Lemma 1).

V. Let \mathfrak{N} be a normal subgroup of \mathfrak{G} , whose order is prime to p. If \mathfrak{N} contains an element of p-defect 0 (in \mathfrak{G}), then \mathfrak{G} possesses an irreducible character of p-defect 0.

Now the primary concern of [4] was the following proposition.

(#) Under certain circumstances the non-existence of non-trivial normal p-subgroups implies the existence of an irreducible character of p-defect 0.

Unfortunately, in the formulation of Theorem 1 in [4] a strong condition, which is the main driving power of the induction argument in the proof of Theorem 1 in [4] is carelessly not stated.** That is the following condition.

 $(\mathfrak{P} \longrightarrow p)$. Let \mathfrak{P} be a fixed Sylow *p*-subgroup of \mathfrak{G} . Then every element of \mathfrak{G} , which is commutative with no element $(\neq E)$ of \mathfrak{P} , has *p*-defect 0.

Now the purpose of this note is (1) to show that under the condition $(\mathfrak{P} \longrightarrow p)$, together with the condition in II securing the conclusion of II, (1), (#) always is true, (ii) to state some conditions on the group structure under which (#) is true without assuming the condition $(\mathfrak{P} \longrightarrow p)$, (iii) to discuss some examples which show the necessity of the condition $(\mathfrak{P} \longrightarrow p)$, and (iv) to discuss the proof of a theorem to which Theorem 1 of [4] has been applied ([6]).

§ 2.

PROPOSITION 1. Assume that \mathfrak{G} satisfies the condition $(\mathfrak{P} \longrightarrow p)$. Let G be an element of \mathfrak{G} such that $\mathfrak{P} \cap \overline{G\mathfrak{P}G} = \mathfrak{G}$. Then G is an element of p-defect 0.

Proof. Assume that G is not an element of p-defect 0. Then there exists an element $H(\neq E)$ of \mathfrak{G} which is commutative with G and has order a power of p. By the condition $(\mathfrak{P} \longrightarrow p)$ we may assume that H belongs to \mathfrak{P} . Then $\mathfrak{P} \cap G^{-1}\mathfrak{P} G$ contains H. This is a contradiction.

PROPOSITION 2. Assume that \mathfrak{G} satisfies the condition $(\mathfrak{P} \longrightarrow p)$, and that \mathfrak{G} contains no non-trivial normal p-subgroups, and that \mathfrak{G} satisfies the condition in II

^{**} The author is indebted to Paul Fong for a valuable comment.

securing the conclusion of II, (1). Let \mathfrak{F} be the Fitting subgroup of \mathfrak{G} . Then \mathfrak{F} contains an element of p-defect 0 (in \mathfrak{G}).

Proof. Consider the subgroup FF. By a theorem of Fitting ([3]) the centralizer of F in G is contained in F. Hence FF contains no non-trivial normal *p*-subgroup (of FF). Therefore, by assumption, there exists an element G of FF such that $\mathfrak{P} \cap \overline{G} \mathfrak{F} G = \mathfrak{C}$. By Proposition 1 G is then an element of *p*-defect 0.

THEOREM 1. Assume that \mathfrak{G} satisfies the condition $(\mathfrak{P} \longrightarrow p)$, that \mathfrak{G} contains no non-trivial normal *p*-subgroups, and that \mathfrak{G} satisfies the condition in II securing the conclusion of II, (1). Then \mathfrak{G} possesses an irreducible character of *p*-defect 0.

Proof. By Proposition 2 it suffices to apply V to \mathfrak{F} and \mathfrak{G} .

Here a sufficient condition for \mathfrak{G} to secure the property $(\mathfrak{P} \longrightarrow p)$ will be noticed.

PROPOSITION 3. If a Sylow *p*-complement \mathfrak{H} of \mathfrak{G} is abelian, then \mathfrak{G} statisfies the condition $(\mathfrak{P} \longrightarrow p)$.

Proof. Let G be an element of \mathfrak{G} such that G has order prime to p and commutes with no element $(\neq E)$ of \mathfrak{P} . Using P. Hall's theorem we may assume that G belongs to \mathfrak{H} . Let $H \neq E$ be an element of \mathfrak{G} such that H has order a power of p and commutes with G. Then we may write H = KL, where K and L are elements of \mathfrak{H} and \mathfrak{P} respectively. Since GH = HG and GK = KG, we obtain GL = LG. By assumption this implies that L = E and H = E. This is a contradiction.

§ 3.

THEOREM 2. Assume that \mathfrak{G} contains no non-trivial normal p-subgroup, and that \mathfrak{G} satisfies the condition in II securing the conclusion of II, (1). If \mathfrak{G} has nilpotent length 2, then \mathfrak{G} possesses an irreducible character of p-defect 0.

Proof. By assumption there exists a nilpotent subgroup \mathfrak{N} of \mathfrak{G} such that $\mathfrak{G}/\mathfrak{N}$ is also nilpotent. By assumption the order of \mathfrak{N} is prime to p. Now we apply an induction argument with respect to the order of \mathfrak{G} . If $\mathfrak{G}/\mathfrak{N}$ is not a p-group, \mathfrak{G} contains a proper normal subgroup \mathfrak{F} whose index in \mathfrak{G} is prime to p. By the induction hypothesis \mathfrak{F} possesses an irreducible character ζ of p-defect 0. Let χ be an irreducible component of the character of \mathfrak{G} induced by ζ . Then using Clifford's theorem ([3], p. 565), we see that χ has *p*-defect 0. Thus we can assume that $\mathfrak{G}/\mathfrak{R}$ is a *p*-group, that is, \mathfrak{R} is a Sylow *p*-complement of \mathfrak{G} .

Let $\Phi(\mathfrak{N})$ be the Frattini subgroup of \mathfrak{N} . If $\Phi(\mathfrak{N}) \neq \mathfrak{E}$, then consider $\mathfrak{G}/\Phi(\mathfrak{N})$. If $\mathfrak{G}/\Phi(\mathfrak{N})$ contains a non-trivial normal *p*-subgroup $\mathfrak{O}\Phi(\mathfrak{N})/\Phi(\mathfrak{N})$, where $\mathfrak{O} \neq \mathfrak{E}$ is a *p*-subgroup of \mathfrak{G} , then using Sylow's theorem get $\mathfrak{G} = N(\mathfrak{O})\Phi(\mathfrak{N})$, where $N(\mathfrak{O})$ is the normalizer of \mathfrak{O} in \mathfrak{G} . This is a contradiction. Thus we may assume that $\Phi(\mathfrak{N}) = \mathfrak{E}$, which implies that \mathfrak{N} is abelian.

By Proposition 3 and Theorem 1 we now get Theorem 2.

THEOREM 3. Assume that & contains no non-trivial normal p-subgroup. If & is metabelian, then & possesses an irreducible character of p-defect 0.

Proof. Take the commutator subgroup of \mathfrak{G} as \mathfrak{N} in the proof of Theorem 2. Then we can reduce \mathfrak{G} to the case where the Sylow *p*-complements and Sylow *p*-subgroups are abelian.

THEOREM 4. Let \mathfrak{G} contain no non-trivial normal p-subgroup. If \mathfrak{P} is cyclic, then \mathfrak{G} possesses an irreducible character of p-defect 0.

Proof. Let \Re be a minimal normal subgroup of \mathfrak{G} . By assumption \Re has order prime to p. If $\mathfrak{G}/\mathfrak{R}$ contains no non-trivial normal *p*-subgroup, then applying an induction argument to $\mathfrak{G}/\mathfrak{R}$, we see that $\mathfrak{G}/\mathfrak{R}$, and hence \mathfrak{G} , possesses an irreducible character of *p*-defect 0. So let $\mathfrak{O}\mathfrak{R}/\mathfrak{R}$ be a normal subgroup of $\mathfrak{G}/\mathfrak{R}$ of order *p*, where \mathfrak{O} is a subgroup of \mathfrak{G} order *p*. By Sylow's theorem $\mathfrak{O}\mathfrak{R}$ contains all elements of \mathfrak{G} of order *p*. Let *G* be an element ($\neq E$) of \mathfrak{R} . If *G* is not of *p*-defect 0, then the centralizer of *G* contains some non-trivial, and hence all elements of \mathfrak{O} . Thus *G* belongs to the center of $\mathfrak{O}\mathfrak{R}$. Since \mathfrak{R} is minimal, $\mathfrak{O}\mathfrak{R} = \mathfrak{O} \times \mathfrak{R}$. Therefore \mathfrak{O} is normal in \mathfrak{G} . This is a contradiction. Thus *G* has *p*-defect 0. Now by *V* we get Theorem 4.

§4.

It is not difficult to construct groups which do not satisfy the condition $(\mathfrak{P} \longrightarrow p)$. The following examples show, however, that Theorems 2, 3 and are also best possible.

Let p, q and r be distinct prime numbers such that $\frac{q^p-1}{q-1} = pr$.

Examples of such triplets are $\{p, q, r\} = \{2, 5, 3\}, \{3, 13, 61\}, \{5, 11, 2331\}, \ldots$ First we notice some properties of such triplets.

- (i) $q^p \equiv 1 \pmod{r}$ and $q \equiv 1 \pmod{r}$.
- (ii) $q \equiv 1 \pmod{p}$.
- (iii) $r \equiv 1 \pmod{p}$.

Proof. (i) If $q \equiv 1 \pmod{r}$, then $\frac{q^p - 1}{q - 1} = q^{p-1} + \cdots + q + 1 \equiv p \equiv 0 \pmod{r}$. This is a contradiction. (ii) By Fermat's theorem $q^{p-1} \equiv 1 \pmod{p}$. Since $q^p \equiv 1 \pmod{p}$, we get that $q \equiv 1 \pmod{p}$. (iii) By Fermat's theorem $q^{r-1} \equiv 1 \pmod{r}$. Thus by (i) we obtain $r \equiv 1 \pmod{p}$.

Let GF(q) and $GF(q^p)$ (containing GF(q)) denote the fields of q and q^p elements respectively. Let σ be an element of order p in the Galois group of $GF(q^p)$ over GF(q). By (i) $GF(q^p)$ contains a primitive *r*-th root of unity ε . Then

$$A = \begin{pmatrix} \varepsilon & & \\ & \varepsilon^{\sigma} & & \\ & & \ddots & \\ & & & \sigma^{p-1} \\ & & & \tau \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 & 0 \cdots & 0 \\ 0 & 0 & 1 \cdots & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 0 \cdots & 1 \\ 1 & 0 & 0 \cdots & 0 \end{pmatrix}$$

generate a non-cyclic group of order rp. Since the trace of every matrix of $\langle A, B \rangle$ lies in GF(q), there exists a non-singular matrix V with entries in $GF(q^p)$ such that $A^* = \overline{V}AV$ and $B^* = \overline{V}BV$ have entries in GF(q) ([3], p. 545). By (ii) GF(q) contains a primitive p-th root of unity τ . Then A^* , B^* and $C = \begin{pmatrix} \tau & & \\ & \ddots & \\ & & \end{pmatrix}$ generate a group of order p^2r , which is the direct product of $\langle A^*, B^* \rangle$ and $\langle C \rangle$. Let \mathfrak{G} be the split extension of the p-dimensional vector

 $\langle A^*, B^* \rangle$ and $\langle C \rangle$. Let \mathfrak{G} be the split extension of the *p*-dimensional vector space \mathfrak{B} over GF(q) by $\langle A^*, B^*, C \rangle$.

If is an A-group of order p^2q^pr . If has the nilpotent length 3, and the second commutator subgroup of I equals \mathfrak{V} which is abelian. I contains no non-trivial normal *p*-subgroup.

Now we show that \mathfrak{G} does not possess an irreducible character of p-defect 0. By IV it is enough to show that \mathfrak{G} does not contain an element of p-defect 0.

Since the Sylow *p*-subgroups of \mathfrak{G} are not cyclic, there exists an element $V \neq E$ of \mathfrak{B} which is commutative with an element of order p ([3],

p. 502). Since C belongs to the normalizer of $\langle V \rangle$ and does not commute with V, the normalizer of $\langle V \rangle$ has order p^2q^p . If there exists an element V_0 of \mathfrak{B} of p-defect 0, then the normalizer of $\langle V_0 \rangle$ has order pq^p . Since the number of subgroups of order q of \mathfrak{B} equals $\frac{q^p-1}{q-1} = pr$, every subgroup of order q of \mathfrak{B} must be conjugate to $\langle V_0 \rangle$. But certainly $\langle V \rangle$ is not conjugate to $\langle V_0 \rangle$. This shows that there exists no element of \mathfrak{B} of pdefect 0.

§ 5.

Theorem 1 of [4] has been applied to prove the following fact ([6], Proposition 2). If \mathfrak{G} is an A-group and if G is an element of \mathfrak{G} not belonging to the Fitting subgroup \mathfrak{F} of \mathfrak{G} , then there exists an irreducible character χ of \mathfrak{G} such that $\chi(G) = 0$. We can prove this as follows.

We use an induction argument with respect to the order of the group. Let \mathfrak{M} be a minimal normal subgroup of \mathfrak{G} and let $F(\mathfrak{M})/\mathfrak{M}$ be the Fitting subgroup of $\mathfrak{G}/\mathfrak{M}$. If G does not belong to $F(\mathfrak{M})$, then we can apply the induction hypothesis to $G\mathfrak{M}$ and $\mathfrak{G}/\mathfrak{M}$. Hence we may assume that G belongs to $F(\mathfrak{M})$, which implies that $F(\mathfrak{M}) \neq \mathfrak{F}$. Thus $F(\mathfrak{M})$ has nilpotent length 2.

Now let p be a prime divisor of the order of $G\mathfrak{F}$, and let \mathfrak{P} be a Sylow p-subgroup of \mathfrak{F} . Then $\frac{F(\mathfrak{M})}{\mathfrak{P}}$ contains no non-trivial p-normal subgroup. By Theorem 2 $\frac{F(\mathfrak{M})}{\mathfrak{P}}$ possesses an irreducible character ζ of pdefect 0. Let χ be an irreducible component of the character of $\frac{\mathfrak{G}}{\mathfrak{P}}$ induced by ζ . Then by a theorem of Clifford ([3], p. 565) we see that $\chi|F(\mathfrak{M})/\mathfrak{P}$ decomposes into irreducible characters of $F(\mathfrak{M})/\mathfrak{P}$ of p-defect 0. Then we get $\chi(G) = 0$ ([1], 6E).

Bibliography

- R. Brauer, Zur Darstellungstheorie der Gruppen endlichen Ordnung, I. Math. Zeitschr. 63 (1956), 406–444.
- [2] è.A. Green, Blocks of modular representation, Math. Zeitschr. 79 (1962), 100-115.
- [3] B. Huppert, Endliche Gruppen, I. Springer, Berlin-Heidelberg-New York, 1967.
- [4] N. Ito, On the characters of soluble groups, Nagoya Math. J. 3 (1951), 31-48.
- [5] N. Ito, Über den kleinsten p-Durchschnitt auflosbarer Gruppen, Arch. Math. 9 (1958), 27-32.
- [6] N. Ito, Note on A-groups, Nagoya Math J. 4 (1952), 79-81.

Department of Mathematics, University of Illinois