NOTE ON THE GHARAGTERS OF SOLVABLE GROUPS

NOBORU ITO*

§ 1.
Let $\mathscr{S S}^{5}$ be a solvable group of order g. Let p be a prime and let $g=p^{a} g^{\prime}$ with $\left(p, g^{\prime}\right)=1$. In [4] we have tried to find sufficient conditions for $\mathfrak{E S}$ to possess an irreducible character of p-defect 0 , that is, a character whose degree is divisible by p^{a}.

The following theorem (for arbitrary finite groups) is well-known ([1], (9F)).
I. If $\mathscr{S}^{\text {p }}$ possesses an irreducible character of p-defect 0 , then \mathbb{G} contains no non-trivial normal p-subgroup.

Now what actually was proved in the proof of the main theorem in [4] (Theorem 1) is the following theorem (cf. [5]).
II. Let $\mathbb{S S}^{2}$ contain no non-trivial normal p-subgroup. (1) If p is odd and is not a Mersenne prime, then there exist two Sylow p-subgroups \mathfrak{P}_{1} and \mathfrak{F}_{2} such that $\mathfrak{F}_{1} \cap \mathfrak{F}_{2}=\mathfrak{C}$. (2) (1) also holds for a Mersenne prime p, provided that the order of $\mathfrak{G l}$ is odd. (3) (1) also holds for $p=2$, provided that every odd prime divisor q of the order of \mathscr{S} is not a Fermat prime and is congruent to $1 \bmod 4$. (4) (1) also holds for any prime p, provided that elements of order p of a Sylow p-subgroup together with the identity forms a subgroup.

Since then Green ([2]) has proved the following theorem (for arbitrary finite groups).
III. If \mathscr{E} possesses an irreducible character of p-defect 0 , then there exist two Sylow p-subgroups \mathfrak{F}_{1} and \mathfrak{F}_{2} such that $\mathfrak{F}_{1} \cap \Re_{2}=\mathfrak{F}$. Namely, the conclusion of II, (1) holds without any restriction on p.

The following theorem (for arbitrary finite groups) is also well-known ([1], ($6 G$)).

[^0]IV. If $\mathbb{E} 5$ possesses an irreducible character of p-defect 0 , then \mathbb{E} contains an element G of p-defect 0 , that is, an element G the order of whose centralizer is prime to p.

On the other hand, the following fact is noticed in [4] (Lemma 1).
V. Let \mathfrak{N} be a normal subgroup of \mathfrak{G}, whose order is prime to p. If \mathfrak{R} contains an element of p-defect 0 (in \mathfrak{G}), then \mathfrak{G} possesses an irreducible character of p-defect 0 .

Now the primary concern of [4] was the following proposition.
(\#) Under certain circumstances the non-existence of non-trivial normal p-subgroups implies the existence of an irreducible character of p-defect 0 .

Unfortunately, in the formulation of Theorem 1 in [4] a strong condition, which is the main driving power of the induction argument in the proof of Theorem 1 in [4] is carelessly not stated.** That is the following condition.
$(\mathfrak{F} \longrightarrow p)$. Let \mathfrak{F} be a fixed Sylow p-subgroup of \mathfrak{C}. Then every element of \mathfrak{S}, which is commutative with no element $(\neq E)$ of \mathfrak{F}, has p defect 0 .

Now the purpose of this note is (1) to show that under the condition $(\mathfrak{F} \longrightarrow p)$, together with the condition in II securing the conclusion of II, (1), (\#) always is true, (ii) to state some conditions on the group structure under which ($(\#)$ is true without assuming the condition ($\mathfrak{F} \longrightarrow p$), (iii) to discuss some examples which show the necessity of the condition ($\mathfrak{P} \longrightarrow p$), and (iv) to discuss the proof of a theorem to which Theorem 1 of [4] has been applied ([6]).
§ 2.
Proposition 1. Assume that $\mathbb{C S}$ satisfies the condition $(\mathfrak{F} \longrightarrow p)$. Let G be an element of $\mathfrak{(S)}$ such that $\mathfrak{P} \cap{ }^{-1} \mathfrak{G} \Re G=\mathfrak{C}$. Then G is an element of p-defect 0 .

Proof. Assume that G is not an element of p-defect 0 . Then there exists an element $H(\neq E)$ of $\mathfrak{C S}$ which is commutative with G and has order a power of p. By the condition $(\Re \longrightarrow p)$ we may assume that H belongs to \mathfrak{P}. Then $\mathfrak{P} \cap G^{-1} \mathfrak{P} G$ contains H. This is a contradiction.

Proposition 2. Assume that $\mathfrak{G S}$ satisfies the condition $(\mathfrak{F} \longrightarrow p$), and that $\mathfrak{G s}$ contains no non-trivial normal p-subgroups, and that \mathbb{E} satisfies the condition in II

[^1].securing the conclusion of II, (1). Let \mathfrak{F} be the Fitting subgroup of \mathfrak{F}. Then \mathfrak{F} contains an element of p-defect 0 (in (5).

Proof. Consider the subgroup \mathfrak{F}. By a theorem of Fitting ([3]) the centralizer of \mathfrak{F} in \mathfrak{F} is contained in \mathfrak{F}. Hence $\mathfrak{F} \mathfrak{F}$ contains no non-trivial normal p-subgroup (of $\mathfrak{F s}$). Therefore, by assumption, there exists an element G of \mathfrak{F} such that $\mathfrak{P} \cap G^{-1} \mathfrak{\Re} G=\mathfrak{F}$. By Proposition $1 G$ is then an element of p-defect 0 .

Theorem 1. Assume that \mathbb{G} satisfies the condition $(\mathfrak{F} \longrightarrow p$), that $\mathfrak{C S}$ contains no non-trivial normal p-subgroups, and that \mathbb{F} satisfies the condition in II securing the conclusion of II, (1). Then $\mathbb{C S}$ possesses an irreducible character of p-defect 0 .

Proof. By Proposition 2 it suffices to apply V to \mathfrak{F} and \mathfrak{G}.
Here a sufficient condition for $\mathfrak{C S}$ to secure the property $(\mathfrak{F} \longrightarrow p$) will be noticed.

Proposition 3. If a Sylow p-complement \mathfrak{F} of \mathscr{E} is abelian, then $\mathbb{6}$ statisfies the condition $(\mathfrak{P} \longrightarrow p)$.

Proof. Let G be an element of \mathbb{S} such that G has order prime to p and commutes with no element $(\neq E)$ of \mathfrak{P}. Using P. Hall's theorem we may assume that G belongs to \mathfrak{F}. Let $H \neq E$ be an element of \mathscr{F} such that H has order a power of p and commutes with G. Then we may write $H=K L$, where K and L are elements of \mathfrak{S} and \mathfrak{F} respectively. Since $G H=H G$ and $G K=K G$, we obtain $G L=L G$. By assumption this implies that $L=E$ and $H=E$. This is a contradiction.
§ 3.
Theorem 2. Assume that $\mathbb{S S}^{\text {S }}$ contains no non-trivial normal p-subgroup, and that $\mathbb{C S}$ satisfies the condition in II securing the conclusion of II, (1). If ©s has nilpotent length 2, then $\mathbb{C S}^{\text {P }}$ posesses an irreducible character of p-defect 0 .

Proof. By assumption there exists a nilpotent subgroup \mathfrak{N} of \mathscr{E} such that $\mathscr{G} / \mathfrak{R}$ is also nilpotent. By assumption the order of \mathfrak{N} is prime to p. Now we apply an induction argument with respect to the order of $\mathfrak{F S}$. If $\mathfrak{G} / \mathfrak{R}$ is not a p-group, $\mathscr{6}$ contains a proper normal subgroup \mathfrak{g} whose index in \mathscr{E} is prime to p. By the induction hypothesis \mathfrak{F} possesses an irreducible character ζ of p-defect 0 . Let χ be an irreducible component of the
character of $(\mathscr{S}$ induced by ζ. Then using Clifford's theorem ([3], p. 565), we see that χ has p-defect 0 . Thus we can assume that $\mathbb{E} / \mathfrak{R}$ is a p-group, that is, \mathfrak{N} is a Sylow p-complement of \mathscr{A}.

Let $\Phi(\mathfrak{N})$ be the Frattini subgroup of \mathfrak{N}. If $\Phi(\mathfrak{R}) \neq \mathfrak{C}$, then consider $\mathscr{S} / \Phi(\Re)$. If $\mathbb{C} / \Phi(\Re)$ contains a non-trivial normal p-subgroup $\Omega \Phi(\Re) / \Phi(\Re)$, where $\mathfrak{Q \neq \mathbb { E }}$ is a p-subgroup of \mathbb{G}, then using Sylow's theorem get $\mathfrak{G}=N(\mathfrak{Q}) \Phi(\mathfrak{R})$, where $N(\mathfrak{Q})$ is the normalizer of \mathfrak{Q} in \mathfrak{G}. This is a contradiction. Thus we may assume that $\Phi(\mathfrak{R})=\mathfrak{E}$, which implies that \mathfrak{R} is abelian.

By Proposition 3 and Theorem 1 we now get Theorem 2.
Theorem 3. Assume that ©f contains no non-trivial normal p-subgroup. If (5) is metabelian, then ©8 possesses an irreducible character of p-defect 0 .

Proof. Take the commutator subgroup of \mathscr{E} as \mathfrak{N} in the proof of Theorem 2. Then we can reduce $\mathfrak{(5)}$ to the case where the Sylow p-complements and Sylow p-subgroups are abelian.

Theorem 4. Let $\mathscr{S H}_{5}$ contain no non-trivial normal p-subgroup. If \mathfrak{P} is cyclic, then © possesses an irreducible character of p-defect 0 .

Proof. Let \AA be a minimal normal subgroup of \mathscr{A}. By assumption \AA has order prime to p. If $\mathscr{6} / \Re$ contains no non-trivial normal p-subgroup, then applying an induction argument to \mathbb{C} / \mathscr{R}, we see that $\mathbb{\S} / \mathscr{R}$, and hence \mathscr{E}, possesses an irreducible character of p-defect 0 . So let $\Omega \mathscr{R} / \mathscr{R}$ be a normal subgroup of $\mathscr{E} / \mathfrak{R}$ of order p, where \mathfrak{Q} is a subgroup of \mathfrak{F} order p. By Sylow's theorem $\mathfrak{Q} \mathfrak{R}$ contains all elements of \mathfrak{F} of order p. Let G be an element $(\neq E)$ of $\mathfrak{\Omega}$. If G is not of p-defect 0 , then the centralizer of G contains some non-trivial, and hence all elements of \mathbb{Q}. Thus G belongs to the center of $\Omega \Omega$. Since Ω is minimal, $\Omega \mathfrak{R}=\Omega \times \Re$. Therefore Ω is normal in \mathscr{E}. This is a contradiction. Thus G has p-defect 0 . Now by V we get Theorem 4.

§4.

It is not difficult to construct groups which do not satisfy the condition $(\mathfrak{F} \longrightarrow p)$. The following examples show, however, that Theorems 2,3 and are also best possible.

Let p, q and r be distinct prime numbers such that $\frac{q^{p}-1}{q-1}=p r$.

Examples of such triplets are $\{p, q, r\}=\{2,5,3\},\{3,13,61\},\{5,11,2331\}, \ldots$ First we notice some properties of such triplets.
(i) $q^{p} \equiv 1(\bmod r)$ and $q \neq 1(\bmod r)$.
(ii) $q \equiv 1(\bmod p)$.
(iii) $r \equiv 1(\bmod p)$.

Proof. (i) If $q \equiv 1(\bmod r)$, then $\frac{q^{p}-1}{q-1}=q^{p-1}+\cdots+q+1 \equiv p \equiv 0$ $(\bmod r)$. This is a contradiction. (ii) By Fermat's theorem $q^{p-1} \equiv 1(\bmod$ $p)$. Since $q^{p} \equiv 1(\bmod p)$, we get that $q \equiv 1(\bmod p)$. (iii) By Fermat's theorem $q^{r-1} \equiv 1(\bmod r)$. Thus by (i) we obtain $r \equiv 1(\bmod p)$.

Let $G F(q)$ and $G F\left(q^{p}\right)$ (containing $G F(q)$) denote the fields of q and q^{p} elements respectively. Let σ be an element of order p in the Galois group of $G F\left(q^{p}\right)$ over $G F(q)$. By (i) $G F\left(q^{p}\right)$ contains a primitive r-th root of unity ε. Then
generate a non-cyclic group of order $r p$. Since the trace of every matrix of $\langle A, B\rangle$ lies in $G F(q)$, there exists a non-singular matrix V with entries in $G F\left(q^{p}\right)$ such that $A^{*}=\bar{V}^{-1} A V$ and $B^{*}=\bar{V}^{-1} B V$ have entries in $G F(q)$ ([3], p.545). By (ii) $G F(q)$ contains a primitive p-th root of unity τ. Then A^{*}, B^{*} and $C=\left({ }^{\tau}{ }^{\tau} \ddots_{\tau}\right)$ generate a group of order $p^{2} r$, which is the direct product of $\left\langle A^{*}, B^{*}\right\rangle$ and $\langle C\rangle$. Let © be the split extension of the p-dimensional vector space \mathfrak{B} over $G F(q)$ by $\left\langle A^{*}, B^{*}, C\right\rangle$.
(5) is an A-group of order $p^{2} q^{p} r$. (5) has the nilpotent length 3 , and the second commutator subgroup of \mathscr{E} equals \mathfrak{B} which is abelian. ©5 contains no non-trivial normal p-subgroup.

Now we show that $\mathbb{S S}_{5}$ does not possess an irreducible character of p defect 0 . By IV it is enough to show that \mathscr{S}_{5} does not contain an element of p-defect 0 .

Since the Sylow p-subgroups of $\mathbb{C S}$ are not cyclic, there exists an element $V \neq E$ of \mathfrak{B} which is commutative with an element of order p ([3],
p. 502). Since C belongs to the normalizer of $\langle V\rangle$ and does not commute with V, the normalizer of $\langle V\rangle$ has order $p^{2} q^{p}$. If there exists an element V_{0} of \mathfrak{F} of p-defect 0 , then the normalizer of $\left\langle V_{0}\right\rangle$ has order $p q^{p}$. Since the number of subgroups of order q of \mathfrak{B} equals $\frac{q^{p}-1}{q-1}=p r$, every subgroup of order q of \mathfrak{B} must be conjugate to $\left\langle V_{0}\right\rangle$. But certainly $\langle V\rangle$ is not conjugate to $\left\langle V_{0}\right\rangle$. This shows that there exists no element of \mathfrak{B} of p defect 0 .

85.

Theorem 1 of [4] has been applied to prove the following fact ([6], Proposition 2). If \mathscr{E} is an A-group and if G is an element of $\mathbb{5}$ not belonging to the Fitting subgroup \mathfrak{F} of \mathfrak{E}, then there exists an irreducible character χ of \mathbb{E} such that $\chi(G)=0$. We can prove this as follows.

We use an induction argument with respect to the order of the group. Let \mathfrak{M} be a minimal normal subgroup of \mathbb{S} and let $\boldsymbol{F}(\mathfrak{M}) / \mathfrak{M}$ be the Fitting subgroup of $\mathscr{s} / \mathfrak{M}$. If G does not belong to $\boldsymbol{F}(\mathfrak{M})$, then we can apply the induction hypothesis to $G \mathfrak{M}$ and $\mathbb{C} / \mathfrak{M}$. Hence we may assume that G belongs to $\boldsymbol{F}(\mathfrak{M})$, which implies that $\boldsymbol{F}(\mathfrak{M}) \neq \mathfrak{F}$. Thus $\boldsymbol{F}(\mathfrak{M})$ has nilpotent length 2.

Now let p be a prime divisor of the order of $G \mathscr{F}$, and let \mathfrak{B} be a Sylow p-subgroup of \mathfrak{F}. Then $\frac{\boldsymbol{F}(\mathfrak{M})}{\mathfrak{F}}$ contains no non-trivial p-normal subgroup. By Theorem $2 \frac{\boldsymbol{F}(\mathfrak{M})}{\mathfrak{B}}$ possesses an irreducible character ζ of p defect 0 . Let χ be an irreducible component of the character of $\frac{\mathscr{B}}{\mathfrak{B}}$ induced by ζ. Then by a theorem of Clifford ([3], p. 565) we see that $\chi \mid \boldsymbol{F}(\mathfrak{M}) / \mathfrak{F}$ decomposes into irreducible characters of $\boldsymbol{F}(\mathfrak{M}) / \mathfrak{F}$ of p-defect 0 . Then we get $\chi(G)=0$ ([1], 6E).

Bibliography

[1] R. Brauer, Zur Darstellungstheorie der Gruppen endlichen Ordnung, I. Math. Zeitschr. 63 (1956), 406-444.
[2] è.A. Green, Blocks of modular representation, Math. Zeitschr. 79 (1962), 100-115.
[3] B. Huppert, Endliche Gruppen, I. Springer, Berlin-Heidelberg-New York, 1967.
[4] N. Ito, On the characters of soluble groups, Nagoya Math. J. 3 (1951), 31-48.
[5] N. Ito, Über den kleinsten p-Durchschnitt auflosbarer Gruppen, Arch. Math. 9 (1958), 27-32.
[6] N. Ito, Note on A-groups, Nagoya Math J. 4 (1952), 79-81.

Department of Mathematics,
University of Illinois

[^0]: Received Nov. 15, 1968.

 * This work was partially supported by NSF Grant GP-6539.

[^1]: ** The author is indebted to Paul Fong for a valuable comment.

