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Abstract
Where do armed conflicts occur? In applied studies, we may take ad hoc approaches to answer this ques-
tion. In some regression studies, for instance, a single conflict event can cause an entire province to be
classified as a conflict zone. In this paper, I fill this void of knowledge by developing a machine learning
method that is less dependent on the areal-unit assumptions and can flexibly estimate conflict zones. I
apply the method to a conflict event dataset and create a new dataset of conflict zones. A replication
of Daskin and Pringle (2018, Nature 553, 328–332) with the new dataset indicates that the effect of
civil war on mammal populations is much smaller than the original estimate.
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Where does armed conflict occur? Despite the plethora of subnational studies on civil war, we still
lack clear answers to this question, which we may think of as a mere nuisance. In a number of
regression studies, for instance, scholars use specific areal units, such as administrative boundaries
or grid cells, and assume that the presence of a combatant event means that the entire unit is a
conflict zone. These areal assignments are so common that we may not recognize that they are
in fact assumptions. For example, a number of studies using the PRIOGRID (Tollefsen et al.,
2012) assume that if one or more events occur in a grid cell, the entire 55-km-by-55-km cell
would be affected by the conflict (Buhaug et al., 2011; Pierskalla and Hollenbach, 2013; Fjelde
and Hultman, 2014). Other scholars use large administrative units, such as provinces
(Cunningham and Weidmann, 2010; Fjelde and von Uexkull, 2012; Ritter and Conrad, 2016),
and rely on a similar set of assumptions. Although these studies carefully defend their choices of
areal units and measurements, none check the robustness of their findings with alternative units.1

The areal-assignment assumptions are, however, consequential for our understanding of civil
war. As an example, the following figure (Figure 1), maps the zones of the Somali Civil War
(1989–2017) made by the different areal-unit assignment rules but with the same dataset of con-
flict events (UCDP GED; Sundberg et al., 2010). If one assigns the conflict events to the grid cells
(PRIOGRID; Tollefsen et al., 2012; red dotted polygons in Figure 1), the conflict zones tightly fit
the conflict event locations (dot points in Figure 1). In contrast, if one uses the second-order
administrative units (districts; blue dot-dashed polygons in Figure 1), the conflict zones grow
to include lands within Somalia. The UCDP Polygons Dataset (Croicu and Sundberg, 2012; yel-
low dashed polygons in Figure 1)—a commonly used conflict zones dataset—indicates an even

© The European Political Science Association 2020. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-
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1This is despite the long-standing attention to the so-called modifiable areal unit problem (Buhaug and Lujala, 2005).
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larger area that includes Ethiopia’s Ogaden region, which has no record of conflict events. The
profound differences in how conflict zones can be defined from a given set of underlying data
suggest that empirical findings may be sensitive to the choice of areal unit. How can we define
conflict zones in a way that is less dependent on areal-unit assumptions?

I argue that the extant zoningmethods rest on strong assumptions about the areal assignment of war
zones, which can potentially result inmisleading pictures. I demonstrate this by formalizing a zone as a
summary function that maps locations and (if necessary) other substantive information onto the pres-
ence/absence of conflict events. From this perspective, these approaches not only impose strong con-
straints on the zoning function, but also assume that the mapping has no stochastic error. However,
since a conflict zone is a function, we can readily apply statistical methods to estimate the zones.

Statistically estimating conflict zones presents a special challenge, however; while we can observe
the presence of conflict events and their locations, we do not have direct observations about their
absence. Although one might consider that the lack of recorded conflict events within particular geo-
graphical boundaries—such as grid cells or administrative units—would constitute absence data, the
construction of the absence data is not as straightforward as one might think. Importantly, it requires
pre-defined areal units, and the results may differ depending on which areal units one uses.
Furthermore, since locations near conflict events are less likely to be “real” absence observations
than locations farther from the events, one might also need to build a sampling scheme that accounts

Figure 1. Zones of the Somali Civil War.
Note: The figure maps conflict zones of the Somali Civil War (1989–2017) created by existing zoning methods. All of the results are cre-
ated from the same dataset of conflict events (UCDP GED; black dots).
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for the spatial heterogeneity. However, all of these procedures require additional assumptions that
make the zoning exercise sensitive to researchers’ arbitrary choices. Ideally, we would like to estimate
conflict zones without relying on the pseudo-absence data or pre-defined areal units.

In this paper, I address these problems by using the one-class support vector machine
(OCSVM), which is an unsupervised machine learning method commonly used for outlier detec-
tion (Schölkopf et al., 2000). Unlike other methods, the OCSVM requires only presence data,
allowing us to estimate the conflict zones even without any pre-defined areal units. Even though
the OCSVM does not use absence data and is less powerful than other statistical methods, it
allows us to construct conflict zones with fewer assumptions and is therefore suitable for creating
data infrastructure for broader application. In order to provide such infrastructure, I apply the
OCSVM to the UCDP GED and create a new dataset of conflict zones. With this new dataset,
I replicate Daskin and Pringle’s (2018) study on civil wars’ effect on wildlife. The results suggest
that the actual ecological costs of civil war are much smaller than the original estimate.

1. A conflict zone as a representation
I consider a conflict zone to be a concise representation of the geographic distribution of conflict.
A “population” conflict zone is an area within which conflict takes place and thus generates con-
flict events. An “estimated” conflict zone, by contrast, is an area in which conflict is likely to take
place given our observations of conflict events. In reality, the population conflict zone may not
exist; we cannot draw a line such that conflict takes place one millimeter inside of it, while conflict
does not exist one millimeter outside of it. Thus, as is common in structural parameter estimation
(such as the utility maximization theory of a logistic regression), the data generation process
should be considered a theoretical construct. The key question is not whether the population con-
flict zones are “true”, but whether they are useful for specific purposes.

Conflict zones are useful for certain purposes. For instance, by having conflict and non-conflict
zones, we can directly compare human, economic, and environmental costs of civil war inside and
outside of the conflict zones (Ghobarah et al., 2003; Daskin and Pringle, 2018). Moreover, the con-
flict zones can be used for the purpose of issuing travel advisories. In fact, as can be seen in the
travel advisory maps, it is more helpful to display zones of high risk instead of the precise locations
of violent events. Finally, the method that this paper proposes can be potentially used for other
mapping exercises, such as poverty maps, crime zones, state controls over territories, hazard
maps, and zones of racial segregation, all of which have substantive applications.

This paper is agnostic with respect to the definitions of “conflict” and “conflict events.” I
assume that conflict events are presented as point locations,2 and that the term “conflict” in “con-
flict events” and “conflict zones” have the same meaning, but this study does not depend on a
particular definition of conflict. Since there are a number of studies about the concepts of
armed conflict (Sundberg et al., 2010), violence (Kalyvas, 2006), civil war (Sambanis, 2004),
peace (Campbell et al., 2017), and territorial controls (Tao et al., 2016; Anders et al., 2017), I
focus on the concept of a zone and ask readers to refer to those studies.

Finally, this paper is primarily interested in a binary measure of conflict zones.3 Although con-
tinuous indicators of conflict risks might be more nuanced and useful for some purposes (Anders
et al., 2017; Campbell et al., 2017), a dichotomous zone has at least one clear advantage: providing
a new geographical unit of analysis that allows us to compare conflict and non-conflict areas.
What motivates this study is not to estimate a “true” distribution of conflict events or to create
as precise as possible description of events. Rather, the goal is to provide a concise representation
of conflict as a part of data infrastructure.

2A conflict event can also be expressed by a polygon, such as an administrative unit. Extending the following theory and
methods to polygonal conflict event data is relatively straightforward.

3The proposed OCSVM method can easily be extended to multinomial or ordered outcomes.
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1.1 Formalizing a conflict zone

This paper makes a conceptual shift in the geography of civil war; I conceptualize locations as
predictors of conflict instead of units of analysis. This conceptualization allows me to create a
new areal unit – a conflict zone – without assuming any prior areal units. Consider a set of con-
flict events, X = {x1, …, xn:yi = 1 for i = 1, …, n}, where xi is a vector of longitude and latitude (and
if necessary other predictors) of an event i,4 which I call a location, and yi is an indicator of the
presence and absence of conflict. A zoning function fY is a function that maps every location on
the earth to the sample space of Y,

fY :X � SY for x [ G,

where G is the entire surface of the globe. Intuitively, as seen in Figure 2, a zoning function tells
us whether each location belongs to a zone of a certain conflict. A conflict zone is an uncountable
set of locations, Ac = {x ∈ G:fY(x) = 1}, and a non-conflict zone is its complement, A¬c = {x ∈ G:
fY(x) = 0}. Our goal is therefore to estimate a zoning function that approximates the population
zoning function and hence best summarizes the conflict events.

One advantage of this formalization is that we can now define the fitness of zoning. Let f̃ Y be
the population zoning function and f̂Y|X be a zoning function estimated from data. The popula-
tion zoning function represents the underlying data generation process of conflict events, while
the estimated zoning function is our estimate of the data generation process. The difference
between the population and estimated zoning functions is then defined by a loss function
L(f̃ Y , f̂ Y|X). Our objective is therefore to find f̂Y|X that minimizes the expected value of the
loss function, EX[L(f̃ Y , f̂ Y|X)]. Under certain conditions (Friedman, 1997; Valentini and
Dietterich, 2004), the expected loss function is decomposed into bias and variance terms;

EX[L( fY , f̂ Y|X)] = EX[g(L1( fY , EX[ f̂ Y|X])︸���������︷︷���������︸
bias

, L2( f̂ Y|X , EX[ f̂ Y|X])︸����������︷︷����������︸
variance

)],

where g is a generic function that is increasing with L1 and L2. The L1 term represents a systematic
difference between the population and estimated zoning functions (bias), while the L2 term indi-
cates how random noise can alter our estimate (variance). When a zoning function is too inflex-
ible and thus underfitted to data, the zoning function is heavily influenced by our assumptions,
resulting in a large bias. By contrast, when a zoning function is overfitted to data, the function is
extremely sensitive to random noise, indicating a large variance. Thus, estimating the population
zoning function requires striking a delicate balance between bias and variance.

1.2 Fitting problems in deterministic methods

From the bias-variance perspective, deterministic methods of zoning like those commonly used
in conflict studies are suboptimal. In fact, they tend to risk both underfitting and overfitting.
Because those methods impose relatively strong constraints on the zoning function, the estimated

Figure 2. Zoning function.
Note: The figure shows a stylized example
of a zoning function that maps every
location to a conflict zone (Y = 1; red
area) and non-conflict zone (Y = 0;
remaining white area).

4The examples include the dates of conflict events and geographical characteristics.
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zoning functions are dependent on those assumptions and potentially biased (unless those
constraints were in fact correct). For instance, although we might use simple polygon assignment
rules, such as assigning an administrative unit polygon as part of a conflict zone if it contains one
or more conflict event, this method presumes the following functional form;

f̂polygon(x) =
1 if x [ Pconflict
0 otherwise

{
,

where Pconflict is a set of polygons that have at least one conflict event; if, for example, there is one
or more conflict events at the eastern border area in Ogaden, the entire Ogaden region is assumed
to be affected by the conflict. Although the UCDP Polygons (Croicu and Sundberg, 2012) take a
more sophisticated approach (called a convex hull method), it also assumes that the shapes of
conflict zones are convex, which may not always be realistic. In the case of the Somali Civil
War, for instance, the convex hull method cannot account for the concave shape of Somalia (yel-
low dashed zone in Figure 1), resulting in a conflict zone that mistakenly includes the Ethiopian
Ogaden region (despite the fact that no conflict event is reported in Ethiopian Ogaden).

Even worse, because the deterministic rules do not account for stochastic errors in our obser-
vations,5 they also tend to overfit the data. For instance, if there is a single combat event in a far
distant location (say, bombing in Paris by the combatants of the Sri Lankan Civil War), the poly-
gon assignment method treats the surrounding areas as a part of the conflict zone. Thus, even if
the deterministic approaches were to minimize the differences between the zoning function and
observed data, the zoning function may not be optimal.

Fortunately, we can avoid these shortcomings by using statistical methods. With statistical
learning methods, we can assume a fairly flexible zoning function and systematically account
for random errors. An easy way to understand the statistical approach is a logistic regression
(even though it is not flexible); one could estimate a logistic regression of y on X and then use
the estimated model as a zoning function. However, as I discuss in the next section, extending
statistical methods to the zoning problem is not as straightforward as one might expect.

2. Statistical approaches to zoning: problems of presence-only data
A methodological challenge is that even though we have data on the presence of conflict events,
we do not have direct observations about the absence of conflict events. As a result, yi always takes
a value of 1 in our sample, and thus conventional methods, such as logistic regression, cannot be
used without further innovations. Although the presence-only data do not draw much attention
and are rarely recognized as a problem in political science, this problem arises in other fields,
including the conservation sciences (Mack and Waske, 2017), genetics (Mei and Zhu, 2015),
and text analyses (Lee and Liu, 2003).

2.1 Positive-absence (PA) data approach

The most straightforward approach is the positive-absence (PA) data methods. The idea is that we
“make up” absence data and then apply conventional classification methods. To create the
pseudo-absence data, one might assign areal units, such as grid cells or administrative boundaries,
to the conflict events and then treat the remaining areal units as absence data. Alternatively, one
could build more sophisticated sampling schemes that account for spatial relationships (Mei and
Zhu, 2015). Once s/he creates absence data, a variety of classification methods are readily available.

A drawback to the PA approach is its sensitivity to the absence-data generation. Researchers
must specify the areal units or sampling schemes, and it is well known that those choices can

5The UCDP Polygons dataset uses so-called the 20–5 percent rule to drop outliers (see Croicu and Sundberg (2012) for
details). However, even without such a rather arbitrary rule, one can readily use statistical tools to remove outliers.
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greatly influence the estimates (Phillips et al., 2009). Even worse, because both estimation and
cross-validation rest on the pseudo-absence data, there is no established way to evaluate different
absence-data sampling schemes. Thus, without strong substantive reasons to justify particular
methods of absence-data generation, it is difficult to use the PA methods.

2.2 Positive-unlabeled (PU) data approach

Unlike the PA methods, the positive-unlabeled (PU) data methods do not treat the
pseudo-absence data as genuine Y = 0 observations. Instead, the PU methods treat the outcome
of the pseudo-absence data as indeterminate. For instance, the maximum entropy method
(Phillips and Dudík, 2008), which is one of the most widely used methods in the species distri-
bution modeling, estimates the probability distribution of Y over a specific extent using observed
events. The estimated probability distribution is then used for predicting zones as well as assign-
ing specific probabilities to the unlabeled data.

Although the PU method is the current standard in the literature on species distribution mod-
eling, recent studies have shown that the PU methods are actually dependent on how one defines
the scopes of unlabeled data (VanDerWal et al., 2009). In conflict studies, Schutte (2017) applies
a point process model (PPM) to predict zones of ten insurgent wars in Africa. Although the
author correctly refers to the problems of areal-unit assumptions, the PPM actually depends
on particular areal assumptions, including the geographical scope of the analysis and the speci-
fication of the grid cells.6 Thus, although the PPM and more generally the PU methods are great
departures from the deterministic methods, they are still confined by the areal-unit assumptions.7

At the crux, the deterministic, PA, and PU methods suffer the same problem; they are sensitive to
the choices of pre-defined areal units.

2.3 Positive-only (PO) approach

The positive-only (PO) methods can provide a possible solution to the areal-unit problems (Mack
and Waske, 2017). Unlike the PA or PU methods, the PO methods solely rely on presence data
without requiring absence data or pre-defined areal units. The PO approach therefore can be con-
sidered as a minimalist approach to conflict zoning; even though the PO methods can be less
informative as they do not utilize unlabeled data, they do not require strong assumptions and
hence allow broader applications. In general, while the PA and PU approaches are useful
when one’s objective is to make the best possible zones for a few conflicts with field-level knowl-
edge, the PO approach is more suitable when one would like to create database infrastructure for
the purpose of broader application. This paper aims at the latter objective and hence develops a
PO method.

3. Statistical method of zoning: one-class support vector machine (OCSVM)
The OCSVM is an unsupervised machine learning method and one of the most popular among
the PO approaches. There are several applications in the fields of text analysis (Lee and Liu, 2003),
species distribution models (Mack and Waske, 2017), and gene science (Mei and Zhu, 2015). The
advantages of OCSVM over other PO methods are that it is particularly useful for handling con-
tinuous predictors and that the hyper-parameter tuning is relatively well understood.8

6The tessellation algorithm in the PPM requires grid cells or sampling schemes.
7Although Schutte (2017) proposes a cross-validation scheme, it relies on a performance metric that favors predictions

similar to the Gaussian kernel densities. It is, however, unclear why predictions need to be similar to the Gaussian kernel
(and if so, we should use the Gaussian kernel in the first place).

8Possible alternatives are isolation forest (Liu et al., 2008) and autoencoder (Hinton and Salakhutdinov, 2006). In general,
the isolation forest is suitable to categorical predictors, while the autoencoder is particularly useful when there exist a large
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Conceptually (but not algorithmically), the OCSVM can be considered as a two-step proced-
ure; transforming data with a fairly flexible function w and then fitting the tightest enclosing
circle to the transformed data.9 As seen in Figure 3, the function w maps the observed m
predictors to m-dimensional Cartesian space so that the data are centered at b (in Figure 3,
m = 2). Although such an m-to-m function is hard to even express, it is mathematically
sufficient to define its kernel, K(xj, xk) = w(xj)

Tw(xk), which maps two m-length vectors to
a scalar and hence is mathematically tractable.10 The Euclidian distance, for instance, would
be such a kernel, but we can use more flexible kernels as well. A standard choice is the radial
basis function;

Krbf (xj, xk) = exp (−g||xj − xk||),

where γ is a kernel parameter, which represents the influence of a single observation on the over-
all estimate. Larger γ indicates a tighter fit to every observation. The support vector machine with
the radial basis function is so flexible that it can approximate to any finite function (so-called
universal approximator; Hammer and Gersmann, 2003).

Given a specified kernel, the OCSVM searches for the tightest circle that encloses the trans-
formed data points (the red dashed circle in the right pane of Figure 3). However, because it
is not desirable to fit the circle too tightly to the data and risk overfitting, we also allow several
observations to be outside of the circle (four data points in the right pane of Figure 3). This pro-
vides a guard against overfitting. Formally, the loss function and corresponding optimization

Figure 3. Stylized example of the OCSVM.
Note: The figure shows an example of the OCSVM with hypothetical data. The left pane plots the observed events with respect to two
predictors, x1 and x2 (say, longitude and latitude). The right pane plots the observations transformed by a flexible function w. In the right
pane, the red circle is the fitted OCSVM, the points on the edge of the circle constitute a support vector, and points outside of the circle
are outliers (events that reflect stochastic errors). By transforming the circle back to the original space, one can obtain the estimated
zone as well as the outliers.

number of predictors. Given the continuous predictors and low dimensionality, I use the OCSVM in the present analysis.
Although spatial interpolation methods, such as kriging and Gaussian kernel, can be used as well, these methods require
an arbitrary threshold for a binary classification.

9For more detailed mathematical treatment, refer to Schölkopf et al. (2000). The Support Vector Data Description (SVDD)
is mathematically equivalent to the OCSVM in a standard setup.

10The input data must be standardized.
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problem is expressed as;

min (EX[L( fY , f̂ Y|X)]) ≈ min
R,b,d

R2 + 1
n

∑n
i=1 di
n

( )
;

with constraints of;

||w(xi)− b|| ≤ R2 + di and di ≥ 0 ∀i [ {1, 2, . . . , n},

where R is a radius of the circle. Wewould like to have a circle that encloses the points as tightly as pos-
sible (minimizingR2), but we alsowant the circle to be sufficiently inclusive and thus not so far from the
outliers (minimizing

∑n
i=1 di). The parameter ν controls theweights of those two opposing forces; large

ν allowsmany outliers, while small νmeans an inclusive circle. By solving the optimization problem for
R̂, b̂, and d̂, we get the OCSVM approximation to the population zoning function;11

f̂OCSVM(x) = 1 if ||w(x)− b̂|| ≤ R̂
2

0 otherwise

{
.

Since the two hyper-parameters γ and ν (both of which control the balance between underfitting and
overfitting)12 are not directly estimated, I follow Ghafoori et al. (2018) to choose the optimal values.13

The predictive intervals are obtained via bootstrapping.

4. Performance comparison I: simulation analysis
One advantage of using statistical methods is their ability to separate a systematic pattern of con-
flict events from non-systematic errors. In this section, I compare the performance of both deter-
ministic and statistical methods by conducting a couple of simulation analyses. I first define a
population conflict zone as the entire territory of Nigeria or Somalia. I choose these countries
because they have perhaps the most convex and concave shapes among African countries. I
then randomly draw 1000 locations within the territory and add random noise;

yi = ỹi + vi;

ỹi �
iid
Upoly;

vi �
iid
N(0, s2) for i [ {1, 2, . . . , n},

where Upoly is a uniform distribution over the territory of Nigeria or Somalia, ỹi is a location
within the territory, and vi is noise drawn from a normal distribution of mean zero and variance
σ2. I vary the size of the noise σ from 0 to 1 degree (∼0 to 111 km).14 We are supposed to have no
information about ỹivi, or their distributions with only having the data yi. Our task is to infer the
population conflict zone from the observed data yi.

11For a proof of Lagrangian optimization, refer to Schölkopf et al. (2000).
12While large γ makes a zone tight to every observation and hence “snaky,” small ν makes a zone inclusive and hence

“stretched.” Both make the zone sensitive to outliers.
13For the detail of the hyper-parameter selection, see Supporting Information 1.
14Any larger value makes the performances of all of the methods equally worse.
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In the following analysis, I compare the performances of the PRIOGRID and district assign-
ments, the convex hull (deterministic approaches), support vector machines (SVM; PA data
approach), maximum entropy method (MAXENT; PU data approach), and one-class support
vector machine (OCSVM; PO approach).15 The convex hull method is supplemented with a
deterministic rule for outlier removal, which is used in the UCDP Polygons dataset (so-called
20–5 percent rule).16 Since the SVM and MAXENT require pseudo-absence or unlabeled data,
I randomly sample locations and use them as pseudo-absence or unlabeled data.17 Finally, I
evaluate the performance by calculating the accuracy of the predictions (the proportion of cor-
rectly predicted conflict and non-conflict area across the entire area). I repeat the simulation
for 1000 times for each value of σ and calculate the average accuracies.18

4.1 Results

The following figure (Figure 4) shows the results of the simulation analyses. On average, the
OCSVM has a higher performance than the other methods in both simulations. Although the
PRIOGRID assignment performs relatively well, the performance is sensitive to the addition
of small amounts of noise especially in the case of Somalia, which is not surprising given
its deterministic nature. In both simulations, the district assignment exhibits relatively low
performance; in the case of Somalia, its accuracy quickly deteriorates and then becomes com-
paratively stable. The convex hull method works well only when a population conflict zone is
convex. When the assumption of a convex conflict zone is violated, the accuracy becomes
much lower.

Among the statistical methods, only OCSVM has high performance in both simulations.
While the performance of the MAXENT is as high as OCSVM’s in the case of Nigeria when
there is a large amount of noise, the MAXENT has the second lowest accuracy in the Somalia
simulation. Similarly, the performance of the SVM is somehow equivalent to that of the
PRIOGRID assignment for Somalia, but it does poorly for the Nigeria simulation. These results
reinforce the fact that SVM and MAXENT are sensitive to pseudo-absence data generation.
Overall, the OCSVM exhibits the highest and most stable performance.

5. Performance comparison II: validation with the Rohingya crisis
Although it is usually difficult to validate conflict zones with real-world data as we rarely have
absence observations (and without absence observations, we cannot calculate accuracy), the
case of the Rohingya Crisis provides a unique analytical opportunity. Specifically, the United
Nations Institute for Training and Research (UNITAR) analyzes high-resolution satellite images
to measure the levels of housing destruction at 900 Rohingya villages in Myanmar for the period
of 31 August 2017 to 31 March 2018 (UNITAR, 2018). Importantly, the dataset contains infor-
mation about both presence and absence of housing destruction in each village. Although housing
destruction might not be a valid indicator of conflict, I can at least analyze to what extent the
conflict zones (or zones of housing destruction) validly reflect the reality. If the UNITAR data

15I choose these methods because (i) PRIOGRID and districts are the spatial units that are the most commonly used in
conflict studies, (ii) the convex hull method is used in the UCDP Polygons dataset, (iii) the OCSVM is a natural extension of
the SVM and hence they are more comparable, and (iv) the MAXENT is the current standard in the literature of species
distribution models.

16See Croicu and Sundberg (2012) for details of the 20–5 percent rule.
17In particular, the pseudo-absence or unlabeled data are uniformly drawn from a rectangle that has maximum and min-

imum extents equal to those of the observed data. When I draw them from the global extent, the performances of the SVM
and MAXENT become much lower. Following the convention, the number of the pseudo-absence data are set as equal to the
sample size of presence data. The hyper-parameters of the SVM are tuned with cross-validation.

18The confidence intervals are very small and hence not reported.
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indicate “few” or more destruction, it is considered as evidence for the presence of conflict, and
hence the outcome variable takes a value of 1.

I conduct a two-fold cross-validation test with the housing destruction data. I first randomly split
each of the destroyed and unaffected villages to two groups. The assignments of the PRIOGRID
cells and township polygons,19 convex hull, SVM, MAXENT, and OCSVM are then applied to

Figure 4. Simulation: performance comparison.
Note: The figures shows the performances of PRIOGRID assignment (yellow dot-long-dashed line), district assignment (gray long-
dashed line), a convex hull (purple dot-dashed line), support vector machine (blue dotted line), maximum entropy method (green
dashed line), and OCSVM (red solid line). The upper and lower panes show the results when the territories of Nigeria and Somalia
are used in the simulation respectively. The horizontal axis shows the level of noise in the observed data (σ). The vertical axis
shows the accuracy. The confidence intervals are very small and hence not reported.

19The townships are the third-order administrative units next to districts. There are only five PRIOGRID cells and three
townships in the Rohingya region (there is only one district). Despite this fact, I use the PRIOGRID and townships because
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one half of the affected villages, and the corresponding conflict zones are estimated. I calculate the
accuracies of the conflict zones by comparing them to the other half of the affected villages and one
half of the villages that were unaffected.20 The same exercise is done by replacing the groups. The
two-fold cross-validation is repeated 500 times (thus, 2 × 500 = 1, 000 simulation outputs). Finally,
the average accuracy is calculated.21 The other specifications are the same as those in the simulation
analyses.

As seen in Figure 5, the OCSVM exhibits the highest performance, indicating that the OCSVM
better reflects the reality of the Rohingya Crisis. Nonetheless, it should be noted that the perform-
ance is not very high in the absolute term; only about seven out of ten times, the OCSVM cor-
rectly distinguish affected and unaffected villages. This reflects the generic difficulties of one-class
classification. Thus, as mentioned above, the OCSVM should not be considered as substitutes for
detailed field-level knowledge. Having said that, however, the OCSVM marks improvement com-
pared to the extant methods; the OCSVM increases the probability of correct predictions by 0.25,
0.2, 0.05, and 0.03 compared to the PRIOGRID and polygon assignments, the MAXENT, the
convex hull, and the SVM respectively.

Although the SVM exhibits a performance similar to the OCSVM, the SVM’s accuracy varies
substantially across simulations. Indeed, the standard deviation of SVM’s accuracy is 0.065, which
is far larger than any of the other methods (the standard deviations of the other methods are
below 0.03). This is not surprising because the SVM relies on the random sampling of absence
data and hence is subject to additional noise. Next, even though the convex hull also exhibits a

Figure 5. Validation: performance comparison.
Note: The figure shows the results of the two-fold cross-validation tests. The vertical axis is average accuracy over 500 cross-validation
tests (thus 2 × 500 = 1000 simulations). The confidence intervals are very small and hence not reported.

these are often used in macro-level analysis. The goal of this paper is to develop a method for macro-level comparison, and
the analysis in this section attempts to validate the macro-level methods with micro-level data. Although it might be inter-
esting to use smaller grid cells or polygons, I do not evaluate these areal assignments. The reasons are (i) due to the sheer
sample size, they cannot be used in analysis with a large number of countries, (ii) there is no global dataset of village or
equivalent administrative polygons, and as a result (iii) to my best knowledge, there is no study that uses those fine-grained
units in a large number of countries.

20The other half of the unaffected villages are not used in order to maintain the ratio of the affected and unaffected villages.
21The confidence intervals are very small and hence not reported.
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relatively high performance, it includes the central mountain areas in which there is no housing
destruction or conflict (the upper middle pane of Figure 6). Because there is no observation in the
mountain areas, these mis-predictions are not reflected in the accuracy metric, which creates the
impression that the convex hull would be as accurate as the OCSVM. The OCSVM, on the other
hand, does not include those central mountain areas.

Compared to those statistical methods, the MAXENT exhibits very low accuracy. As seen in
the upper right pane of Figure 6, the MAXENT is unstable outside the extent of the presence

Figure 6. Estimated zones of the Rohingya housing destruction.
Note: The figure shows the zones of the Rohingya housing destruction estimated by the six methods. The red points show the villages
that suffered “few housing destruction” or more between 31 August 2017 and 31 March 2018. The white points villages that did not
suffer any housing destruction. Those data are derived from UNITAR (2018). The red areas are the estimated zones.

108 Kyosuke Kikuta

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
02

0.
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2020.16


observations. Moreover, even within this extent, the predictions are too inclusive and therefore
inaccurate. Finally, the PRIOGRID and township polygon assignments have the lowest accuracies,
which is not surprising given the large sizes of the grid cells and townships. Because a majority of
the UCDP GED events are also reported at the levels of villages, towns, or cities, those findings
cast a doubt on the validity of those polygon assignments. Overall—even though none of these
methods can substitute field-level knowledge—the OCSVM exhibits the highest performance,
indicating its potential use for macro-level analysis.

6. New conflict zones: application to the UCDP GED
I apply the OCSVM to the UCDP GED (version 19.1), a conflict event dataset commonly used
not only in political science but also in other fields (Daskin and Pringle, 2018).22 An armed con-
flict is defined as “[a]n incident where armed force was by an organized actor against another
organized actor, or against civilians, resulting in at least 1 direct death at a specific location
and a specific date” (Sundberg, Lindgren, and Padskocimaite, 2010: 2). Although recent studies
point out reporting biases in the dataset (Weidmann, 2015, 2016), the reporting biases require
solutions at the level of event data collection. Thus, they are beyond the scope of this paper.
The following analysis is readily replicable with more accurate event data. The new conflict
zone data can also potentially be used in conjunction with the calibration method proposed
by Donnay et al. (2018).

I estimate conflict zones with and without using the conflict event dates as an additional pre-
dictor so that I can create both time-variant and time-invariant conflict zones. Each conflict event
is weighted by the casualties so that events of higher casualties have larger weights in the estima-
tion. With the event data, I separately estimate the conflict zones for each dyad of actors. The
UCDP GED specifies a conflict name (which I call “conflict episode”) and names of two involved
actors (which I call “conflict dyad”) for every conflict event.23 Therefore, in the example of the
Iraqi Insurgency, I create conflict zones for battles between the government and Islamic State,
battles between the government and Ansar al-Islam, and so forth.24 Because each dyad is always
assigned to a single episode—which in turn belongs to either state-based, one-sided or non-state
conflict type—the dyadic conflict zones can be easily aggregated to zones at the levels of conflict
episodes or types.

I do not include any geographic or climatic predictors so that the conflict zones are solely based
on the UCDP GED and hence those predictors can be used in later analyses.25 These features are
intended to match those of the UCDP Polygons dataset.26 The goal here is to provide a reliable
alternative to the UCDP Polygons dataset, which has not been updated for the past 8 years and
only includes Africa.27 Moreover, the roles of additional predictors are rather limited in the
OCSVM. If predictors do not affect the conflict locations, there is no reason to include them. By
contrast, if predictors can affect the locations of conflict events, such effects are already reflected
in the conflict events themselves. Although the predictors may still provide efficiency gains, they

22Although the OCSVM is readily applicable to other event datasets, I choose the UCDP GED as the dataset has accom-
panying zonal data, UCDP Polygons.

23In implementation, I use the corresponding IDs in the UCDP GED (conflict new id and dyad new id variables).
24Due to small sample sizes, zones cannot be estimated for dyads of three or fewer events. Although this is clearly a dis-

advantage of the statistical method, it does not mean that the deterministic rules could create valid conflict zones for those
cases. Given the limited number of events, I even doubt that defining zones is substantively meaningful for those cases.

25I also account for geographic and temporal precision of the conflict events by resampling their locations and dates. For
the full details of the preprocessing, see Supporting Information 2.

26Depending on research interests, it is recommended to drop the cases relating to Al-Qaeda’s transnational terrorism
(UCDP GED conflict ID 418 and 608), which have exceptionally large conflict zones. The following analyses exclude
those cases.

27Confirmed on 20 November 2019.
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do not reduce biases in the estimate. Finally, the predictors also limit the possible usage of the con-
flict zones. If one would include geographic predictors, for instance, it prevents us from analyzing
the relationship between those predictors and conflict zones in the causal analysis. This is less than
attractive not only because we cannot answer those substantive questions, but also because we can
no longer use those exogenous variables for the purpose of causal identification.

As a final note, recall that the conflict zones are not real geographical objects but concise sum-
maries of conflict events, and hence the conflict zones are primarily used for macro-level analysis.
For instance, it makes less sense to compare areas one or few kilometers inside and outside of the
conflict zones, as the approximation errors are usually larger than such a small scale. Thus, the
dataset also comes with estimates of the approximation errors. Specifically, I use parametric boot-
strapping to provide the standard errors and corresponding 95 percent lower and upper bounds
of the conflict zones.28 The interval estimates can be used for the purpose of sensitivity analysis.

The new conflict zone dataset—Wzone—is publicly available in time-varying (daily; 1989–
2018) and static versions at the levels of conflict dyads and episodes. Any geo-spatial covariate
can be incorporated to Wzone by calculating the mean or other metrics within each zone.
Conversely, the Wzone dataset can be integrated to PRIOGRID (Tollefsen et al., 2012) and
other spatial datasets by calculating the proportion of conflict zones within a spatial unit. The
integration with PRIOGRID will allow researchers to access a wide array of covariates for further
analysis.29

6.1 Results

The following figure (Figure 7) is the time-invariant estimates of conflict zones. The left and right
panes are the UCDP Polygons dataset and the OCSVM estimates respectively.30 For graphical
purposes, the figure shows only the zones of state-based conflicts in Africa. Consistent with
my argument, the UCDP Polygons tend to be less flexible but more sensitive to outliers. For
example, while the UCDP Polygons contains substantial amounts of ocean areas for the case
of Mozambique (blue; bottom right of Figure 7), the OCSVM estimates are mostly along the
coastal lines. As I argued, because a majority of conflict events occurred inside the coastal
lines, even without any covariates about terrain, the OCSVM properly accounts for the spatial
distribution.

A more noticeable and perhaps important difference is the sensitivity to the outliers. For quite
a few conflicts, the UCDP Polygons indicate larger conflict zones than those in the OCSVM esti-
mates, including those in Algeria (brown; top left) and Angola (orange; bottom left). In the case
of the Algerian Civil War, for instance, the conflict was mostly fought within the northern region
of Algeria. A few terrorist attacks, however, squeeze the UCDP conflict zone to the outside of the
country, including Mauritania, Mali, Niger, and a large area of the Sahara Desert. By contrast, the
OCSVM estimate is contained within the northern coastal regions of Algeria, more accurately
representing the nature of the civil war.31

7. The ecological costs of armed conflict: replication of Daskin and Pringle (2018)
Finally, I replicate Daskin and Pringle’s (2018) study on the ecological consequences of armed
conflict to demonstrate how the zones could alter the inferences they made. I choose the
Nature letter to examine the potentially broad implications of the zoning problem and to

28For the details of the bootstrapping, see Supporting Information 3.
29I emphasize that the new conflict zone dataset is not an alternative to PRIOGRID itself, but it is an alternative to the

conflict zone variables in the PRIOGRID dataset, which currently use the minimum circle that encloses all events of a
given conflict.

30I update the UCDP Polygons dataset with the latest version of the UCDP GED (version 19.1).
31In Supporting Information 4, I also provide a focused comparison of conflict zones in the case of the Somali Civil War.
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highlight an issue that is understudied in political science.32 The article, which was published on
18 January 2018, has already been cited by 52 newspapers, including the New York Times and the
Economist (8 August 2018).33 Their sample is cross-sectional and comprised of 172 park-species
combinations in Africa.34

The outcome variable is the annualized finite rate of population change,

l = dt=1

dt=0

( )1/(yt=1−yt=0)

,

where dt=0 and dt=1 are the densities of a wild large herbivores in the beginning and end years of
mammal population records (yt=0 and yt=1 respectively). The lambda measures the ratio of the
population size at the end of a year and the population size at the beginning of the year. The value
λ = 0.9, for instance, indicates that if there are 100 animals at a beginning of a year, their popu-
lation decreases to 90 at the end of that year. The densities of wild large herbivores are compiled
by “systematically reviewing academic and grey literature” (Daskin and Pringle, 2018: 329).35

Their key predictor is the proportion of conflict zones averaged over the years of mammal popu-
lation records. While the authors use the UCDP Polygons dataset, I use the new conflict zone
dataset and calculate a proportion of zones within each protected area. In the following section,
I compare the results with the updated version of the UCDP Polygons and the results with the

Figure 7. Time-invariant estimates of conflict zones in Africa.
Note: The figure maps the time-invariant estimates of conflict zones. The left and right panes are the updated UCDP Polygons dataset and
the OCSVM estimates respectively. The conflict names are shown at the bottom with corresponding colors. For graphical purposes, the
conflict zones are limited to those of state-based conflicts in Africa. For readers of monotone prints, please refer to the online article.

32Nature letters are “short reports of original research focused on an outstanding finding whose importance means that it
will be of interest to scientists in other fields” (https://www.nature.com/nature/for-authors/formatting-guide; 19 October 2018).
To my best knowledge, this paper is the first response to Daskin and Pringle (2018) in political science. I also conduct two
additional replications. See the last paragraph in the next subsection.

33See the author’s website (https://joshdaskinecology.com/publications; accessed on 8 August 2018) for the latest
information.

34The sample includes 96 protected areas and 30 species.
35See Daskin and Pringle (2018) for the details.
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OCSVM estimates, while keeping the other specifications intact so that the only difference lies in
the zoning methods.36

7.1 Results

The following table (Table 1) compares the results based on the updated UCDP Polygons and the
OCSVM estimates. While the original finding (left columns in Table 1) indicates a statistically
and substantively significant association between conflict zones and the decline of the mammal
population, these results are not consistent with my conflict zones dataset. In fact, with the new
zones, we cannot draw meaningful inferences from the data.

The differences become even clearer once we consider the effect sizes. The following figure
(Figure 8) compares the trajectories of the hypothetical mammal population, which has an initial
size of 100,000. For each of the estimated effects in Table 1, I calculate the population trajectory in
a protected area that does not at all belong to conflict zones (blue dotted line) and that in an area
totally belonging to conflict zones (red solid line). As seen in pane (a) of Figure 8, according to
Daskin and Pringle (2018), the mammal population is stable or only slightly decreases without
armed conflict, but it drastically decreases in conflict zones; in each year of the armed conflict,
the population is estimated to decline to about 85 percent of the initial size. This means that
within 5 years of armed conflict, the population would decrease to less than 1 percent of the ini-
tial size.

The estimates with the new conflict zones, however, indicate more modest and perhaps real-
istic trajectories (pane (b) of Figure 8); in each year of armed conflict, the population is predicted
to decline to 90 percent of the initial size. Although this estimate is still large given the prolonged
nature of armed conflict (the population decreases to about 59 percent of the initial size within
five years of armed conflict), it at least does not mean that fighting would nearly eradicate the
animals within a few years.37 The results are also indeterminate. There is no definite evidence
that mammal population decreases in conflict zones or that the rate of population loss is higher
than that in non-conflict zones. Given the relatively large difference in the mean estimates, the
null result is probably due to the small sample size. Future studies need to collect more observa-
tions to increase the power of the analysis.

I also conduct two additional replications, which are detailed in Supporting Information 6 and 7.
Although I refrain from drawing a definite conclusion given the small number of replications, it
appears that the measurement errors tend to have large impacts when we use the conflict zones
for creating variables and/or when the sample size is small. The analysis with a small sample can
be heavily influenced by systematic or non-systematic measurement errors in a few observations.

Table 1. The effects of armed conflicts on the mammal population

Replication with the updated UCDP polygons Replication with the new conflict zones

−0.85 −0.10
[−1.20, −0.49] [−0.40, 0.21]

Note: The table shows the regressions of mammal population trajectories on the average proportions of conflict areas in protected areas in
Africa. The left and right columns show the results based on the updated UCDP Polygons and the OCSVM estimates respectively. In each
column, the regression coefficient and corresponding 95 percent confidence intervals are reported. The control variables are human
population density, proportion of urban areas, and drought frequency, which are included in the “best” model of Daskin and Pringle (2018).
n = 172.

36I use the “best” specification in Daskin and Pringle (2018; the authors use model-selection and model-averaging tech-
niques). In Supporting Information 5, I also present the original estimates and the results replicated with the old version of
the UCDP Polygons.

37In Supporting Information 5, I also examine the reasons why the estimates are so different depending on the conflict
zones.
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In fact, the new conflict zones also substantially alter the results of Beardsley et al. (2015), who use the
UCDP Polygons for measuring rebels’ movement in an analysis with a relatively small sample (n =
257). By contrast, the new measure does not alter the main findings of Fjelde and Hultman (2014),
who use the conflict zones for selecting a sample in an analysis with large panel data.38

These results, however, do not mean that a larger number of observations can always mitigate
the biases from measurement errors. In fact, the measurement errors in Beardsley et al. (2015)
have systematic patterns that will not disappear even with a large sample. This demonstrates
that the biases in empirical estimates can persist. Thus, it is advised for future studies to carefully
assess the underlying assumptions of conflict zones and the patterns of the measurement errors.
If the measurement errors are not systematic, a large sample can help (even though it can cause
attenuation biases). If the measurement errors are systematic, however, the empirical findings
must be taken with great caution.

8. Conclusion
In conflict studies, the selection of areal units is so common that people may not recognize that
the areal assignment is indeed an assumption. Without properly understanding where armed
conflict takes place, however, we cannot know why armed conflict occurs or what its conse-
quences are. In this paper, I have addressed the areal-unit problems by developing a theory,
method, and dataset of conflict zones. I define a zone as a summary function that maps locations
and other relevant information onto the presence and absence of armed conflict. This formaliza-
tion clarifies that the zoning exercise is essentially a statistical problem—it is a matter of how we
can infer a zoning function from observed data of conflict events. I answer this question by apply-
ing the OCSVM, which unlike other deterministic or statistical methods does not depend on a
predefined areal unit. I apply the OCSVM to the UCDP GED conflict event dataset and create
a new dataset of conflict zones. The replication of Daskin and Pringle (2018) indeed indicates

Figure 8. The ecological costs of armed conflict.
Note: The figure shows the estimated trajectories of a hypothetical mammal population. The initial size of the population is 100 thou-
sands. The left and right panes show the population trajectories estimated with the UCDP Polygons (exact replication of Daskin and
Pringle (2018)) and with the OCSVM-based conflict zones. The dotted blue lines are the population trajectories in protected areas
any part of which does not experience armed conflict. The solid red lines are the population trajectories in protected areas which totally
belong to conflict zones.

38I choose these two studies as they are the most cited articles that use the UCDP Polygons (confirmed on 20 November
2019 at Google Scholar).
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that zones can potentially alter our inferences about the ecological costs of armed conflict in stat-
istically and substantively significant ways.

Although this paper is primarily interested in armed conflict and applies the method to the
UCDP GED, the theory and method can be applied to the other conflict data, such as ACLED
(Raleigh et al., 2010), SCAD (Hendrix and Salehyan, 2013), and ICEWS (Boschee et al., 2015),
and potentially to other topics in the social sciences, including poverty mapping, crime zones,
state controls over territories, hazard maps, and zones of racial segregation. Although application
to those topics will certainly require extensions and modifications, the framework of this paper
provides a way to think about the problems and thus to develop suitable methods. I hope this
paper facilitates our understandings on the geography of armed conflict and, more broadly,
the areal-unit assumptions in political science.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2020.16.
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