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ABSTRACT. The presence of leads with open water or thin ice is an important feature of the Arctic sea ice
cover. Leads regulate the heat, gas and moisture fluxes between the ocean and atmosphere and are areas
of high ice growth rates during periods of freezing conditions. Here, an algorithm providing an automatic
lead detection based on synthetic aperture radar images is described that can be applied to a wide range
of Sentinel-1 scenes. By using both the HH and the HV channels instead of single co-polarised observa-
tions the algorithm is able to classify more leads correctly. The lead classification algorithm is based on
polarimetric features and textural features derived from the grey-level co-occurrence matrix. The
Random Forest classifier is used to investigate the importance of the individual features for lead detec-
tion. The precision–recall curve representing the quality of the classification is used to define threshold
for a binary lead/sea ice classification. The algorithm is able to produce a lead classification with more
that 90% precision with 60% of all leads classified. The precision can be increased by the cost of the
amount of leads detected. Results are evaluated based on comparisons with Sentinel-2 optical satellite
data.

KEYWORDS: ice/atmosphere interactions, ice/ocean interactions, remote sensing, sea ice, sea-ice
dynamics

INTRODUCTION
Sea ice covers a large part of the Arctic Ocean. It works as
insulation between relatively warm ocean water and cold
air in winter. One of the important features of the ice cover
is the presence of sea-ice leads. Leads are areas with open
water or thin ice, which are usually of elongated shape.
They appear as result of ice fracturing due to shear and diver-
gence stresses in the sea-ice cover. These stresses are forced
by the ocean currents, tides and to a large degree by winds in
the atmosphere. Leads regulate the heat, gas and moisture
exchange fluxes between the ocean and the atmosphere
and are places of increased sea-ice production, during
periods of freezing conditions. Hence, the spatial and tem-
poral distributions of leads are of interest for climate studies
(Maykut, 1978; Wang and others, 2016). Furthermore, the
mapping of sea-ice leads plays an important role for naviga-
tion providing an easier way for vessels through the pack ice.
Also, leads are areas of increased biological activity in the
ocean like phytoplankton blooms (Assmy and others,
2017). The life of Arctic animals (e.g. walruses, polar bears,
birds) is often tied to leads.

Due to harsh weather conditions in the Arctic, capabilities
for field studies of sea ice are limited. Remote-sensing
methods can provide measurements in the Arctic covering
large areas. Airborne and satellite instruments allow one to
receive data with different spatial and temporal resolutions.
Several methods were developed for discrimination of sea
ice and water based on remote-sensing observations taken
in the visible, infrared, and microwave parts of the electro-
magnetic spectrum. They are described in the following
four paragraphs.

A large number of advanced very-high resolution radiom-
eter (AVHRR) infrared images were analysed by Lindsay and

Rothrock (1995) to determine lead characteristics. The lead
detection algorithm is based on the concept of ‘potential
open water’, a scaled version of the surface temperature or
albedo that weights thin ice by its thermal or brightness
impact. A threshold was set to discriminate open water
from sea ice. The resolution of the data is about 2–3 km. In
the studies conducted by Willmes and Heinemann (2015,
2016), MODIS thermal infrared imagery was used for lead
detection. The method is based on a threshold applied to
MODIS images with the background subtracted. The result-
ing maps with resolution of 1 km contain three classes: sea
ice, leads and lead-like structures. Both the AVHRR and
MODIS-based methods are affected by cloud contamination.

The cloud influence is significantly reduced for observa-
tions in the microwave spectrum, where weather conditions
have little influence on measurements. Lead detection based
on microwave altimetry was studied by Wernecke and
Kaleschke (2015) using data from CryoSat-2. The algorithm
to discriminate leads from ice is based on the maximum
power, the pulse peakiness, and other parameters (e.g. the
leading edge width, the trailing edge width, the stack stand-
ard deviation, and the stack excess kurtosis) of the reflected
altimeter signal.

Estimations of lead concentrations and their orientation
statistics were shown by Röhrs and Kaleschke (2012) and
Bröhan and Kaleschke (2014) based on observations of the
passive microwave imager AMSR-E. For AMSR-E data on a
6.25 km grid, they detect leads wider than 3 km, which
results in a detection of 50% of the lead area that can be
seen on MODIS optical images.

Synthetic aperture radar (SAR) is able provide high-reso-
lution data with large spatial and temporal coverage. It is
widely used for sea-ice-type classification and ice–water
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discrimination (Dierking, 2010, 2013). Ivanova and others
(2016) used a threshold approach on the HH-band (HH:
transmitting and receiving in horizontal polarization) of the
ENVISAT ASAR instrument for water–ice discrimination. To
improve the quality of object classification the directly mea-
sured data (e.g. backscatter intensities) are often extended
with textural features. Ice–water classification based on
dual-polarised SAR images (RADARSAT-2) with the add-
itional texture information is described by Leigh and others
(2014). The use of a support vector machine on the features
based on the grey-level co-occurrence matrix (GLCM)
(Haralick and others, 1973) is suggested. This combination
was previously used for sea-ice-type classification by Liu
and others (2015), Korosov and Park (2016). A similar
approach is used by Zakhvatkina and others (2017) for ice–
water discrimination. A neural network with texture features
based on the GLCM was used for classification of ENVISAT
SAR images by Zakhvatkina and others (2013). Another
method that provides complementary information to the
backscatter intensity is based on polarimetric features (e.g.
Moen and others, 2015). Polarimetric features are used for
sea-ice classification (e.g. Ressel and others, 2016), iceberg
detection (Dierking and Wesche, 2014) and oil spill recogni-
tion (e.g. Brekke and others, 2014).

In this study, Sentinel-1 dual-channel C-band SAR mea-
surements (co- and cross-polarised modes, HH and HV) are
used. It should be noticed that several definition of a lead
can be found in the literature (Weeks, 2010). Although
leads often defined as elongated areas with open water,
here we do not consider the shape of detected objects. The
automatic lead detection algorithm we have developed is
based on the analysis of backscatter amplitude and texture
and, therefore, thin ice and open water between ice flows
might be classified as leads. We combine polarimetric and
texture features to produce sea-ice lead maps that, if com-
bined, can cover the complete European Arctic. We investi-
gate the optimal number of texture features for lead
classification and provide the precision–recall curve as a
classification quality metric. Results are evaluated by high-
resolution (10 m) optical data from Sentinel-2.

DATA AND METHODS

Satellite data
The data used in the present study are listed in Table 1. For
this study, we focused on two satellite constellations:
Sentinel-1 SAR data are used for the lead detection and

Sentinel-2 optical data as evaluation dataset. The data are
available at the Copernicus Open Access Hub (scihub.coper-
nicus.eu). The Copernicus Sentinel-1 mission currently
comprisestwo satellites with a SAR as primary instrument.
In the Extra Wide swath mode, SAR images are acquired at
both HH and HV polarisations. The backscatter of the elec-
tromagnetic wave transmitted at 5.4 GHz frequency at hori-
zontal polarisation is received and decomposed into
horizontal (HH) and vertical (HV) polarisation components.
The swaths width is 400 km, the resolution is 93 × 87 m
(pixel size is 40 × 40 m). The typical size of a Sentinel-1
image is 10 000 × 10 000 pixels. Preprocessing of the data
includes thermal noise removal, incidence angle correction
and speckle noise filtering. The flowchart of the lead detec-
tion algorithm is shown in Figure 1. Thermal noise and cor-
rection parameters, which are provided in the auxiliary
data, are applied to the SAR images according to the equa-
tion given in the Sentinel-1 processing chain documentation
(ESA, 2016):

σ ¼ ðpixel value2 � noiseÞ
γ2

ð1Þ

where pixel value is the amplitude of backscatter of the ori-
ginal HH or HV band, noise is the intensity of the thermal
noise and γ is a calibration coefficient, noise and γ are pro-
vided in the metadata. In the next step, the corrected back-
scatter is translated to dB by application of log10. To
prevent infinitely low values a threshold of 1/max (γ) has
been applied as a limit. In this way, the thermal noise is
removed from the SAR data, but the so-called scalloping
noise remains. The effect of the scalloping noise is mainly
visible over the open ocean and therefore can be masked
out with a sea-ice mask. A sea-ice mask can be retrieved
by applying a threshold to a sea-ice concentration product.
In this study, we use a 20% sea-ice concentration threshold
for the ASI AMSR-2 algorithm [seaice.uni-bremen.de]
(Spreen and others, 2008).

The last column gives the fraction of the satellite scene in
per cent that is used for the classification training and testing.

Backscatter of sea ice in the HH band of SAR data is
known to depend on the elevation angle (and, consequently,
incidence angle), which therefore should be taken into
account. A linear regression of HH backscatter versus eleva-
tion angle is used. The regression coefficients are derived
from a set of 16 extra wide swath mode products with homo-
geneous areas acquired over sea ice. These products cover
the entire range of incidence angles used in the extra wide

Table 1. List of Sentinel-1 and -2 products used in the study

Satellite Sensor Acquisition Product type Use in the study

Sentinel-1 SAR 1 Oct 2015; 07:36 S1A_EW_GRDM_1SDH 25% training, 75% test
Sentinel-1 SAR 28 Oct 2015; 14:32 S1A_EW_GRDM_1SDH 25% training, 75% test
Sentinel-1 SAR 31 Oct 2015; 16:35 S1A_EW_GRDM_1SDH 25% training, 75% test
Sentinel-1 SAR 4 Jan 2016; 02:01 S1A_EW_GRDM_1SDH 25% training, 75% test
Sentinel-1 SAR 1 Feb 2016; 11:15 S1A_EW_GRDM_1SDH 25% training, 75% test
Sentinel-1 SAR 3 Feb 2016; 22:30 S1A_EW_GRDM_1SDH Evaluation
Sentinel-1 SAR 30 Mar 2016; 13:09 S1A_EW_GRDM_1SDH 25% training, 75% test
Sentinel-1 SAR 2 Aug 2016; 13:18 S1A_EW_GRDM_1SDH Evaluation
Sentinel-2 optical 2 Aug 2016; 14:17 S2A_OPER_PRD_MSIL1C_PDMC Evaluation
Sentinel-1 SAR 10 Apr 2017; 04:28 S1A_EW_GRDM_1SDH Evaluation
Sentinel-2 optical 10 Apr 2017; 12:06 S2A_MSIL1C Evaluation
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swath mode. The resulting equation for the incidence angle
correction is

σnew ¼ σ þ 0:049 � ðθ �min ðθÞÞ ð2Þ

where σnew is the backscatter after the correction, given in
dB, and θ is elevation angle in degrees. The HV band does
not reveal a significant sensitivity to the incidence angle;
therefore, the correction is done only for the HH band. The
next step of the preprocessing is the reduction of speckle
noise. A bilateral filter is applied, which is an edge-preserving
filter known to have good performance in reducing speckle
noise (Tomasi and Manduchi, 1998; Alonso-Gonzalez and
others, 2013). The size of the square window of the filter
was set to 5 pixels. With this the preprocessing of the
Sentinel-1 data is finished.

The second source of satellite data used in this study are
observations from the Sentinel-2 satellite constellation carry-
ing a multispectral instrument with 13 bands in the visual and
near-infrared spectral range. Images with a spatial resolution
of 10 m for visual and 20 m for near-infrared are used for
comparison with SAR images to evaluate the results of the
lead detection algorithm.

Training and evaluation datasets
To train the classifier datasets are needed with correctly iden-
tified objects, i.e. in our case leads with thin ice or open
water. We use a manual classification of six Sentinel-1
scenes that cover two different typical lead appearance
types: dark and bright leads (three scenes for each of the

two cases). These scenes are taken from different times of
the year (Table 1). No scene from summer was used for train-
ing datasets because during the melt season melt ponds can
have similar signature in SAR backscatter as leads with open
water. To evaluate the results of the classification on inde-
pendent data, two cases of overlapping Sentinel-1 SAR and
Sentinel-2 optical data are used (Table 1). Although images
in one of the cases were taken in August, there is no evidence
of melt ponds presence on them. Hence, the melt season is
excluded from the study.

Leads with open water or thin ice in most cases have low
surface roughness and therefore have low backscatter values
on both SAR bands, HH and HV. They appear dark on the
optical image used for evaluation as well. This case is repre-
sented in the first of the two evaluation datasets. Figs 2a, b
and c show the HH, the HV and the product of SAR bands
HH·HV, respectively, and Figure 2d the Sentinel-2 image
of the corresponding area taken in the visible spectrum.
The time difference between the acquisitions is 7 h 40 min.
Most areas covered with leads appear dark on all images.
Only around edges of leads thin crushed ice with a high
surface roughness can appear bright while on the image
taken in visible spectrum the same thin crushed ice is trans-
parent. The assumption for using the band product HH·HV
is that if either the HH or HV band show low backscatter
intensities the band product will have low values.

Leads with open water, however, can appear bright on
HH band under high incidence angles if wind roughens the
water surface (Scharien and Yackel, 2005). In the HV band,
leads appear dark under the same conditions. Thin sea ice
with frost flowers in leads can have high backscatter values
in both HH and HV bands (Nghiem and others, 1997;
Dierking, 2010; Isleifson and others, 2014) and therefore
can look like pressure ridges in C-band images. They might
not always be classified correctly here. However, lead detec-
tion from the HV band is more prone to errors since the back-
scatter intensity at HV band is low and often close to the
noise floor. An example of the situation when leads have
high HH band backscatter intensities is shown in Figs 3a, b
and d for Sentinel-1 HH, HV and Sentinel-2, respectively.
Leads that are clearly observed in the optical data look
brighter than the surrounding sea ice at HH band from SAR
and darker in the HV band. In the band ratio HH/HV
image leads appear bright if HH is high and HV is low.

To account for these two different situations, we therefore
split the lead classification algorithm into two parts: the first
one detects leads that appear dark on both SAR bands, the
second one is used for cases with high backscatter values
at HH band (compare also the two branches in the flowchart
in Fig. 1). In the last step, both outputs are merged to produce
the final lead map.

Two cases of overlapping Sentinel-1 and -2 data, pre-
sented in Figures 2 and 3, are used for the evaluation of
our algorithm. Here leads are marked by hand on the SAR
dataset taking into account the corresponding optical
Sentinel-2 images to confirm the validity of the selected
leads.

For the training of the algorithm six other independent
Sentinel-1 scenes are used (Table 1). They also represent
the two cases of dark and bright leads in the HH band,
respectively. Three scenes are used to train the dark lead
classifier and three other scenes to train the bright lead
classifier. No optical Sentinel-2 data are available for these
six scenes. Therefore, leads were identified and marked

Fig. 1. Processing flowchart; LV stands for local variability (image
with background subtracted).
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manually in the six Sentinel-1 scenes without the additional
support from optical data. The later six images are used as
training and test datasets, final evaluation is performed on
SAR images which overlaps with optical data shown in
Figures 2 and 3.

Texture and polarimetric features
In addition to the measured HH and HV backscatter inten-
sities, the feature space for object classification in SAR
images can be extended by two methods: polarimetric and
texture features. Polarimetric features can be used for SAR
products containing at least two out of the four Stokes
vector components whereas texture features can be calcu-
lated for a single polarisation band. Here we combine the

two approaches for Sentinel-1 dual-polarisation data.
Products of the Sentinel-1 extra wide swath mode used in
the Arctic contain co- and cross-polarised bands (HH and
HV). As only the amplitude but not phase is available for
our data source, the number of available polarimetric fea-
tures is restricted. In this study, the product HH·HV and the
ratio HH/HV are used as polarimetric features. The co-polar-
isation ratio HH/VV and real part of the co-polarisation cross-
product is widely used for the SAR image classification
Brekke and others (2016). It have shown good performance
in discriminating open water from sea ice (Ressel and
others, 2016). In the absence of VV, we use HV instead.
The cross-polarisation ratio was used for classification of
SAR images by (Karvonen, 2014) Bright, wind roughened
leads in HH appear dark in HV (Fig. 3), which will cause

Fig. 2. Panels (a) and (b) are HH and HV bands. (c) Product of the HH and HV bands (HH·HV) of the SAR scene taken on 10 April 2017, west
of the Franz Josef Land. (d) Optical data from Sentinel-2 taken on 10 April 2017, west of the Franz Josef Land.
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high values in HH/HV and this is the case we like to detect
with the band ratio. The classification for dark leads is
based on the HH·HV product, which will be low if one of
the channels is low, i.e. dark. However, because of the low
signal-to-noise ratio in the HV band the classification based
on the band product is also compared with the classification
based on the HH band alone to quantify if there is a benefit
from the use of both bands.

Therefore, the HH band, the HH·HV product and the HH/
HV ratio are used as input for the following texture analysis.
Figures 2c and 3c show examples of the band product and
ratio, respectively.

Texture features based on the GLCM are widely used for
classification of SAR data (Haralick and others, 1973; Leigh
and others, 2014; Liu and others, 2015; Zakhvatkina and
others, 2017). The complexity of texture feature calculation
depends on the size of the chosen sliding window and the
number of grey levels of the input image. Here a discretisa-
tion into 16 grey levels has been chosen as trade-off
between conservation of details and computational cost.
GLCMs are then calculated for a sliding window of 9×-
pixel size with 1 pixel step size. A bilinear weighting
within the sliding window was applied, so that pixels
which are closer to the middle of the window have higher
weight for the GLCM computation.

The 12 GLCM features we use in this study are listed in
Table 2. Definitions of the features are given by Haralick
and others (1973). Some GLCM features depend on the
image brightness (in our case the value of the HH and HV

product or ratio). This means that the absolute value of the
pixel brightness influences these texture features. Since
leads are often darker than the surrounding sea ice, the differ-
ence between the original image and a low-pass filtered
version of the image is calculated to show the small-scale
backscatter variations. A bilateral filter with a 25 ×−pixel
sliding window is applied to the preprocessed original
image and subtracted from the non-filtered image. In this
way, the local backscatter variability is emphasised and is
used further as an additional information for the classifica-
tion. Afterwards GLCM texture features are calculated both

Fig. 3. Panels (a–c) are HH, HV bands and band ratio, respectively, of a Sentinel-1 SAR scene taken on 2 August 2016, between Svalbard and
Franz Josef Land; (d) Optical data from Sentinel-2 taken on 2 August 2016, between Svalbard and Franz Josef Land.

Table 2. Twelve GLCM features are used in the study

N Texture feature

1 Angular second moment (ASM),
2 Entropy,
3 Contrast,
4 Sum of squares: variance,
5 Inverse difference moment (homogeneity),
6 Correlation,
7 Sum average,
8 Sum variance,
9 Sum entropy,
10 Difference variance,
11 Difference entropy,
12 Information measure of correlation.

Definitions of the texture features are given by Haralick and others (1973).
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for (i) the original image and (ii) for the small-scale variations
of the image. In this way, two sets of texture features are pro-
duced for each of two input polarimetric features (i) band
product and (ii) band ratio, and for the HH band, and
further analysed (see also flowchart in Fig. 1).

Supervised learning algorithms
We use the Random Forest Classifier (Breiman, 2001) imple-
mented in scikit-learn library [http://scikit-learn.org/stable/
index.html] (Pedregosa and others, 2011) for sea-ice lead
detection. It is an ensemble method that constructs a set of
decision trees. Each of these trees is trained on a different
subset of data points and features. The decision made by
each tree is weighted to provide the final result. The
method has been proven to have good quality of classifica-
tion and at the same time high computational speed. One
of the advantages of the classifier is its internal metric for
feature importance, which gives information on the fre-
quency of use of each of the input features. Another advan-
tage of the classifier is its capability to perform not only
binary, but also probabilistic classification. The probability
of pixels to belong to a class can afterwards be translated
to binary classification based on a threshold. The default
behaviour is the use of a threshold of 50% probability.
Different thresholds can be applied to adjust the result of
classification. While there are several metrics to evaluate
the quality of an algorithm, the most widely used metric is
accuracy (Eqn (3) below). Although alone it might be unrep-
resentative for the case when the size of one class is consid-
erably larger than the size of the other class. Leads usually
occupy a few per cent of sea-ice area in the Arctic (Steffen,
1991), so that additional metrics should be used for quantify-
ing the classification performance.

Precision and recall scores are defined by Fawcett (2006)
and are used in the present study altogether with accuracy.

accuracy ¼ TP þ TN
TP þ FP þ TNþ FN

ð3Þ

precision ¼ TP
TP þ FP

ð4Þ

recall ¼ TP
TP þ FN

ð5Þ

where TP stands for true positive (pixels correctly classified as
a lead), TN – true negative (pixels correctly classified as not
being a lead), FP – false positive (pixels that are not leads
but are classified as a lead), FN – false negative (pixels that
are leads but are classified as ‘not lead’) predictions. The
sum TP + FP + TN + FN equals to the total number of pixel
in the image. Accuracy can be explained as amount of cor-
rectly classified pixels over the total number of pixels.
Precision is the amount of correctly classified pixels of the
given class over the total number of pixels classified as the
given class. Hence, ð1� precisionÞ ¼ FP

TPþFP is the number
of sea-ice pixels misclassified as a lead over the total
amount of pixels classified as leads. The recall rate charac-
terises how complete the classification is, that is the
number of samples classified correctly over the total
number of samples of this class. These three scores provide
the needed information on the quality of a given class classi-
fication. They can aid to make decisions on how many fea-
tures are needed for the classifiers.

To describe what probability threshold gives the best
results for a probabilistic classifier, the receiver operating
characteristic curve and the precision–recall curve are
widely used (Fawcett, 2006; Davis and Goadrich, 2006).
The receiver operating characteristic, for example, was
applied for the lead detection algorithm described by
Wernecke and Kaleschke (2015). Here we use the preci-
sion–recall curve to decide for an optimised binary threshold
value for the Random Forest Classifier. This will be presented
in the results section.

Two main parameters of the classifier that influence clas-
sification quality and computing time are the number of trees
and the maximal depth of each tree. To choose the most suit-
able values for these parameters the six training SAR scenes,
where leads were marked without support from optical data,
have been used. The evaluation with the additional optical
scenes will be presented later.

The two SAR datasets for the ‘dark’ and the ‘bright’ lead
classifiers (three SAR scenes each) with manually identified
leads have been randomly split into a training (25% of the
data) and a test dataset (75% of the data) each. Two classifiers
are trained on the scenes where leads appear dark in the HH
band: one is based on the HH band, another one is based on
the HH·HV product. Results of the two classifiers are com-
pared later. The third classifier is trained using the HH/HV
band ratio based on the scene where leads appear bright in
the HH band. Each of the three classifiers are trained on
the corresponding training dataset and then they are evalu-
ated on the training and test datasets. A number of trees
equal to 64 has been chosen for balance between efficiency
and computing time. The maximal depth of trees was set to
15 to prevent overfitting and decrease computing time.

To decide how many texture features give positive benefit
for the classification quality and to remove features that are
not needed a so-called recursive feature elimination (RFE)
is carried out. 12 texture features for the band data, 12
texture features for the small-scale variations of the band,
and the original (preprocessed) band data altogether consti-
tute 25 features which are used in the RFE. The Random
Forest Classifier provides the rank of importance for all fea-
tures used in the lead classification. Recursively, now after
each training and classification the number of features is
reduced by one and the training and the classification
started again. After every step the texture feature with the
lowest importance according to the classifier’s metric (i.e.
the feature least used) is eliminated. Accuracy, precision
and recall are calculated to estimate the classification
quality of the algorithm on the given subset of features. The
operation is repeated until one feature is left. To calculate
the three quality metrics a binary classification based on
50% probability threshold is used. Based on this experiment
the optimal number of features can be chosen, which is pre-
sented in the next section.

RESULTS

Optimal number of texture features for classification
The procedure for texture feature ranking described in the
last section was carried out three times: one time for the
band product data (HH·HV), the second one for the HH
band data and the third one for the band ratio (HH/HV).
The band product and the HH band are used for the training
dataset where leads appear dark and the band ratio on the
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training image with primarily bright leads. Table 3 lists the 25
texture features in the order they were eliminated for each of
the three cases: (i) HH band, (ii) band product and (iii) band
ratio.

Accuracy, precision and recall scores in dependence on
the number of features eliminated are shown in Figures 4a,
b and c, respectively. Dashed lines show accuracy, precision
and recall rates for the training set, solid lines are given for the
corresponding metrics calculated on the test dataset. Blue
lines stand for classification of the band product, green
lines stand for classification of the HH band (i.e. dark lead
cases) and red for the band ratio products (i.e. bright lead
case).

Accuracies of the three classifications stay almost constant
until the first 9 texture features are eliminated. A noticeable
decrease in the classification accuracy appears after 16
texture features are eliminated for both the HH and the
band product classifiers and after 17 for the band ratio clas-
sifier. This indicates that the first 9 texture feature for each
of the tree classifiers (Table 3) can be eliminated without
any harm for classification and as little as 3 to 8 texture
feature already can provide good classification results.

The precision and the recall rates of the HH band and the
band product classifiers follow corresponding accuracy
trends, but show more variation in amplitude. The recall
rate of the band ratio classifier shows an increase after 17
texture features are eliminated, but at the same time the pre-
cision of the classification drops.

Although all the 25 features could be used for the lead
classification, we remove the ones that do not show signifi-
cant benefit for the classification result. Based on Figs 4a,
b, c the number of texture features equal to 9 has been
chosen for classification of the HH band and the band

product, i.e. the first 16 texture features of the first and the
second columns in Table 3 are removed from the classifica-
tion. Although we keep only 9 of the texture features, it
should, however, be noticed that one could use up to 16 fea-
tures if even a little improvement of the classification quality
is desired. For the band ratio the last 8 texture feature from
Table 3 (the third column) are used for classification in
further studies, the first 17 are removed from the band ratio
classification.

Since the same dataset is used for both the HH and the
band product classifiers, their performance can be com-
pared. The accuracy of the HH band classification is only
0.2% higher than the accuracy of the band product classifica-
tion. On the other hand, the band product classification
shows a higher precision, but a lower recall comparing
with the HH band classifier. Since we do not define
whether precision or recall is more important for lead classi-
fication, we are not able to make a conclusion on which of
the two classifiers shows a better classification quality at
this point. In order to find which of the two classifiers,
based on the band product and the HH band, shows better
classification quality, the influence of a probability threshold
on precision and recall and, therefore, on the lead classifica-
tion is analysed in the next section.

Optimal probability threshold for classifiers
The Random Forest Classifier can provide probabilistic clas-
sification, which can be analysed as is or be used to obtain
the corresponding binary classification by setting a threshold.
Here we study the influence of a threshold used to produce
the binary classification on the classification quality.

Table 3. Elimination order of texture features, i.e. the lower the number N the least important is the respective feature for the classifier

N HH Band product HH·HV Band ratio HH/HV

1 Entropyo Inverse difference momento Entropyssv
2 ASMo Correlationssv Inverse difference momentssv
3 Sum entropyssv Sum entropyo ASMssv

4 Sum entropyo Sum entropyssv Inverse difference momento
5 Inverse difference momento Entropyo Information measure of correlationssv
6 Entropyssv Entropyssv Sum entropyssv
7 Sum of squares: variancessv Difference entropyssv ASMo

8 ASMssv ASMo Difference entropyssv
9 Difference entropyo Inverse difference momentssv Entropyo
10 Difference entropyssv Sum of squares: variancessv Difference entropyo
11 Correlationssv Difference entropyo Information measure of correlationo
12 Information measure of correlationo Information measure of correlationo Correlationssv
13 Information measure of correlationssv Contrasto Correlationo
14 Contrastssv Correlationo Sum variancessv
15 Contrasto Difference variancessv Sum average / cluster tendencyssv
16 Difference variancessv Information measure of correlationssv Sum of squares: varianceo
17 Sum average / cluster tendencyssv ASMssv Sum of squares: variancessv
18 Correlationo Sum variancessv Difference variancessv
19 Inverse difference momentssv Contrastssv Sum entropyo
20 Sum variancessv Sum average / cluster tendencyssv Contrasto
21 Sum of squares: varianceo Sum of squares: varianceo Difference varianceo
22 Difference varianceo Difference varianceo Contrastssv
23 Sum average / cluster tendencyo Sum average / cluster tendencyo Original band
24 Sum varianceo Sum varianceo Sum average / cluster tendencyo
25 Original band Original band Sum varianceo

Indices o and ssv stand for the texture features calculated on the original image and the small-scale variations of the image, respectively (see the section ‘Texture
and polarimetric features’). Definitions of the texture features are given by Haralick and others (1973). The three columns present the elimination order for the
three classifiers based on (i) HH, (ii) band product and (iii) band ratio.
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Three probabilistic classifications of the test data were
produced with the three classifiers based on the HH band,
the band product HH·HV and the band ratio HH/HV. Than
a range of threshold is applied to each of them to receive
the corresponding binary classification.

To describe the influence of the threshold, the precision–
recall curves are calculated for each of the three classifiers
(shown in Fig. 5). Dashed lines correspond to precision–
recall curves calculated for the training dataset, solid lines
are calculated for the corresponding test dataset. Red lines
represent the quality of the classifier based on the band
ratio which is used for the bright lead detection. Blue and
green lines represent qualities of classifiers based on the
band product and the HH band, respectively. The numbers
in black give the respective threshold values used. A higher
threshold improves the precision score (i.e. reduce amount

of misclassification) but at the same time lowers the recall
score (reduce the number of lead pixels detected).

From Figure 5 it can be seen that leads are classified with
only 84 and 83% precision on the band product and the HH
band if the default threshold of 50% probability is used (the
solid blue and the solid green curves). But in this case 68
and 72% of all pixels belonging to the lead class are identi-
fied (the recall score). If the threshold is set to 70%, then
only 57 and 60% of the lead pixels will be detected, but pre-
cision of the classification is 92 and 90% (for the band
product and the HH band, respectively). To identify more
lead pixels the threshold can be lowered. For example, the
threshold set to 30% will allow to detect 80 and 82% of all
pixels belonging to leads, but the precision of the classifica-
tion will drop to 72 and 73%, respectively, for the two clas-
sifiers HH and HH·HV.

Similarly, threshold can be adjusted for the classification
of the band ratio. The default value 50% will give 93% pre-
cision and 94% recall, the higher value, 70% for instance,
will increase precision to 97% and decrease recall to 88%.
The lower threshold value of 30% will produce the binary
classification with 88% precision, up to 97% of lead pixels
will be identified.

The solid blue and the solid green curves intersects at the
point where precision is 90% and the recall rate is 60%. This
means that the two classifiers show the same classification
quality for the corresponding two threshold values of the
two classifiers. For a higher threshold value, a higher preci-
sion can be achieved with the same recall rate value if the
band product classification is used with the appropriate
threshold value. Let us consider the right part of precision–
recall curves where the green curve is above the blue. It cor-
responds to an application where the amount of leads
detected (the recall rate) is more important than a very high
precision (which is lower than 90% in this part of the

Fig. 5. Precision–recall curves calculated for the training (dashed)
and the test (solid) datasets corresponding to three classifiers:
based on the band product (blue), the HH band (green) and the
band ratio (red). The curves are obtained by applying different
thresholds to a probabilistic classification. The points on the
curves which correspond to the threshold values of 30, 50, 70 and
90% are denoted in the figure (0.3, 0.5, 0.7 and 0.9, respectively).

Fig. 4. Accuracy (a), precision (b) and recall (c) scores of the three
classifiers depending on number of features eliminated during the
RFE analysis. The scores are calculated for the training and test
datasets for each of the three classifiers based on the band ratio
(red), band product (blue) and HH band (green).
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curve). In this case, for any value of the recall rate the binary
classification based on the HH band shows better precision
(when a certain threshold is applied to the probabilistic clas-
sification) than the binary classification based on the band
product.

The opposite is true for the left part of precision–recall
curves where the blue solid line is above the green one (i.e
applications where a high precision is important). Based on
these curves one can chose the appropriate threshold value
for a certain task. For example, in climate studies about
heat balance and energy one would want to have as many
leads detected as possible although some of the detections
are wrong. On the other hand for navigation, it is more
important to know the location of leads with the highest pre-
cision possible even though the number of leads detected is
lower.

Evaluation
So far, only results based on the Sentinel-1 SAR data without
overlap with optical Sentinel-2 data have been presented. In
this section, an evaluation of the leads classification quality is
conducted for the two Sentinel-1 SAR scenes which overlap
with optical Sentinel-2 data (Figs 2 and 3). Two probabilistic
classifications of the first evaluation image (Fig. 2) were pro-
duced. The first one is based on the HH band (Fig. 2a), the
second is based on the band product (Fig. 2c); 9 of the
most important texture features (last 9 features in the first
and the second columns in Table 3) were used in both
cases. Results are shown in Figure 6. High probabilities of
leads are assigned to areas which can be considered as
leads from the optical image. Edges of leads have lower prob-
ability comparing to their inner parts. This effect is expected
because the classification is based on texture features which
are calculated within a window around each pixel. Some ice
floes that appear dark on SAR images have non-zero prob-
ability values, but can easily be distinguished from leads.
The upper part of a lead (the white frame at Figs 6a and b)
has a significantly lower probability because it is covered

with new ice as it can be confirmed from the optical data
(Fig. 2d). Large leads are detected correctly, but thin leads
(up to 10 pixels which corresponds to 400 m) are often
split into several small pieces. Leads with width <5 pixels
(200 m) are smoothed on the step of texture features calcula-
tion. As the result such leads have low probabilities and can
be considered as not-detected. This is a disadvantage of the
method which cannot be eliminated because to calculate
texture features relevant for a lead, the lead should have a
size comparable or larger than the window size used for
texture feature computation.

The probabilistic classification of the second evaluation
image (Fig. 3c) for the band ratio was performed with 8
input features. Figure 7 shows the result of the probabilistic
classification. Many open water areas at the left side of the
scene are classified as leads while in the middle leads are
not detected. This can be explained by the fact that leads
are more pronounced at the left side of the band ratio
(Fig. 7c) which was used as input for the algorithm. The
fact that areas which are classified as leads are covered
with open water can be confirmed from the optical observa-
tion (Fig. 7d).

The following example illustrates the algorithm for lead
detection (the flowchart for the algorithm is shown in
Fig. 1). The original Sentinel-1 SAR images are shown in
Figs 8a and b. One can observe two large elongated
objects, one is dark on both the HH and the HV bands, the
other one is bright on the HH and dark on the HV band.
The two objects represent the two classes of leads we have
introduced here, ‘bright’ and ‘dark’ leads. No optical data
are available for the scene to confirm that the objects are
leads, and we can only rely on our experience of how
leads appear in SAR images.

To classify both types of leads, two classifiers are applied –

one for the dark lead detection and one for the bright lead
detection. At first, based on the HH (Fig. 8a) and the HV
(Fig. 8b) bands, the band product (Fig. 8c) and the band
ratio (Fig. 8d) are calculated. Dark leads are detected from
the band ratio using the algorithm based on either the HH

Fig. 6. Probabilistic classifications of the SAR scene shown in Figure 2c performed with the Random Forest Classifier. Panels (a) and (b) are
classifications based on the HH and the band product, respectively. High values mean high probability of a pixel to be classified as a lead.
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band or the band product (the result based on the band
product is shown in Fig. 8e). Bright leads are detected with
the algorithm based on the band ratio (Fig. 8f). Afterwards,
the probabilities for the darkand the bright lead branches
are added together. As the last step, a threshold of 50% is
applied to the resulting probabilistic classification, so that
the final binary classification is obtained (Fig. 8h).

DISCUSSION

Texture features for classification
The procedure of texture features elimination shows that the
use of a range of texture features (the first 9 from each column
of Table 3) do not improve the classification and therefore
can be excluded from it. At the same time these texture fea-
tures do not decrease classification quality. This is because
although these features are feed to the classifier, only the
texture features that help to perform classification are used
within the Random Forest Classifier. In the process of elimin-
ation of the next 7–8 texture features, the classification
quality slightly decreases. Therefore these 7–8 texture fea-
tures may also be excluded from the classification process,

Fig. 7. A probabilistic classification of the scene shown in Figure 3c
performed with the Random Forest Classifier and based on 8 texture
features.

Fig. 8. Panels (a) and (b) are the original HH and HV bands. (c, d) The band product and the band ratio derived from the HH and HV bands.
(e, f) Probabilistic classifications of the SAR scene based on the band product ratio performed with the Random Forest Classifier. High values
means high probability of the pixel to be classified as a lead. (g) The sum of the two probabilistic classification. (h) Binary classification based
on (g) with 50% probability threshold applied.
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especially if fast computation is of importance. As the result
16–17 texture features can be eliminated without significant
decrease in classification quality, so that only 8–9 of the
texture features are used in classification. In cases when
even a little improvement of the classification quality is
desired, up to 16 input features can be used. For the case
when computational time is limited, the number of texture
features used for classification can be decreased.

Of the 9 most important texture features (last 9 rows in
Table 3) the majority was derived from the original input
band and not from the small-scale variations data, where
the background amplitude was removed. The original band
is one of the most important inputs for all three classifiers.
This means that texture features cannot substitute the original
band and provide complementary information. Texture fea-
tures and the original band should be used in conjunction.

To produce the final lead map a classifier based on either
the band product or the HH band for dark leads should be
used in combination with the classifier based on the band
ratio for bright leads. In Figure 4b, the classifier based on
the band product shows higher precision; however, in
Figure 4c the recall rate of the classifier is lower compared
with the classifier based on the HH band. This leads us to
the conclusion that both the precision and the recall by
itself do not provide enough information about the quality
of a classification, neither of the two should be used as the
only quality metrics, and both of them should be considered
together.

In case of probabilistic classification, it is possible to
increase the precision by the cost of the recall rate and vice
versa by adjusting a threshold used to obtain the correspond-
ing binary classification. Thus, a comparison of the two
classifiers is performed by the use of the concept of the pre-
cision–recall curve.

Classification quality
Let us consider the quality of dark leads classification first.
The precision–recall curves (Fig. 5) of the HH and band
product classifiers have an intersection point. This means
that each of the two classifiers could be considered as the
one that should be used in the final product. The quality of
the classifier based on the band product is higher when a
high precision (over 90%) of lead detection is desired. In
this case, only about 60% or less leads will be detected. If
the recall rate also matters for the application, the HH band
should be used for dark leads classification.

The precision–recall curves clearly show that the quality
of bright leads classification is higher than of the dark leads
classification based on both the band product and the HH
band (red curves are above blue and green curves). This
might be due to the fact that sea ice can appear dark at
both the HH and the HV bands and might be misclassified
as a lead. At the same time, the band ratio is known for its
good water–sea-ice discrimination potential. Objects, that
appear bright at the HH band and dark at the HV band are
usually not misclassified as sea ice (which can be dark or
bright at the both bands) or pressure ridges (bright at both
bands). This gives us more confidence that an object detected
from the band ratio is a lead.

In case of single-band measurements only the HH band is
available for Sentinel-1 images taken in the extra wide swath
mode. This single-band mode is often used for scenes at high
latitudes. In this case, only the HH classifier for dark leads

can be applied. If dual-band SAR data are available, we are
able to calculate the band product and band ratio and there-
fore to use the classifiers based on HH·HV and HH/HV. The
first classifier shows better classification quality for dark leads
than the classifier based on the HH band (Figs. 4 and 5) when
used for a high-precision classification (with precision above
90%). Since bright leads show a similar backscatter as ridges
in HH band, they cannot be detected from HH band alone.
Thus, with the use of the band ratio more leads are detected
from the dual-band SAR data than from single HH band data.

As the lead detection algorithm is based on backscatter
analysis, water between ice floes is classified as leads.
During summer the separation of leads from melt ponds
will not be possible with the features used here (the shape
of the features would have to be taken into account). For
the data used in this study there is no evidence for the pres-
ence of melt ponds. Therefore the algorithm has not been
evaluated for the summer season. The ability of lead classifi-
cation during the melt season is the subject of future studies.

SUMMARY
In this study, we developed a lead classification algorithm
that can be applied to Sentinel-1 SAR dual band products.
To account for the variability of SAR lead signatures in C-
band backscatter, two classifiers, one for leads appearing
dark (a classifier based on either the HH band or the band
product can be used) and one for leads appearing bright in
SAR imagery, were trained. The polarimetric features, the
band product HH·HV and the band ratio HH/HV as well as
the HH band, were extended with 24 texture features each.
The texture features are based on the GLCM: 12 of them
are calculated for the polarimetric feature directly and
another 12 are derived from the small-scale variations of
the polarimetric feature. Together with the original polari-
metric feature this yields 25 different features that can be
feed into the classifier (see Table 3). A RFE procedure
showed the texture feature importance for the classification
of leads. We found that although all 25 input features can
be used, decreasing of their number does not always leads
to a decrease of the classification quality. As little as 3
texture features can already provide useful classification of
leads. Classifications with 9 texture features for dark and
bright leads already show good classification quality and
therefore were used further in this study. More features did
not significantly improve the classification results.

Precision–recall curves were calculated for the three classi-
fiers based on the HH band, the band product and the band
ratio. For classification of dark leads in the domain of high pre-
cision and low recall rates (precision above 90% and recall
below 60%) the classification based on the band product
shows better quality than the classification based on the HH
band. However, when the amount of leads detected is import-
ant, the classifier based on the HH band shows better quality
and therefore is preferred. The classifier based on the band
ratio, allows us to identify bright leads that can be detected
only if dual band SAR images are available. Therefore, more
leads are identified from the combination of the HH and the
HV bands comparing to the single HH band SAR product.
The classifier is able to identify leads with a high precision
of above 95% for bright leads and above 90% for dark leads
when 70% of all leads are detected. The overall precision is
between the two and depends on ratio of dark and bright
leads. The ratio depends on combination of the lead
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distribution, incidence angle, time difference between forma-
tion of a lead and acquisition of image over the area with the
lead. The precision can be increased by the cost of the amount
of leads detected (Fig. 4). The classification of leads from SAR
is confirmed by optical imagery from Sentinel-2. Under some
circumstance, however, to achieve such high precision the
percentage of the total leads area identified (recall score)
can drop to 60% and lower if a higher precision is desired.
The advantage of the presented method is that the interplay
between precision and recall score can be easily adjusted
depending on the application.

The lead detection method presented in this paper has
proven to be stable in our tests and the eight SAR scenes pre-
sented here (Table 1). In a next step, we will apply this
method to a larger amount of Sentinel-1 SAR scenes. The
spatial and temporal coverage of Sentinel-1 data in the
Arctic will result in lead maps of the European Arctic on a
daily basis. With the now operational two Sentinel-1 satel-
lites, a and b, the complete Arctic Ocean is covered at
least once per week. The Sentinel-1 time series is still short
but we expect that lead statistics can already be derived for
the first years and extended in future.
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