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Conditional Monte Carlo for sums, with applications
to insurance and finance
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Abstract
Conditional Monte Carlo replaces a naive estimate Z of a number z by its conditional expectation
given a suitable piece of information. It always reduces variance and its traditional applications are
in that vein. We survey here other potential uses such as density estimation and calculations for
Value-at-Risk and/or expected shortfall, going in part into the implementation in various copula
structures. Also the interplay between these different aspects comes into play.
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1. Introduction

Let z be a number represented as an expectation z= EZ. The crude Monte Carlo (CrMC) method for
estimating z proceeds by simulating R replications Z1,… , ZR of Z and returning the average
z= Z1 + � � � +ZRð Þ =R as a point estimate. The uncertainty is reported as an asymptotic confidence
interval based on the central limit theorem (CLT); e.g., the two-sided 95% confidence interval is
z ± 1:96 s =R1 = 2 where s2 is the empirical variance of the sample Z1,… , ZR.

The more refined conditional Monte Carlo (CdMC) method uses a piece of information collected in
a σ-field F and is implemented by performing CrMC with Z replaced by ZCond =E½Z j F �. It is
traditionally classified as a variance reduction method but it can also be used for smoothing, though
this is much less appreciated.

Both aspects are well illustrated via the problem of estimatingP Sn ≤xð Þ where Sn =X1 + � � � +Xn is a sum
of r.v.’s. The obvious choice for CrMC is Z=Z xð Þ= I Sn ≤ xð Þ. For CdMC, a simple possibility is to take
F = σ X1; ¼ ;Xn�1ð Þ. In the case where X1, X2,… are i.i.d. with common distribution F one then has

ZCond =P Sn ≤x j X1; ¼ ;Xn�1ð Þ= F x�Sn�1ð Þ (1.1)

This estimator has two noteworthy properties:

∙ for a fixed x its variance is smaller than that of I Sn ≤xð Þ used in the CrMC method; and

∙ when averaged over the number R of replications, it leads to estimates of P Sn ≤ xð Þ which are
smoother as function of x∈ (−∞,∞) than the more traditional empirical c.d.f. of R simulated replicates
of Sn.
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This last property is easily understood for a continuous F, where ZCond(x)=F(x−Sn−1) is again con-
tinuous and therefore averages are also. In contrast, the empirical c.d.f. always has jumps. It also suggests
that f(x−Sn−1) may be an interesting candidate for estimating the density fn(x) of Sn when F itself admits a
density f(x). In fact, density estimation is a delicate topic where traditional methods such as kernel
smoothing or finite differences often involve tedious and ad hoc tuning of parameters like choice of kernel,
window size, etc.

The variance reduction property holds in complete generality by the general principle (known as
Rao–Blackwellization in statistics) that conditioning reduces variance:

VarZ= E Var Z j F½ �½ � +Var E Z j F½ �½ �≥Var E Z j F½ �½ �=VarZCond

In view of the huge literature on variance reduction, this may appear appealing but it also has
some caveats inherent in the choice of F : E Z j F½ � must be computable and have a variance that is
substantially smaller than that of Z. Namely, if CdMC reduces the variance on Z of ZCond by a factor of
τ<1, the same variance on the average could be obtained by taking 1/τ as many replications in CrMC
as in CdMC, see Asmussen & Glynn (2007: 126). This point is often somewhat swept under the carpet!

The present paper discusses such issues related to the CdMC method via the example of inference on
the distribution of a sum Sn =X1 + � � � +Xn. Here the Xi are assumed i.i.d. in sections 2–7, but we
look into dependence in some detail in section 8, whereas a few comments on different marginals are
given in section 9.

The motivation comes, to a large extent, from problems in insurance and finance such as assessing the
form of the density of the loss distribution, estimating the tail of the aggregated claims in insurance,
calculating the Value-at-Risk (VaR) or expected shortfall of a portfolio, etc. In many such cases, the tail
of the distribution of Sn is of particular interest, with the relevant tail probabilities being of order 10−2–
10−4 (but note that in other application areas, the relevant order is much lower, say 10−8

–10−12 in
telecommunications). By “tail” we are not just thinking of the right tail, i.e., P Sn > xð Þ for large x, which
is relevant for the aggregated claims and portfolios with short positions. Also the left tail P Sn ≤xð Þ for
small x comes up in a natural way, in particular for portfolios with long positions, but has received much
less attention until the recent studies by Asmussen et al. (2016) and Gulisashvili & Tankov (2016).

The most noted use of CdMC in the insurance/finance/rare-event area appears to be the algorithm of
Asmussen & Kroese (2006) for calculating the right tail of a heavy-tailed sum. A main application is
ruin probabilities. We give references and put this in perspective to the more general problems of the
present paper in section 4. Otherwise, the use of CdMC in insurance and finance seem to be remarkably
few compared to other MC-based tools such as importance sampling (IS), stratification, simulation-
based estimation of sensitivities (Greeks), just to name a few (see Glasserman, 2004, for these and other
examples). Some exceptions are Fu et al. (2009) who study an CdMC estimator of a sensitivity of a
quantile (not the quantile itself!) with respect to a model parameter, and Chu & Nakayama (2012) who
give a detailed mathematical derivation of the CLT for quantiles estimated in a CdMC set-up, based on
methodology from Bahadur (1966) and Ghosh (1971) (see also Nakayama, 2014).

1.1. Conventions

Throughout the paper, Φ(x) denotes the standard normal c.d.f., ΦðxÞ= 1�ΦðxÞ its tail and
φðxÞ= e�x2 = 2 =

ffiffiffiffiffiffi
2π

p
the standard normal p.d.f. For the γ(α, λ) distribution, α is the shape parameter

and λ the rate so that the density is xα −1 λαe − λx/Γ(α).
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Because of the financial relevance, an example that will be used frequently used is X to be Lognormal
(0, 1), i.e., the summands in Sn to be of the form X= eV with V Normal(0, 1), and n=10. Note that
the mean of V is just a scaling factor and hence unimportant. In contrast, the variance (and the value
of n) matters quite of lot for the shape of the distribution of Sn, but to be definite, we took it to be
one. We refer to this set of parameters as our recurrent example, and many other examples are taken
as smaller or larger modifications.

2. Density Estimation

If F has a density f, then Sn has density fn given as an integral over a hyperplane:

fn xð Þ= f �n xð Þ=
ð

x1 + ��� +xn = x

f x1ð Þ � � � f xnð Þdx1 � � � dxn

Such convolution integrals can only be evaluated numerically for rather small n, and we shall here
consider the estimator f(x − Sn− 1) of fn(x). Because of the analogy with (1.1), it seems reasonable to
classify this estimator within the CdMC area, but it should be noted that there is no apparent natural
unbiased estimator Z of fn(x) for which E Z j X1; ¼ ;Xn�1½ �= f x�Sn�1ð Þ. Of course, intuitively

P Sn 2 dx j X1; ¼ ;Xn�1ð Þ= f x�Sn�1ð Þ

but I Sn 2 dxð Þ is not a well-defined r.v.! Nevertheless:

Proposition 2.1 The estimator f(x − Sn− 1) of fn(x) is unbiased.

Proof: Ef x�Sn�1ð Þ= Ð fn�1 yð Þf x�yð Þdy= fn xð Þ □

Unbiasedness is in fact quite a virtue in itself, since the more traditional kernel and finite difference
estimators are not so! It also implies consistency, i.e. that the average over R replications converges
to the correct value fn(x) as R→∞.

Because of the lack of an obvious CrMC comparison, we shall not go into detailed properties of
Var f x�Sn�1ð Þ½ �; one expects such a study to be quite similar to the one in section 3 dealing with
Var F x�Sn�1ð Þ½ �. Instead, we shall give some numerical examples. Figure 1 illustrates the influence on
the R of replications. For each of the four values R= 28, 210, 212, 214 we performed three
sets of simulation, to assess the degree of randomness inherent in R being finite. Obviously,
R=214≈ 16,000 is almost perfect but the user may go for a substantially smaller value depending on
how much the random variation and the smoothness is a concern.

A reasonable question is the comparison of CdMC and a kernel estimate of the form k(x − Sn) for
small or moderate R. In Figure 2, we considered our recurrent example of sum of lognormals, but
took R=32 for both of the estimators f(x − Sn −1) and k(x − Sn), with k chosen as the Normal(0, σ2)
density. The upper right panel is a histogram of the 32 simulated values of Sn and the upper left the
CdMC estimator. The two lower panels are the kernel estimates, with an extreme high value σ2=102

to the left and an extreme low σ2=10 −2 to the right. A high value will produce oversmoothed
estimates and a low undersmoothed ones with a marked effect of single observations. However, for
R as small as 32 it is hard to assess what is a reasonable value of σ2. In fairness, we also admit that
the single observation effect is clearly visible for the CdMC estimator and that it leads to estimates
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Figure 1. Estimated density of Sn as function of R.
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Figure 2. Comparison with kernel smoothing.
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which are undersmoothed. By this we mean more precisely that if f is in Cp for some p= 0, 1,… , then
fn(x) is in Cnp but f(x− Sn− 1) only in Cp. In contrast, a normal kernel estimate is in C∞.

The first example of CdMC density estimation we know of is in Asmussen & Glynn (2007: 146), but
in view of the simplicity of the idea, there may well have been earlier instances. We return to some
further aspects of the methodology in section 7. For somewhat different uses of conditioning for
smoothing, see L’Ecuyer & Perron (1994), Fu & Hu (1997) and L’Ecuyer & Lemieux (2000),
aections 10.1–10.2.

3. Variance Reduction for the c.d.f.

CdMC always gives variance reduction. But as argued, it needs to be substantial for the procedure to
be worthwhile. Further in many applications the right and/or left tail is of particular interest, so one
may pay particular attention to the behaviour there.

Remark 3.1 That CdMC gives variance reduction in the tails can be seen intuitively by the following
direct argument without reference to Rao–Blackwellization. The CrMC, respectively, the CdMC,
estimators of Fn xð Þ are I Sn > xð Þ and F x�Sn�1ð Þ, with second moments

EI Sn > xð Þ2 =EI Sn > xð Þ=
ð1
�1

fn�1 yð ÞF x�yð Þdy (3.1)

=
X≥0

P Sn�1 > xð Þ +
ðx
0
fn�1 yð ÞF x�yð Þdy (3.2)

EF x�Sn�1ð Þ2 =
ð1
�1

fn�1 yð ÞF x�yð Þ2 dy (3.3)

=
X≥ 0

P Sn�1 > xð Þ +
ðx
0
fn�1 yð ÞF x�yð Þ2 dy (3.4)

In the right tail (say), these second moments can be interpreted as the tails of the r.v.’s Sn −1 +X,
Sn−1 +X

* where X, X* are independent of Sn −1 and have tails F and F
2
. Since F

2
xð Þ is of smaller

order than F xð Þ in the right tail, the tail of Sn −1 +X
* should be of smaller order than that of Sn −1 +X,

implying the same ordering of the second moments. However, as n becomes large one also expects
the tail of Sn− 1 to more and more dominate the tails of X, X* so that the difference should be less and
less marked. The analysis to follow will confirm these guesses.

A measure of performance which we consider is the ratio rn(x) of the CdMC variance to the CrMC
variance:

rn xð Þ= Var F x�Sn�1ð Þ� �
Fn xð ÞFn xð Þ =

Var F x�Sn�1ð Þ½ �
Fn xð ÞFn xð Þ (3.5)

(note that the two alternative expressions reflect that the variance reduction, is the same whether
CdMC is performed for F itself or the tail F).

To provide some initial insight, we examine in Figure 3, rn(xn, z) as function of z where xn, z is
the z-quantile of Sn. In Figure 3(a), the underlying F is Pareto with tail F xð Þ= 1 = 1 + xð Þ3 = 2 and in
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Figure 3(b), it is standard normal. Both figures consider the cases of a sum of n=2, 5 or 10 terms and
use R= 250,000 replications of the vector Y1,… , Yn −1 (variances are more difficult to estimate than
means, therefore the high value of R). The dotted line for AK (the Asmussen-Kroese estimator, see
section 4) may be ignored for the moment. The argument z on the horizontal axis is in log10-scale, and
xn, z was taken as the exact value for the normal case and the CdMC estimate for the Pareto case.

For the Pareto case in Figure 3(a), it seems that the variance reduction is decreasing in both x and n,
yet in fact it is only substantial in the left tail. For the normal case, note that there should be
symmetry around x=0, corresponding to z(x)= 1/2 with base-10 logarithm −0.30. This is confirmed
by the figure (though the feature is of course somewhat disguised by the logarithmic scale). In
contrast to the Pareto case, it seems that the variance reduction is very big in the right (and therefore
also left) tail but also that it decreases as n increases.

We proceed to a number of theoretical results supporting these empirical findings. They all use
formulas (3.3) and (3.4) for the second moments of the CdMC estimators. For the exponential
distribution, the calculations are particularly simple:

Example 3.2 Assume F xð Þ= e�x, n= 2. Then P X1 +X2 >xð Þ= xe�x + e�x and (5) takes the form

F xð Þ +
ðx
0
e�ye�2ðx�yÞ dy= e�x + e�2x ex�1ð Þ= 2e�x�e�2x

and so for the right tail:

r2 xð Þ= 2e�x�e�2x� xe�x + e�xð Þ2
xe�x + e�xð Þ 1�xe�x�e�xð Þ

For x→∞, this gives

r2 xð Þ= 2e�x + o e�xð Þ
xe�x + o xe�xð Þ =

2
x

1 + oð1Þð Þ ! 0

In the left tail x→ 0, Taylor expansion give that up to the third-order term

2e�x�e�2x � 1�x2 + x3; xe�x + e�x = 1�x2 = 2 + x3 =3
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Figure 3. The ratio rn(z) in (3.5), with F Pareto in (a) and normal in (b).

Søren Asmussen

460

https://doi.org/10.1017/S1748499517000252 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000252


and so

r2 xð Þ � 1�x2 + x3� 1�x2 =2 + x3 = 3
� �2

1�x2 + x3ð Þ x2 = 2�x3 = 6ð Þ

� 1�x2 + x3� 1�x2 + 2x3 = 3
� �
x2 = 2

=
2x
3

! 0 ◊

The relation rn(x)→ 0 in the left tail (i.e. as x→0) in the exponential example is in fact essentially a
consequence of the support being bounded to the left:

Proposition 3.3 Assume X> 0 and that the density f(x) satisfies f xð Þ � cxp as x→0 for some c>0
and some p> −1. Then rn xð Þ � dxp +1 as x→0 for some 0< d= d(n)<∞.

The following result explains the right tail behaviour in the Pareto example and shows that this
extends to other standard heavy-tailed distributions like the lognormal or Weibull with decreasing
failure rate (for subexponential distributions, see, e.g. Embrechts et al., 1997):

Proposition 3.4 Assume X>0 is subexponential. Then rn(x)→ 1− 1/n as x→∞.

For light tails, Example 3.2 features a different behaviour in the right tail, namely rn(x)→0. Here is
one more such light-tailed example:

Proposition 3.5 If X is standard normal, then rn(x)→0 as x→∞. More precisely,

rn xð Þ � 1
x

ffiffiffiffiffiffiffiffiffiffiffiffi
2n�1
nπ

r
e�x2 = ½2nð2n�1Þ�

The proofs of Propositions 3.3–3.5 are in the Appendix.

To formulate a result of type rn(x)→0 as x→∞ in a sufficiently broad class of light-tailed F
encounters the difficulty that the general results giving the asymptotics of P Sn > xð Þ as x→∞ with n
fixed are somewhat involved (the standard light-tailed asymptotics is for P Sn > bnð Þ as n→∞ with b
fixed, cf. e.g. Jensen, 1995). It is possible to obtain more general versions of Example 3.2 for close-to-
exponential tails by using results of Cline (1986) and of Proposition 3.5 for thinner tails by involving
Balkema et al. (1993). However, the adaptation of Balkema et al. (1993) is rather technical and can
be found in Asmussen et al. (2017).

One may note that the variance reduction is so moderate in the range of z considered in Figure 3(b)
that CdMC may hardly be worthwhile for light tails except for possibly very small n. If variance
reduction is a major concern, the obvious alternative is to use the standard IS algorithm which uses
exponential change of measure (ECM). The r.v.’s X1,… , Xn are here generated from the expo-
nentially twisted distribution with density fθ xð Þ= eθxf ðxÞ =EeθX, where θ should be chosen such that
EθSn = x. The estimator of P Sn > xð Þ is

e�θSn EeθX
� �n

I Sn > xð Þ (3.6)

see Asmussen & Glynn (2007: 167–169) for more detail. Further variance reduction would be
obtained by applying CdMC to (3.6) as implemented in the following example.
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Example 3.6 To illustrate the potential of the IS-ECM algorithm, we consider the sum of n=10
r.v.’s which are γ(3,1) at the z= 0.95, 0.99 quantiles xz. The exponentially twisted distribution is
γ(3, 1− θ) and EθSn =x means 3/(1 − θ)= x, i.e. θ= 1− 3/(x/n). With R=100,000 replications, we
obtained the values of rn(x) at the z quantiles for z=0.95, 0.99 given in Table 1. It is seen that
IS-ECM indeed performs much better that CdMC, but that CdMC is also moderately useful for
providing some further variance reduction. ◊

A further financially relevant implementation of the IS-ECM algorithm is in Asmussen et al. (2016)
for lognormal sums. It is unconventional because it deals with the left tail (which is light) rather than
the right tail (which is heavy) and because the ECM is not explicit but done in an approximately
efficient way. Another IS algorithm for the left lognormal sum tail is in Gulisashvili & Tankov
(2016), but the numerical evidence of Asmussen et al. (2016) makes its efficiency somewhat doubtful.

4. The AK Estimator

The idea underlying the estimator ZAK(x) of Asmussen & Kroese (2006) for z= z xð Þ=P Sn > xð Þ is to
combine an exchangeability argument with CdMC.More precisely (for convenience assuming existence
of densities to exclude multiple maxima) one has z=nP Sn > x; Mn =Xnð Þ, where Mk =maxi≤ kXi.
Applying CdMC with F = σ X1; ¼ ;Xn�1ð Þ to this expression the estimator comes out as

ZAK xð Þ= nF Mn�1 _ x�Sn�1ð Þð Þ (4.1)

There has been a fair amount of follow-up work on Asmussen & Kroese (2006) and sharpened versions,
see in particular Hartinger and & Kortschak (2009), Chan & Kroese (2011), Asmussen et al. (2011),
Asmussen & Kortschak (2012, 2015), Ghamami & Ross (2012) and Kortschak & Hashorva (2013). In
summary, the state-of-the-art is that ZAK not only has bounded relative error (BdRelErr) but in fact
vanishing relative error in a wide class of heavy-tailed distributions. Here the relative (squared) error is
the traditional measure of efficiency in the rare-event simulation literature, defined as the ratio rð2Þn ðzÞ
(say) between the variance and the square of the probability z in question (note that rn(x) is defined
similarly in (3.5) but without the square in the denominator). BdRelErr means lim supz!0r

ð2Þ
n ðzÞ<1 and

is usually consider the most one can hope for, cf. Asmussen & Glynn (2007: VI.1). The following sharp
version of the efficiency of ZAK follows, e.g., from Asmussen & Kortschak (2012, 2015).

Theorem 4.1 Assume that the distribution of X is either regularly varying, lognormal or Weibull
with tail e − xβ, where 0< β< log (3/2)/log 2≈ 0.585. Then there exists constants γ> 0 and c<∞
depending on the distributional parameters such that

VarZAK xð Þ � cx�γP Sn > xð Þ2 as x ! 1

The efficiency of the AK estimator for heavy-tailed F is apparent from Figure 3(a), where it out-
performs simple CdMC. For light-tailed F it has been noted that ZAK does not achieve BdRelErr, and

Table 1. Variance reduction for sum of 10 gamma r.v.’s.

z xz CdMC IS-ECM CdMC+ IS-ECM

0.95 39.5 0.628 0.121 0.048
0.99 44.2 0.561 0.032 0.010

Note: CdMC, conditional Monte Carlo; IS, importance sampling; ECM, exponential
change of measure.
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presumably this is the reason it seems to have been discarded in this setting. For similar reasons
as in section 3, we shall not go into a general treatment of the efficiency of the AK estimator for light-
tailed F, but only present the results for two basic examples when n= 2.

Example 4.2 Assume n=2, f(x)= e −x. Then Mn −1=Xn −1=X1 and Mn −1>x −Xn−1 precisely
when X1>x/2. This gives

1
4
EZAK xð Þ2 =

ðx = 2
0

e�2ðx�yÞe�ydy+
ð1
x = 2

e�2ye�ydy

= e�2x ex = 2�1
� �

+
1
3
e�3x = 2 � 4

3
e�3x =2 ; x ! 1

Compared to CrMC, this corresponds to an improvement of the second moment by a factor
of order e −x/2/x.

Example 4.3 Let n = 2 and let F be normal(0,1). Calculations presented in the Appendix then give

VarZAK xð Þ2 � 64

3x3 2πð Þ3 =2
e�3x2 = 8; x ! 1 (4.2)

Compared to CrMC, this corresponds to an improvement of the error by a factor of order e�5x2 = 8.

As discussed in section 3, the variance reduction obtained via ZAK is reflected in the improved
estimates of the VaR. For the expected shortfall, ZAK-based algorithms are discussed in Hartinger &
Kortschak (2009). They assume VaRα(Sn) to be known, but the discussion of section 5 covers how to
give confidence intervals if it is estimated.

Remark 4.4 For rare-event problems similar or related to that of estimating P Sn >xð Þ, a number of
alternative algorithms with similar efficiency as ZAK have later been developed, see, e.g., Dupuis et al.
(2007), Juneja (2007) and Blanchet & Glynn (2008). Some of these have the advantage of a
potentially broader applicability, though ZAK remains the one which is most simple.

5. VaR

The VaR VaRα(Sn) of Sn at level α is intuitively defined as the number such that the probability of a
loss larger than VaRα(Sn) is 1− α. Depending on whether small or large values of Sn mean a loss,
there are two forms used, the actuarial VaRα(Sn) defined as the α-quantile qα, n and the financial
VaRα(Sn) defined as −q1− α, n. Typical values of α are 0.95 and 0.99 but smaller values occur in Basel
II for certain types of business lines. We use here the actuarial definition and assume F to be
continuous to avoid technicalities associated with PðSn =VaRαðSnÞÞ> 0. Also, since α, n are fixed, we
write just q=qα, n.

The CrMC estimate uses R simulated values Sð1Þn ; ¼ ; SðRÞn and is taken as the α-quantilebqCr = bF �1
n ;R αð Þ of the empirical c.d.f.

bFn ; R x ; Snð Þ= 1
R

XR
r=1

I SðrÞn ≤x
� �
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(we ignore here and in the following the issues connected with the ambiguity in the choice ofbF �1
n ; R αð Þ connected with the discontinuity of bFn ; R ; asymptotically, these play no role). Thus bqCr is

more complicated than an average of i.i.d. r.v.’s but nevertheless there is a CLT

ffiffiffiffi
R

p bqCr�qð Þ ! N 0; σ2Cr
� �

where σ2Cr =
α 1�αð Þ
fn qð Þ2 (5.1)

see, e.g., Serfling (1980). Thus confidence intervals require an estimate of fn(q), an issue about which
Glynn (1996) writes that “the major challenge is finding a good way of estimating fn(q), either
explicitly or implicitly” (without providing a method for doing this!) and Glasserman et al. (2000)
that “estimation of fn(q) is difficult and beyond the scope of this paper”.

When confidence bands for the VaR are given, a common practice is therefore to use the
bootstrap method. However, in our sum setting, CdMC easily gives fn(q), as outlined in section 2.
In addition, the method provides some variance reduction because of its improved estimates of
the c.d.f.:

Proposition 5.1 Define bqCond as the solution of

bFCond
n ; R bqCondð Þ=α where bFCond

n ; R xð Þ= 1
R

XR
r=1

F x�SðrÞn�1

� �
(5.2)

If F admits a density f that is either monotone or differentiable with f′ bounded, then

ffiffiffiffi
R

p bqCond�qð Þ �!D N 0; σ2Cond
� �

where σ2Cond =
Var F q�Sn�1ð Þ½ �

fn qð Þ2 < σ2Cr

Proof: An intuitive explanation on how to as here to deal with CLTs for roots of equations is given in
Asmussen & Glynn (2007: III.4). Chu & Nakayama (2012) and Nakayama (2014) give rigorous
treatments of problems closely related to the present one but the proofs are quite advanced, building
on deep results of Bahadur (1966) and Ghosh (1971). We therefore give a short, elementary and self-
contained derivation, even if Proposition 5.1 is a special case of Nakayama (2014).

The key step is to show bFCond
n ; R bqð Þ�bFCond

n ; R qð Þ= bq�qð Þfn qð Þ 1 + o 1ð Þð Þ (5.3)

In fact, bFCond
n ; R bqCondð Þ= α= Fn qð Þ then gives

0= bFCond
n ; R bqð Þ�bFCond

n ; R qð Þ + bFCond
n ; R qð Þ�Fn qð Þ

= bq�qð Þfn qð Þ 1 + o 1ð Þð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var F q�Sn�1ð Þ½ �p ffiffiffiffi

R
p V 1 + o 1ð Þð Þ

with V � Nð0; 1Þ, from which the desired conclusion follows.

For (5.3), note that fn is automatically continuous and let bfCondn ; R xð Þ= Pr
1 f x�SðrÞn�1

� �
=R be the

CdMC density estimator. Since bFCond
n ; R �ð Þ is differentiable with derivative bfCondn ; R �ð Þ, we get

bFCond
n ; R bqð Þ�bFCond

n ; R qð Þ= bq�qð ÞbfCondn ; R q�ð Þ
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for some q* between bq and q. Assume first f is monotone, say non-increasing. Since bq�qj j≤ ϵ for all
large R, we then also have

bfCondn ; R q + ϵð Þ≤bfCondn ; R q�ð Þ≤bfCondn ; R q�ϵð Þ

for such R, and the consistency of bfCondn ; R �ð Þ then gives bfCondn ; R q�ð Þ ! fn qð Þ and (5.3). Assume next
f is differentiable with sup f 0j j<1. Arguing as above, we then get

bfCondn ; R q�ð Þ=bfCondn ; R qð Þ + q��qð Þ 1
R

XR
r=1

f 0 q���SðrÞn�1

� �
=bfCondn ; R qð Þ + q��qð ÞO 1ð Þ

for some q** between bq and q, which again gives the desired conclusion. □

Remark 5.2 At a first sight, the more obvious way to involve CdMC would have been to give the
VaR estimates as the average over R replications of the α-quantile eq in the conditional distribution of
Sn given Sn −1. However, this does not provide the correct answer and in fact introduces a bias that
does not disappear for R→∞ as it does for bq= bF �1

n ;R αð Þ and bqCond. For a simple example illustrating
this, consider the i.i.d. Normal(0, 1)-setting. Here eq= Sn�1 + zα where zα=Φ −1(α) with expectation
zα but

ffiffiffi
n

p
zα is the correct answer! ◊

Example 5.3 As illustration, we used CdMC with R= 50,000 replications to compute VaRα(Sn) and
the associated confidence interval for the sum of n= 5, 10, 25, 50 Lognormal(0, 1) r.v.’s. The results
are in Table 2.

6. Expected Shortfall

An alternative risk measure receiving much current attention is the expected shortfall (also called
conditional VaR). For continuous F, this takes the form (cf. McNeil et al., 2015: 70):

ESα Snð Þ=E Sn j Sn ≥ q½ �= q +
mn qð Þ
1�α

(6.1)

where as above q=VaRα(Sn) and

mn zð Þ= E Sn�z½ � + =
ð1
z
Fn yð Þdy (6.2)

The obvious CrMC algorithm for estimating ESα(Sn) is to first compute the estimatebqCr = bF �1
n ; R αð Þ as above and next either (i) perform a new set of simulations with R1 replications

of Z1 = Sn�bqCr½ � + , using the resulting average as estimator of mn(q) (consistency holds in the limit R,

Table 2. Value-at-Risk estimates for lognormal example.

α= 0.95 α=0.99

n=5 17.0± 0.2 25.4 ±0.6
n=10 29.0± 0.2 39.9 ±0.7
n=25 61.0± 0.3 74.6 ±0.8
n=50 109.8± 0.4 127.2±1.0
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R1→∞), or (ii) use the already simulated Sð1Þn ; ¼ ; SðRÞn to estimate mn(q) as the corresponding
empirical value

bmCr
n ; R bqCrð Þ= 1

R

XR
r=1

SðrÞn �bqCrh i +
(6.3)

We shall not pay further attention to (i), but consider a broader class of estimators than in (ii),
covering both CdMC and other examples. The issue is how to provide confidence intervals. This is
non-trivial already for the CrMC scheme (ii), and since we are not aware of a sufficiently close
general reference we shall give some detail here.

In this broader setting, we assume that the simulation generates an estimate bF�
n ; R xð Þ of Fn(x) and an

estimate bm�
n ; R xð Þ of mn(x) in a x-range asymptotically covering q, such that these estimates are

connected by

bm�
n ; R xð Þ=

ð1
x
F
�
n ; RðyÞdy (6.4)

where F
�
n ; R xð Þ= 1�bF�

n ; R xð Þ. Precisely as in (ii), we then compute bq� = bF�
n ; R�1 αð Þ and estimate

e=ESα(Sn) as

be� = bq� + bm�
n ; R bq�ð Þ
1�α

(6.5)

Example 6.1 In many main examples, bF�
n ; R xð Þ and bm�

n ; R xð Þ have the form

1
R

XR
r=1

ϕF x; V rð Þ; 1
R

XR
r=1

ϕm x; V rð Þ (6.6)

where V1,… , VR are i.i.d. replicates of a random vector V simulated from some probability measureeP and ϕF, ϕm are functions satisfyingeEϕF x; Vð Þ= Fn xð Þ; eEϕm x; Vð Þ=mn xð Þ (6.7)

The requirement (6.4) then means

ϕm x; Vð Þ=
ð1
x
ϕF y; Vð Þ dy (6.8)

Special cases:

a. CrMC where V= Sn, eP=P; ϕFðx; sÞ= Iðs≤ xÞ, ϕm(x, s)= (s− x) +.

b. CdMC where V= Sn −1, eP=P, ϕF(x, s)=F(x− s), ϕm(x, s)=m(x− s) where m(x)=
m1ðxÞ= EðX�xÞ + (typically explicitly available in contrast to mn(x)!).

c. IS where V= (Sn, L), eP is the measure w.r.t. which X1,… , Xn are i.i.d. with densityef ≠ f ; L=
Qn

1 f Xið Þ =ef Xið Þ is the likelihood ratio and ϕFðx; s; ‘Þ= Iðs≤ xÞ‘, ϕmðx; sÞ= ðs�xÞ + ‘.
d. The AK estimator from section 4, leading to V= (Mn−1, Sn− 1), eP=P; ϕF x; z; sð Þ= F z ^ ðx�sÞð Þ,

ϕm(x, z, s)= tAK(z, x − s) where tAK z; xð Þ=E X�xð Þ + ; X> z
� �

:

The verification of (6.4) is in all cases an easy consequence of the identity v�xð Þ + =
Ð1
x I y≤ vð Þdy ;

the most difficult case is (d) where (6.4) follows from

tAK z; x�sð Þ= E X + s�xð Þ + ; X> z
� �

= E

ð1
x�s

I X> y; X> zð Þ dy
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= E

ð1
x
I X> y�s; X> zð Þdy

	 

=
ð1
x
Fðz _ y�sð Þdy

The IS in (c) can be combined with (b) or (d) in obvious ways. Examples not covered are: (e)
regression-adjusted control variates (Asmussen & Glynn, 2007: V.2) where (6.6) fails; (f) level-
dependent IS where the measure eP in (c) depends on x. This may be a quite natural situation, cf.
Example 3.6. ◊

For asymptotics, we assume that

bF�
n ; R xð Þ � Fn xð Þ�Z xð Þ =

ffiffiffiffi
R

p
; F

�
n ; R xð Þ � Fn xð Þ +Z xð Þ =

ffiffiffiffi
R

p
(6.9)

as R→∞ for a suitable Gaussian process Z. For example, VarZ xð Þ= Fn xð ÞFn xð Þ for the
empirical c.d.f. For other examples, in particular CdMC, VarZ xð Þ is typically not explicit but must
be estimated from the simulation output and varies from case to case. From section 5, one then
expects that

ffiffiffiffi
R

p bq��qð Þ �!D N 0; σ2�ðqÞ
� �

where σ2� qð Þ= VarZ qð Þ
f qð Þ2 (6.10)

as has been verified for CdMC; for IS, see Sun & Hong (2010) and Hong et al. (2014). We shall also
need ffiffiffiffi

R
p

m�
n ; R xð Þ�mn xð Þ

� �
�!D N 0; σ2� mnð xð Þ� �

(6.11)

for some σ2� mnðxÞð Þ; this is obvious in the setting of Example 6.1. We then get the following result,
which in particular applies to CdMC for an i.i.d. sum:

Proposition 6.2 Subject to (6.9), it holds thatffiffiffiffi
R

p be��eð Þ �!D N 0; σ2� eð Þ� �
where σ2� eð Þ= σ2� mn xð Þð Þ

1�αð Þ2

Proof: By (6.4),

be� = bq� + 1
1�α

ðq
bq�F�

n ; R xð Þdx + 1
1�α

ð1
q
F
�
n ; R xð Þdx

� bq� + q�bq�ð Þ + bm�
n ; R qð Þ
1�α

=q +
mn qð Þ
1�α

+
bm�
n ; RðqÞ�mn qð Þ

1�α

= e +
bm�
n ; R qð Þ�mn qð Þ

1�α
□

Summarising the algorithm for the CdMC case:

1. Simulate Sð1Þn�1; ¼ ; SðRÞn�1.

2. Compute bqCond as solution of 1
R

PR
r= 1 F q�SðrÞn�1

� �
= 1�α:

3. Let beCond = bqCond + 1
R

PR
r=1

m bq�SðrÞn�1

� �
where m xð Þ= E X�xð Þ + :

4. Compute the empirical variance s2 of the m bq�SðrÞn�1

� �
, r=1,… , R.

5. Return the 95% confidence interval be
Cond

± 1:96s =
ffiffiffiffi
R

p
:
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7. Averaging

The idea of using f(x − Sn− 1) and F(x− Sn− 1) as estimators of fn, respectively, Fn, has an obvious
asymmetry in that Xn has a special role among X1,… , Xn by being the one that is not simulated but
handled via its conditional expectation given the rest. An obvious idea is therefore to repeat the
procedure with Xn replace by Xk and average over k=1,… , n. This leads to the alternative
estimators

1
n

Xn
k= 1

f x�Sn +Xkð Þ; respectively;
1
n

Xn
k=1

F x�Sn +Xkð Þ (7.1)

Figure 4 illustrates the procedure for our recurrent example of estimating the density of the sum of
n=10 lognormals.

It is seen that the averaging procedure has the obvious advantage of producing a smoother estimate.
This may be particularly worthwhile for small sample sizes R, as illustrated in Figure 5. Here R= 32,
the upper panel gives the histogram of the simulated 32 values of Sn and the corresponding simple
CdMC estimate, whereas the lower panel has the averaged CdMC estimate (7.1) left. These have
been supplemented with the density estimate:

1
n n�1ð Þ

Xn
k≠ ‘

f �2 x�Sn +Xk +X‘ð Þ (7.2)

with f*2 evaluated by numerical integration (which is feasible for the sum of just n=2 r.v.’s). The
idea comes from observing that the peaks of f are quite visible in the plot using f(x − Sn −1), whereas
convolution will produce smoother peaks in f*2. The improvement is quite notable. However, we
have not pursued this line of thought any further.

The overall performance of the idea involves two further aspects, computational effort and variance.

To asses the performance in terms of variance, consider estimation of the c.d.f. F and let

ω2 =Var F x�Sn�1ð Þ½ �=Var F x�Sn +Xkð Þ½ �
ρ=Corr F x�Sn +Xkð Þ; F x�Sn +X‘ð Þð Þ; k≠ ‘
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Figure 4. f(x− Sn −1) dotted, (7.1) solid. (a) R=128, (b) R=1,024.
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Then ω2 is the variance of the simple CdMC estimator, whereas that of the averaged one is
ω2[1/n + (1− 1/n)ρ]. Here ρ= 0 for n= 2, but one expects ρ to increase to 1 as n increases. The
implication is that there is some variance reduction, but presumably it is only notable for small n.
This is illustrated in Table 3, giving some numbers for the sum of Lognormal(0,1) r.v.’s. Within each
column, the first entry vf1 is the variance reduction factor rn(qα) for simple CdMC computed at the
estimated α-quantile of Sn as given by Example 3.6, the second the same for averaged CdMC. For
each entry, the two numbers correspond to the two values of α. The last column gives the empirical
estimate of the correlation ρ as defined above.

When assessing the computational efficiency, it seems reasonable to compare with the alternative
of using simple CdMC with a larger R than the one used for averaging. The choice between these
two alternatives involves, however, features varying from case to case. Averaging has an advantage
if computation of densities is less costly than random variate generation, a disadvantage the other
way round. In any case, averaging seems only worthwhile if the number R of replications is
rather small.

0 10 20 30 40
0
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8

0 10 20 30 40
0
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0.08

0 10 20 30 40
0
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0.08

0 10 20 30 40
0

0.02

0.04
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0.08

Figure 5. R=32. Upper panel simulated data left, f(x−Sn−1) right. Lower panel (7.1) left, (7.2) right.

Table 3. Comparison of simple and averaged conditional Monte Carlo.

n= 5 n=10 n= 25 n= 50

vf1 0.66 0.67 0.77 0.72 0.82 0.82 0.90 0.89
vfn 0.49 0.50 0.64 0.60 0.74 0.74 0.84 0.82
ρ 0.67 0.67 0.81 0.82 0.90 0.89 0.93 0.93
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8. Dependence

The current trend in dependence modelling is to use copulas and we shall here show some imple-
mentations of CdMC to this point of view. Among the many references in the area, Whelan (2004),
McNeil (2006), Cherubini et al. (2004), Wu et al. (2007) and Mai & Scherer (2012) are of particular
relevance for the following.

In the sum setting, we consider again the same marginal distribution F of X1,… , Xn. Let (U1,… , Un)
be a random vector distributed according to the copula in question. Then Sn can be simulated by
taking Xi=F − 1(Ui), i.e. we can write

Sn = F�1 U1ð Þ + � � � + F�1 Unð Þ (8.1)

To estimate the c.d.f. or p.d.f. of Sn we then need the conditional c.d.f. and p.d.f. Fn|1:n− 1, fn|1:n −1 of
Xn given a suitable σ-field F w.r.t. which U1,… , Un −1 are measurable. Indeed, then

Fn j1 :n�1 x�Sn�1ð Þ; respectively; fn j 1 : n�1 x�Sn�1ð Þ (8.2)

are unbiased estimates (which can of course only be used in practice if Fn|1:n−1, fn|1:n− 1 have
accessible expressions).

For a first example where Fn|1:n− 1, fn|1:n− 1 are available, we consider Gaussian copulas. This is the
case Ui=Φ(Yi) where Yn= (Y1…Yn)

Τ is a multivariate normal vector with standard normal mar-
ginals and a general correlation matrix C. In block-partitioned notation, we can write

C=
Cn�1 Cn�1;n

Cn;n�1 1

 !

where Cn −1 is (n −1)× (n− 1), Cn− 1,n is (n − 1)× 1 and Cn;n�1 =CT
n�1;n.

Proposition 8.1 Consider the Gaussian copula and define

cn j1 :n�1 = 1�Cn;n�1C
�1
n�1Cn�1;n

μn j1 :n�1 =Cn;n�1C
�1
n�1 Y1 ¼ Yn�1ð ÞT

and F = σ U1; ¼ ;Un�1ð Þ= σ Y1; ¼ ;Yn�1ð Þ. Then

Fn j 1 : n�1 yð Þ=Φ Φ�1 F yð Þð Þ�μn j1 :n�1

h i
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cn j 1 : n�1

p� �
(8.3)

fn j1 :n�1 yð Þ=
φ Φ�1 F yð Þð Þ�μn j 1 : n�1

h i
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficn j1 :n�1

p� �
φ Φ�1 F yð Þð Þ� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficn j1 :n�1

p f yð Þ (8.4)

Proof: We have

Fn j1 :n�1 yð Þ=P Xn ≤ y j Fð Þ=P F�1 Φ Ynð Þð Þ≤ y j F� �
=P Yn ≤Φ�1 F yð Þð Þ j F� �

which reduces to (8.3) since the conditional distribution of Yn given F is normal with mean μn|1:n− 1
and variance cn|1:n −1. (8.4) then follows by differentiation. □

Søren Asmussen

470

https://doi.org/10.1017/S1748499517000252 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000252


Example 8.2 For the Gaussian copula, the procedure of Proposition 8.1 was implemented for
the sum Sn of n=10 lognormals, with the estimated densities given in Figure 6. The matrix C is
taken as exchangeable, meaning that all off-diagonal elements are the same ρ, and various values of
ρ are considered. Similar examples produced with somewhat different methods are in Botev
et al. (2017).

As second example, we shall consider Archimedean copulas

P U1 ≤u1; ¼ ;Un ≤ unð Þ=ψ ϕ u1ð Þ + � � � +ϕ unð Þð Þ (8.5)

where ψ is called the generator and ϕ is its functional inverse. Under the additional condition
that the r.h.s. of (8.5) defines a copula for any n, it is known that ψ is the Laplace transform
ψðsÞ=Ee�sZ of some r.v. Z> 0, and we shall consider only that case. A convenient representation
is then

U1; ¼ ;Unð Þ= ψ V1 =Zð Þ; ¼ ;ψ Vn =Zð Þð Þ (8.6)

where V1,… , Vn are i.i.d. standard exponential and independent of Z. See, e.g., Marshall & Olkin
(1988).

Proposition 8.3 Define F = σ V1; ::: ;Vn�1; Zð Þ. Then

Fn j 1 : n�1 yð Þ= exp �Zϕ F yð Þð Þf g (8.7)

fn j1 :n�1 yð Þ=�Zϕ0 F yð Þð Þ exp �Zϕ F yð Þð Þf gf yð Þ (8.8)

For the survival copula (1 −ψ(V1/Z),… , 1 −ψ(Vn/Z)),

Fn j 1 : n�1 yð Þ= 1�exp �Zϕ F yð Þ� �� �
(8.9)

fn j1 :n�1 yð Þ=�Zϕ0 F yð Þ� �
exp �Zϕ F yð Þ� �� �

f yð Þ (8.10)
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Figure 6. Density of a lognormal sum with an exchangeable Gaussian copula.
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Proof: Formulas (8.8), (8.10) follow by straightforward differentiation of (8.7), (8.9) and (8.7) from:

Fn j1 :n�1 yð Þ=P Xn ≤ y j Fð Þ=P F�1 ψ Vn =Zð Þð Þ≤ y j F� �
=P Vn =Z≥ϕ F yð Þð Þ j Fð Þ= exp �Zϕ F yð Þð Þf g

Similarly for the survival copula:

Fn j 1 : n�1 yð Þ=P F�1 1�ψ Vn =Zð Þð Þ≤ y j F� �
=P ψ Vn =Zð Þð Þ≥F yð Þ j FÞ

=P Vn =Z≤ϕ F yð Þ� � j F� �
=1�exp �Zϕ F yð Þ� �� �

□

Some numerical results follow for lognormal sums with the two most common Archimedean
copulas, Clayton and Gumbel.

Example 8.4 The Clayton copula corresponds to Z being γ with shape parameter α. Traditionally,
the parameter is taken as θ=1/α and the scale (which is unimportant for the copula) chosen such as
that EZ=1. This means that the generator is ψ(t)=1/(1 + tθ)1/θ with inverse ϕ(y)= (y− θ− 1)/θ.

The Clayton copula approaches independence as θ ↓ 0, i.e. α ↑∞, and approaches comonotonicity as
θ ↑ ∞, i.e. α ↓ 0. The density of the sum Sn of n=10 lognormals is in Figure 7(a) for the Clayton
copula itself and in Figure 7(b) for the survival copula. The Clayton copula has tail independence in
the right tail but tail dependence in the left, implying the opposite behaviour for the survival copula.
Therefore, the survival copula may sometimes be the more interesting one for risk management
purposes in the Clayton case.

Example 8.5 The Gumbel copula corresponds to Z being strictly α-stable with support (0, ∞).
Traditionally, the parameter is taken as θ= 1/α and the scale chosen such that the generator
is ψ(t)= e − tα= e − t1/θ, with inverse ϕ(y)= (− log y)θ. The Gumbel copula approaches comonotonicity
as θ → ∞, i.e. α ↓ 0, whereas independence corresponds to θ= α=1. It has tail dependence in the
right tail but tail independence in the left.

The density of the sum Sn of n= 10 lognormals is in Figure 8(a) for the Gumbel copula itself and in
Figure 8(b) for the survival copula. ◊
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Figure 7. Density of lognormal sum with a Clayton copula.
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Remark 8.6 Despite the simplicity of the Marshall-Olkin representation, much of the literature on
conditional simulation in the Clayton (and other Archimedean) copulas concentrates on describing
the conditional distribution of Un given U1,… , Un −1, see, e.g. Cherubini et al. (2004). Even with this
conditioning, we point out that it may be simpler to just consider the conditional distribution of Z
given U1= u1,… , Un−1= un− 1. Namely, given Z= z the r.v. Wi=ϕ(Ui)=Vi/z has density ze�zwi so
that the conditional density must be proportional to the joint density:

fZ zð Þze�zw1 � � � ze�zwn�1 / z1 = θ + n�2exp �z 1 = θ +w1 + � � � +wn�1ð Þf g

where the last expression uses Z � γð1 = θ; 1 = θÞ. This gives in particular that for the Clayton copula
the conditional distribution of Z given U1=u1,… ,Un−1= un− 1 is γ(αn, λn) where

αn = 1 = θ + n�1; λn =1 = θ +ϕ u1ð Þ + � � � +ϕ un�1ð Þ ◊

Remark 8.7 Calculation of the VaR follows just the same pattern in the copula context as in the i.i.
d. case, cf. the discussion around (5.1). One then needs to replace F with the conditional distribution
in (8.2). Also the expected shortfall could be in principle calculated by replacing the E X�xð Þ + from
the i.i.d. case with the similar conditional expectation. However, in examples one encounters the
difficulty that the form of (8.2) is not readily amenable to such computations. For example, in the
Clayton copula with standard exponential marginals the conditional density is

Z

1�e�xð Þθ +1 exp �Z
1

1�e�xð Þθ �1

 !( )
e�x

The expressions for say a lognormal marginal F are even less inviting! ◊

9. Concluding Remarks

The purpose of the present paper has not been to promote the use of CdMC in all the problems
looked into, but rather to present some discussion of both the potential and the limitations of the
method. Two aspects were argued from the outset to be potentially attractive, variance reduction and
smoothing.
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Figure 8. Density of lognormal sum with a Gumbel copula.
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As mentioned in section 4, the traditional measure of efficiency in the rare-event simulation literature
is the relative squared error rð2Þn ðzÞ, and BdRelErr (BdRelErr is usually consider as the most
one can hope for). This and even more is obtained for ZAK. Simple CdMC for the c.d.f. does not
achieve BdRelErr, but nevertheless it was found to be worthwhile at least in the right tail of light-
tailed sums and in the left tail when the increments are non-negative. For a quantitative illustration,
consider estimating PðS2 >xÞ in the Normal(0, 1) case. The variances of the different estimators were
all found to be of the form Cxγe�βx2 ; note that for PðS2 > xÞ itself (A.1) gives C= 1 =

ffiffiffi
π

p
, γ= − 1,

β=1/4. A good algorithm thus corresponds to a large value of β and the values found in the
respective results are given in Table 4. Note that estimates similar to those of Asmussen & Glynn
(2007: VI.1) show that BdRelErr is in fact obtained by the IS-ECM algorithm sketched at the end
of section 3.

Also the smoothing performance of CdMC came out favourably in the examples considered.
Averaging as in section 7 seemed too often be worthwhile. We found that the ease with which CdMC
produces plots of densities even in quite complicated models like the Clayton or Gumbel copulas in
Figures 7 and 8 is a quite noteworthy property of the method.

In general, one could argue that when CdMC applies to either variance reduction or density esti-
mation, it is at worst harmless and at best improves upon naive methods without involving more
than a minor amount of extra computational effort. Some further comments:

1. When moving away from i.i.d. assumptions, we concentrated on dependence. Different marginals
F1,… , Fn can, however, also be treated by CdMC. For example, an obvious estimator for PðSn > xÞ
in this case is

1
n

Xn
i= 1

Fi x�Sn +Xið Þ

This generalises in an obvious way to ZAK. For discussion and extensions of these ideas, see, e.g.,
Chan & Kroese (2011) and Kortschak & Harshova (2013).

2. The example we have treated is sums but the CdMC method is not restricted to this case. In
general, it is of course a necessary condition to have enough structure that conditional distributions
are computable in a simple form.
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Table 4. δ in normal right tail (n=2).

CrMC CdMC AK BdRelErr

1
4 = 6

24
1
3 = 8

24
3
8 = 9

24
1
2 = 12

24

Note: CrMC, crude Monte Carlo; CdMC, conditional Monte Carlo; BdRelErr,
bounded relative error.
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Appendix

A Technical proofs

Proof of Proposition 3.3: Usingðx
0
ya x�yð Þb dy=B a + 1; b + 1ð Þxa +b +1

where B(⋅, ⋅) is the Beta function, we get for suitable constants c1, c2,… depending on n that

f �2 xð Þ=
ðx
0
f x�yð Þf yð Þdy � c21

ðx
0
yp x�yð Þp dy = c2 x2p+ 1
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as x→0 and, by induction:

f �n xð Þ � c3xnp +n�1; F�n xð Þ=
ðx
0
f �nðyÞdy � c4xnp +n

Hence

Var F x�Sn�1ð Þ½ � �
ðx
0
c5ynp+ n�p�2F x�yð Þ2 dy�c24x

2np +2n

=
ðx
0
c6ynp+ n�p�2 x�yð Þ2p+ 2dy�c24x

2np + 2n

� c7xnp+ n+ p+ 1 ;

rn xð Þ � c7xnp+ n+ p+ 1

c4xnp+ n 1�c4xnp +nð Þ � c8xp+ 1 □

Proof of Proposition 3.4: Let Z be a r.v. with tail FðxÞ2. By general subexponential theory,
P Sk > xð Þ � kF xð Þ for any fixed k and P Sn�1 +Z> xð Þ � Fn�1 xð Þ since Z therefore has lighter tail
than Sn− 1. Hence

EF x�Sn�1ð Þ2 = Fn�1 xð Þ +P Sn�1 +Z> x; Sn�1 ≤xð Þ= Fn�1 xð Þ + o F xð Þ� �
Var F x�Sn�1ð Þ½ �=Fn�1 xð Þ + o F xð Þ� ��O F xð Þ2

� �
� n�1ð ÞF xð Þ □

In the last two proofs, we shall need the Mill’s ratio estimate of the normal tail, stating that if V is
standard normal, then

P σV > xð Þ
≤ σ

x
ffiffiffiffi
2π

p e�x2 = 2σ2 for x> 0

� σ
x
ffiffiffiffi
2π

p e�x2 = 2σ2 as x ! 1

8<: (A.1)

A slightly more general version, proved in the same way via L’Hospital, isð1
bx

1

y + cxð Þk
e�ay2 = 2dy � 1

ab b + cð Þkxk+ 1
e�ab2x2 = 2 (A.2)

Proof of Proposition 3.5: We have

EF x�sn�1ð Þ2 =
ð1
�1

Φ x�yð Þ2 1

2π n�1ð Þð Þ1 = 2
e�y2 = 2ðn�1Þ dy (A.3)

Let H xð Þ=P Vn�1 +V1 =2 >x
� �

where Vn−1, V1/2 are independent mean zero normals with variances
n− 1 and 1/2, and note that

P Vn�1 > x�Að Þ=o H xð Þ� �
(A.4)

according to (A.1). The y> x−A part of the integral in (A.3) is bounded by (A.4). Noting that

Φ xð Þ2
P V1 =2 >x
� � � e�x2 =x22π

1 =2 � e�x2 =x
ffiffiffiffiffiffi
2π

p =
1
x

ffiffiffiffiffiffiffiffiffiffi
2 = π

p
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the y≤x −A part asymptotically becomesðx�A

�1

ffiffiffiffiffiffiffiffiffiffi
2 = π

p
x�y

P V1 = 2 > x�y
� � 1

2πðn�1Þð Þ1 = 2
e�y2 = 2ðn�1Þdy

� 1
x

ffiffiffiffiffiffiffiffiffiffi
2 = π

p
P Vn�1 +V1 =2 >x; Vn�1 ≤x�A
� �

=
1
x

ffiffiffiffiffiffiffiffiffiffi
2 = π

p
H xð Þ�o H xð Þ� �

Thus

rn xð Þ � H xð Þ ffiffiffiffiffiffiffiffiffiffi
2 = π

p
=x

P Sn > xð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1 =2

p
e�x2 = ð2n�1Þ =

ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffi
2 = π

p
=xffiffiffi

n
p

e�x2 = 2n = x
ffiffiffiffiffiffi
2π

p

1
x

ffiffiffiffiffiffiffiffiffiffiffiffi
2n�1
nπ

r
e�x2 = ½2nð2n�1Þ�

where we used (A.1) two times with σ2= n− 1/2, respectively, σ2=n. □

Proof of (4.2): In the same way as in Example 4.2, max(Mn −1, x − Sn−1)=max(X1, x −X1) splits up
into X1≤x/2 and X1>x/2 parts. Using (A.3) to estimate ΦðyÞ, the X1> x/2 part of EZ2

AKðxÞ becomes

4ffiffiffiffiffiffi
2π

p
ð1
x =2

Φ yð Þ2e�y2 = 2dy � 4

2πð Þ3 = 2
ð1
x =2

1
y2

e�3y2 =2 dy � 32

3x3 2πð Þ3 = 2
e�3x2 =8dy

The X≤ x/2 part is

4ffiffiffiffiffiffi
2π

p
ðx = 2
�1

Φ x�yð Þ2e�y2 = 2dy=
4ffiffiffiffiffiffi
2π

p
ð1
x = 2

Φ yð Þ2e�ðx�yÞ2 = 2dy

� 4

2πð Þ3 = 2
ð1
x = 2

1
y2

e�y2�ðx�yÞ2 = 2 dy=
4

2πð Þ3 =2
e�x2 = 3

ð1
x = 2

1
y2

e�3ðy�x = 3Þ2 = 2 dy

=
4

2πð Þ3 = 2
e�x2 = 3

ð1
x = 6

1

ðy + x =3Þ2 e
�3y2 =2 dy

=
4

2πð Þ3 = 2
e�x2 = 3 1

3 � 1 =6 � 1 = 2ð Þ2x3 e
�3ðx = 6Þ2 =

32

3x3 2πð Þ3 = 2
e�3x2 = 8

Adding up, the results follows. □
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