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Abstract. We show that the set of complex numbers which are badly approximable
by ratios of elements of the ring of integers in �(

√−D), where D ∈ {1, 2, 3, 7, 11, 19,

43, 67, 163} has maximal Hausdorff dimension. In addition, the intersection of these
sets is shown to have maximal dimension. The results remain true when the sets in
question are intersected with a suitably regular fractal set.
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1. Introduction. Diophantine approximation over the complex numbers has been
studied in a number of papers. In the present paper, we are concerned with the
approximation of complex numbers by ratios of elements in the ring of integers
in �(

√−D), whenever this ring has unique factorisation. We denote these rings
by OD. The question of unique factorisation in these rings goes back to Gauss. It
was eventually shown by Stark [11] that OD has unique factorisation if and only
if D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}, the values listed in the abstract. An alternative
proof using linear forms in logarithms was obtained by Baker [1].

Let D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} and consider initially the inequality

∣∣∣∣z − p
q

∣∣∣∣ <
2D3/2

|q|2 , (1)

where z ∈ � and p, q ∈ OD, q �= 0. It follows from Minkowski’s linear forms theorem
that for any z ∈ �, equation (1) has infinitely many solutions p, q ∈ OD. A proof of
this can be found in [4] in the case D = 1. We leave it to the reader to extend this to
other values of D.

No doubt, the constant 2D3/2 in equation (1) can be improved, as we make very
coarse estimates in the proof that there are infinitely many solutions. However, it
cannot be made arbitrarily small, as we will show in this paper. We consider the
converse inequality,

∣∣∣∣z − p
q

∣∣∣∣ ≥ K(z)

|q|2 for all p, q ∈ OD, q �= 0. (2)
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We will call the set of complex numbers z ∈ � for which equation (2) is satisfied the set
of badly approximable complex numbers with respect to OD, denoted BadD.

We require that OD has unique factorisation in order to make the right-hand
sides of equation (1) and equation (2) independent of the representative of p/q on the
left-hand side. If unique factorisation fails, we could have p/q = p′/q′, both on lowest
terms, but with |q| �= ∣∣q′∣∣, which would cause some ambiguity. Additionally, we will
use unique factorisation in the course of the proof.

A. Schmidt [10] studied analogues of continued fractions in the complex numbers.
Among other things, he proved that Bad1 �= ∅, and obtained quantitative information
on the set of best possible values for K(z) as z varies. When the set of complex numbers
is considered as the limit set of the Picard group, it can be derived from results of
Bishop and Jones [3] or Fernandez and Melián [6] that the set Bad1 has maximal
Hausdorff dimension. This is also proved in [4] by more elementary means, using the
framework of Schmidt games (see below). In [8] it is shown that in addition Bad1 ∩ K
is of maximal dimension whenever K supports a measure satisfying several technical
conditions. An example of such a set K is the Sierpı́nski gasket. We will return to these
technical conditions below.

The objective of the present paper is to extend the result of [8] to any D ∈
{1, 2, 3, 7, 11, 19, 43, 67, 163}, using the methods of [4]. A desirable property of that
method is the dimension result that is stable under finite intersection. Specifically, we
prove the following theorem.

THEOREM 1. Let K ⊆ � be a compact set supporting a measure μ for which there
exist constants a, b, δ, r0 > 0 such that for any z ∈ K and any r ≤ r0,

arδ ≤ μ(B(z, r)) ≤ brδ.

Then, for any subset E ⊆ {1, 2, 3, 7, 11, 19, 43, 67, 163},

dimH K ∩
⋂
D∈E

BadD = dimH K = δ.

REMARKS.
(i) The condition on K is evidently satisfied for any closed ball in � with μ being the

two-dimensional Lebesgue measure. In addition, it was shown by Hutchinson
[7] that the condition is satisfied for the attractor of a family of similarities
satisfying the open set condition. Classical examples are the Sierpı́nski gasket,
the von Koch curve and the Cantor middle third set.

(ii) The condition on the measure of a ball decaying as a power of the radius
of the ball is slightly stronger than the technical conditions in [8]. It is likely
that the assumption can be weakened to those of [8], but at the cost of additional
technicalities. We have chosen to keep the statements and results as simple as
possible.

(iii) In fact we will prove rather more than maximal dimension. Indeed, we will
show that the sets BadD are winning for a Schmidt game (see below), which is
a stronger statement.

(iv) It is possible to deduce Theorem 1 in the case #S = 1 from the general
framework of [8]. With additional work, it may well be possible to obtain
the full theorem from this set-up. However, that framework will not prove that
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the set is winning. It would also be considerably less elementary and not as
self-contained as the present proof.

2. Proof of Theorem 1. In order to prove Theorem 1, we will use the Schmidt
game introduced by W. M. Schmidt in [9]. Let K be a set as in the statement of the
theorem, let S ⊆ K and let α, β ∈ (0, 1). The (α, β, K ; S)-game is played by two players
Black and White as follows: Initially, Black chooses a ball B1 ⊆ � with centre x1 ∈ K
and radius ρ = ρ(B1) for some ρ > 0. White then chooses a ball W1 ⊆ B1 with centre
y1 ∈ K and radius ρ(W1) = αρ(B1). Now Black chooses a ball B2 ⊆ W1 with centre
x2 ∈ K and radius ρ(B2) = βρ(W1) and so on ad infinitum. The outcome of the game
is the unique point x such that

⋂∞
n=1 Bn = {x}. Since K is compact, this is an element

in K . If in addition x ∈ S, White wins the game. Otherwise Black wins.
In Schmidt’s paper [9], the game was played in an arbitrary metric space. Here,

we use a sub-space K of the ambient metric space �, and require that the centres of
the balls lie in the sub-space. We are going to apply the set-up to study numbers which
are badly approximated by distinguished elements in the ambient space �. To make
the distinction clear, we have opted to put the compact set K into the definition of the
game.

We will call a set S (α, β, K)-winning if White can always win the (α, β, K ; S)-game.
If for some α ∈ (0, 1), the set S is (α, β, K)-winning for all β ∈ (0, 1), we will say that
S is (α, K)-winning. In order to prove Theorem 1, we will need three Lemmas.

LEMMA 2. Let {Si} be a sequence of subsets of K, all of which are (α, K)-winning for
some α > 0. Then

⋂∞
i=1 Si is (α, K)-winning.

LEMMA 3. Let S ⊆ K and suppose that S is (α, K)-winning for some α > 0. Then

dimH S = dimH K.

LEMMA 4. Let D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} and K be as in the statement of
Theorem 1. Then BadD ∩ K is (α, K)-winning for any α ≤ r0

24(1+r0) (
a2

2b2 )1/δ.

Proof of Theorem 1 assuming Lemmas 2–4. Let α ≤ r0
24(1+r0) (

a2

2b2 )1/δ, so that BadD ∩
K is (α, K)-winning. It follows that

⋂
D∈E BadD ∩ K is (α, K)-winning by Lemma 2.

The theorem now follows immediately from Lemma 3. �
It remains to prove the lemmas. Lemma 2 is just [9, Theorem 2]. In order to prove

Lemma 3, we invoke Corollary 1 of [9, Theorem 6]. Adapted to our set-up, this result
is stated as follows.

LEMMA 5 (Corollary 1 of [9, Theorem 6]). Let N(β) ∈ � be such that any ball B
with centre in K and radius ρ contains N(β) balls with centres in K of radius βρ with
pairwise disjoint interiors. Then, for any (α, β, K)-winning set S,

dimH S ≥ log N(β)
|log(αβ)| . (3)

Some remarks are in order about the proof of Lemma 5. In [9], the result is stated
only for K being a Hilbert space. Evidently, this is not necessarily the case for K .
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However, the only place in the proof of the Lemma in [9], where the Hilbert space
property is needed is in Lemma 20, where an upper estimate on the number of disjoint
balls intersecting a fixed ball is obtained. Evidently, K inherits this property from �,
which is of course a Hilbert space.

In addition to Lemma 5, we will need an elementary covering result. The result we
need states that if {Bi} is a finite collection of balls in a compact metric space of equal
radius, then there is a disjoint sub-collection {Bij } such that

⋃
i

Bi ⊆
⋃

j

3Bij . (4)

A proof of this fact can be found in [2, Lemma 4].

Proof of Lemma 3. From the conditions on K , it follows that dimH K = δ, so we
will prove that the Hausdorff dimension of any (α, K)-winning set is at least equal
to δ.

Let β ∈ (0, 1/3) be arbitrary, but fixed. By Lemma 5, we need only estimate N(β)
to obtain a lower estimate on the dimension. Let B be a ball with centre in K and
radius ρ ≤ r0, where r0 is the constant from the statement of Theorem 1, so that

μ
( 1

2 B
) ≥ a2−δρδ.

Take a covering of 1
2 B ∩ K with balls centred in K with radius βρ. By equation (4)

applied to the compact metric space K , we can refine this to a disjoint collection
B1, . . . , Bk, such that the full collection, and hence 1

2 B ∩ K, is covered by 3B1, . . . , 3Bk.
Evidently, the Bi are all contained in B, pairwise disjoint and centred in K . It remains
to estimate k.

Since

μ(Bi) ≤ b3δρδ, 1 ≤ i ≤ k,

we find that

2−δaρδ ≤ kb3δβδρδ,

so that

k ≥ a
b6δ

β−δ.

Hence, we have N(β) ≥ a
b6δ β

−δ. Lemma 3 now follows on letting β → 0 in equation
(3). �

In order to complete the proof of Theorem 1, it remains only to prove Lemma 4.

Proof of Lemma 4. Let α be as in the statement of the lemma, and let β ∈ (0, 1) be
arbitrary. We proceed with the construction of a winning strategy for White.

Assume that the initial ball B1 has radius r1 ≤ r0/2, let ε = α and let R = √
αβ.

We will prove that White has a strategy such that if p, q ∈ OD satisfy

(p, q) = 1 and 0 < |q| < Rn, (5)
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then for any z ∈ Bn+1,
∣∣∣∣z − p

q

∣∣∣∣ >
ε

|q|2 . (6)

We will accomplish this by induction in n.
For n = 0, notice that the set of q ∈ OD satisfying equation (5) is empty, and

hence equation (6) is trivially satisfied. Hence, we suppose that n > 0 and proceed by
induction. We have already avoided counter-examples to equation (6) earlier in the
game, and hence we need only worry about q ∈ OD for which

Rn−1 ≤ |q| < Rn. (7)

We claim that in the next move, White need only worry about a single point p/q,
subject to equation (7). Indeed, suppose that there are p, p′, q, q′ ∈ OD with q and q′

satisfying equation (7) as well as points z, z′ ∈ Bn such that
∣∣∣∣z − p

q

∣∣∣∣ ≤ ε

|q|2 and

∣∣∣∣z′ − p′

q′

∣∣∣∣ ≤ ε

|q′|2 .

Then, since ρ(Bn) = r1(αβ)n−1,
∣∣∣∣p
q

− p′

q′

∣∣∣∣ ≤
∣∣∣∣z − p

q

∣∣∣∣ +
∣∣∣∣z′ − p′

q′

∣∣∣∣ + ∣∣z − z′∣∣ ≤ ε

|q|2 + ε

|q′|2 + r1(αβ)n−1 ≤ R−2n,

by choice of parameters. On the other hand, if p/q �= p′/q′, by unique factorisation,
∣∣∣∣p
q

− p′

q′

∣∣∣∣ ≥ 1
|qq′| > R−2n,

a contradiction. Hence, p/q = p′/q′.
Suppose that there is a point p/q to be avoided by White. Let C be the open ball

centred at p/q of radius ε

|q|2 . We will assume that C ∩ Bn �= ∅. As in the proof of Lemma
3, Bn contains disjoint balls B1, . . . , Bk of radius αrn, where

k ≥ a
b6δ

α−δ. (8)

We claim that under the assumptions, one of these is disjoint from C. Indeed, in order
for one of the Bi constructed above to have non-empty intersection with C, Bi must be
fully contained in (1 + 2αrn)C. We estimate the number of balls having this property.

Evidently, the measure of an arbitrary ball B ⊆ � with radius r ≤ r0/2 satisfies
μ(B) ≤ b2δrδ. Hence, we estimate the measure of the ball (1 + 2αrn)C from above by

μ((1 + 2αrn)C) ≤ b2δ
(
εR−2(n−1) + 2αr1(αβ)n−1)δ

= b (2ε + 4αr1)δ (αβ)(n−1)δ. (9)

On the other hand, for any i ∈ {1, . . . , k},

μ(Bi) ≥ a(αrn)δ = a
(
αr1(αβ)n−1)δ

. (10)
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Hence, the maximal number k′ of disjoint Bi that can be contained in (1 + 2αrn)C is
bounded above by

k′ ≤ b (2ε + 4αr1)δ (αβ)(n−1)δ

a
(
αr1(αβ)n−1

)δ
= b

a

(
2ε

αr1
+ 4

)δ

≤ 4δb
a

(
1
r0

+ 1
)δ

, (11)

by choice of ε.
Now, by assumption on α,

k ≥ 2k′ ≥ k′ + 1.

In other words, White can choose a ball completely disjoint from C in the next move.
This completes the construction of the winning strategy, and hence the proof that BadD

is (α, K)-winning. �

3. Concluding remarks. We have made no effort to find an optimal lower bound
on the α for which the sets BadD are (α, K)-winning. Evidently, by optimising the
condition on α, we immediately obtain such a bound depending on the measure
theoretic structure of K . However the bounds obtained in this way are not optimal.
In the case K = � and D = 1, it is shown in [4] that Bad1 is (α, K)-winning for any
α < 1/2. The bound in Lemma 4 only shows that the set is winning for α < 1/(24

√
2).

An additional improvement on the bound on α could possibly be obtained by
constructing White’s strategy over more than one step. This was originally done by
Schmidt in [9], where a strategy was devised to avoid the problematic fraction in t steps,
where t is a positive integer satisfying αβγ ≤ 2(αβ)t < γ . Again, we have made no such
effort, and leave the problem to the interested reader. Note, however, that in general
one cannot expect to reach the maximum possible value of 1/2, as was observed by
Fishman in the real case [5].
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