A radio survey of Galactic center clouds

E. A. C. $Mills^1$, C. C. $Lang^2$, M. R. $Morris^3$, J. Ott^1 , N. $Butterfield^2$, D. $Ludovici^2$, S. Schmitz² and A. Schmiedeke⁴

¹National Radio Astronomy Observatory, USA (email: bmills@aoc.nrao.edu) ²Dept. of Physics & Astronomy, University of Iowa, USA ³Dept. of Physics & Astronomy, University of California-Los Angeles, USA ⁴I. Physikalisches Institut, Universität zu Köln, Germany

Abstract. We present a radio survey of molecules in a sample of Galactic center molecular clouds, including M0.25 + 0.01, the clouds near Sgr A, and Sgr B2. The molecules detected are primarily NH₃ and HC₃N; in Sgr B2-N we also detect non-metastable NH₃, vibrationally-excited HC₃N, torsionally-excited CH₃OH, and numerous isotopologues of these species. 36 GHz Class I CH₃OH masers are ubiquitous in these fields, and in several cases are associated with new NH₃ (3,3) maser candidates. We also find that NH₃ and HC₃N are depleted or absent toward several of the highest dust column density peaks identified in submillimeter observations, which are associated with water masers and are thus likely in the early stages of star formation.

Keywords. Galaxy: center — molecular data — radio lines: ISM — techniques: interferometric

The central 300 parsecs of the Galaxy contain one of the largest reservoirs of molecular gas in the Galaxy. Thus far, however, the large-scale distribution and kinematics of this molecular gas have only been probed at arcminute ($\sim 2-3$ pc) resolutions (e.g., Bally *et al.* 1987, Jones *et al.* 2013). This survey is a first step toward a uniform study of Galactic center gas on sub-parsec scales. Ultimately, these survey data will probe the temperatures, densities, and kinematics of a sample of clouds at 2-3" (~ 0.1 pc) resolution.

1. Observations and data calibration

Observations were made using the new WIDAR correlator in the hybrid DnC array of the Karl G. Jansky Very Large Array (VLA). Ka-band data (27-36 GHz) were observed on 2012 January 7 and 13, and K-band data (24-25 GHz) on 2012 January 8 and 14. The data consist of 18 pointings toward 6 clouds (Sgr B2 M&N, M0.25+0.01, M-0.11-0.08, M-0.02-0.07, the CND, and M-0.13-0.08).

The survey was designed to cover a large number of NH₃ transitions, which trace gas with densities $\geq 10^3$ cm⁻³, and can be used to measure kinetic temperature. Eight transitions of NH₃ with energies from 20 to 840 K above the ground state are observed, which are collectively sensitive to a wide range of gas temperatures. In addition, the observations cover multiple transitions of HC₃N and CH₃OH.

The observations in each band (K and Ka) are divided into two separate, continuous subbands 0.86 GHz wide, each comprised of 7 spectral windows. The typical spectral resolution is 250 kHz ($\sim 3 \text{ km s}^{-1}$), however for three spectral windows, covering (1) the NH₃ (1,1) and (2,2) lines and their hyperfine structure, (2) the 36.1 GHz CH₃OH maser line, and (3) the CH₃CN (2_k-1_k) transitions, the resolution is doubled to better resolve the line structure.

The phase calibrator (J1744–3116) was observed approximately every 15 minutes. The bandpass calibrator was J1733–1304. The data were flux calibrated using 3C286, observed at elevations comparable to the Galactic center sources ($\sim 15^{\circ} - 30^{\circ}$).

Figure 1. Peak intensity maps of molecular lines in M0.25 + 0.01, including 36 GHz methanol masers, 7 transitions of NH₃, and two transitions of HC₃N. The cross indicates the location of an H₂O maser (Lis *et al.* 1994) coinciding with a dust continuum peak (Kauffmann *et al.* 2013). Examples of candidate NH₃ (3,3) masers are indicated with arrows.

After calibration with the CASA reduction package, the data were imaged using the CLEAN algorithm in CASA and a CLEAN cycle of several thousand iterations, resulting in noise in the final images which was typically $\sim 1 \text{ mJy beam}^{-1}$ channel⁻¹ for the spectral line images. The full width at half maximum (FWHM) of the synthesized clean beam ranged from 2''.3 × 2''.5 at 25 GHz to 1''.9 × 2''.2 at 27 GHz and 1''.5 × 1''.7 at 36 GHz.

2. Results

We present preliminary images of M0.25 + 0.01, clouds near Sgr A, and Sgr B2.

M0.25 + 0.01: This cloud is one of the most massive in the central molecular zone (CMZ) (M~ $1-2 \times 10^5$ M_{\odot}; Lis *et al.* 1994, Longmore *et al.* 2012). However, unlike other massive CMZ clouds, there is no evidence in this cloud for ongoing star formation apart from a single water maser (Lis *et al.* 1994, Longmore *et al.* 2012, Kauffmann *et al.* 2013).

Mapping this cloud, we find the morphology of the NH₃ transitions is almost identical (apart from a few candidate masers in the (3,3) lines; Figure 1): there is no sign of temperature gradients. The (1,1) and (2,2) transitions are both very optically-thick, (τ up to 4-7), as measured from the ratio of their hyperfine satellites. From the optically-thin (4,4), (5,5), and (7,7) lines, we measure a median temperature of ~100 K.

The distribution of HC_3N is similar to NH_3 , but is stronger toward the center of the cloud, and may trace denser gas. We also detect numerous 36.1 GHz CH₃OH point sources, the distribution of which closely follows the morphology of the NH_3 gas (Figure 1). The majority of the CH₃OH sources are relatively weak, with intensities of 0.5 - 1 Jy beam⁻¹. However, more than 80% can be identified as masers, having brightness temperatures greater than the hottest gas identified in this cloud (400 K; Mills & Morris 2013). Dozens of such candidate masers are found in every cloud surveyed. As

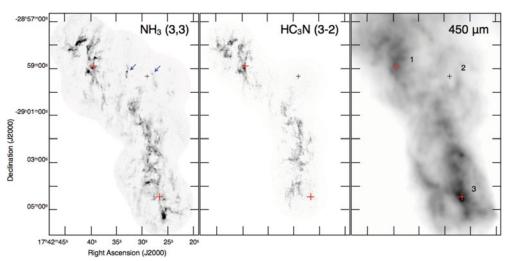


Figure 2. Peak intensity maps of NH_3 (3,3) (left) and HC_3N 3-2 (center) in Sgr A, compared to 450 micron dust continuum (**Right**; Pierce-Price *et al.* 2000). Crosses indicate dust continuum peaks in M-0.02-0.07 (1), M-0.13-0.08 (3), and the location of the supermassive black hole Sgr A* (2). Examples of candidate NH_3 (3,3) masers are indicated with arrows. [A COLOR VERSION IS AVAILABLE ONLINE.]

these are Class I masers, they are indicative of shocks, but in the turbulent environment of the Galactic center, they likely do not indicate star formation.

<u>Sgr A</u>: There are three main clouds near Sgr A: M-0.02-0.07, M-0.13-0.08, and the circumnuclear disk (CND), which surrounds the supermassive black hole, Sgr A^{*}. In projection, these clouds lie within the central 10 pc of the Galaxy, and are believed to be physically close as well, based upon their interactions with each other and with the gravitational potential of Sgr A^{*} (Coil & Ho 2000, Herrnstein & Ho 2005).

The strongest sources of NH₃ emission are M-0.02-0.07, and a clump at the southern tip of M-0.13-0.08 (Figure 2). However, this clump is entirely absent in HC₃N. As in M0.25+0.01, there is also no NH₃ or HC₃N detected toward the strongest dust continuum peak in M-0.13-0.08 and its associated H₂O masers (Guesten & Downes 1983; Sjouwerman *et al.* 2002).

 $\rm HC_3N$ is not detected toward the CND, which is either an indication that gas in this region is less dense, or that $\rm HC_3N$ is under-abundant or destroyed in this environment (Martín *et al.* 2012). $\rm NH_3$ emission from the CND is weak in comparison to emission from $\rm M-0.02-0.07$ and $\rm M-0.13-0.08$, although several strong, compact sources of $\rm NH_3$ (3,3) emission (likely masers) are found here, coincident with observed 36 and 44 GHz CH₃OH masers (Sjouwerman *et al.* 2010, Yusef-Zadeh *et al.* 2008).

Sgr B2: This is the most massive Galactic center cloud, and hosts extremely active star formation traced by dozens of ultracompact HII regions (e.g., De Pree *et al.* 1998).

The structure of the cloud, as seen in NH₃ (3,3), is a wide filament oriented in the southeast/northwest direction (Figure 3). NH₃ (3,3) emission is detected from the 'N' and 'M' sub-millimeter cores, as well as likely (3,3) masers in the south (Martín-Pintado *et al.* 1999). Emission from most other molecules is confined to N, although all three sub-millimeter cores (N,M,S) are detected in J₂-J₁ E-type CH₃OH transitions. In the primary hot core in N (SMA-1, v~63 km s⁻¹), emission from these lines of CH₃OH and its ¹³C isotopologue, as well as from a torsionally-excited line of A⁺-type CH₃OH (12₂- 11₁, v_T=1) traces a ringlike structure of diameter 5" (Figure 3), first mapped in CH₃CH₂CN

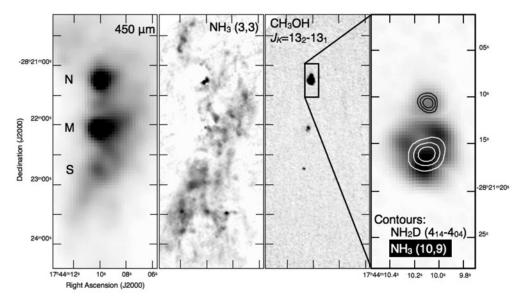


Figure 3. Peak intensity maps of NH_3 (3,3) (center) and CH_3OH 13₂-13₁ (Rightmost two panels) in Sgr B2, compared to 450 micron dust continuum (Left; Pierce-Price *et al.* 2000). The far-right panel shows a zoom of Sgr B2-N and the two hot cores: SMA-1 (white contours) the most chemically-rich source in this survey and the location of the strongest non-metastable NH_3 emission, and SMA-2 (black contours), where we detect NH_2D .

(Hollis *et al.* 2003). A second hot core in N (SMA-2, $v \sim 75 \text{ km s}^{-1}$, 5" to the north; Liu & Snyder 1999, Qin *et al.* 2011) is also seen in the J₂-J₁ lines of CH₃OH and ¹³CH₃OH.

Metastable NH₃ emission in SMA-1, as previously detected by Vogel *et al.* (1987), is extremely optically thick: hyperfine satellites are clearly detected in all lines, including (9,9). Emission from the NH₃ satellite lines (which are more optically thin than the main lines) as well as the optically-thin isotopologue ¹⁵NH₃, peaks on the southern edge of this ring, and is roughly co-spatial with emission from vibrationally-excited transitions of HC₃N and non-metastable NH₃. However, the 4_{14} - 4_{04} transition of singly-deuterated ammonia (NH₂D) is not detected toward SMA-1, and is only seen toward SMA-2, suggesting the deuterated fraction of this core may be higher than previously estimated for 'N' as a whole (Peng *et al.* 1993).

References

Bally, J., Stark, A., Wilson, T. L., & Henkel, C. 1987, ApJS 65, 13

Coil, A. L. & Ho, P. T. P. 2000, ApJ 533, 245

De Pree, C. G., Goss, W. M., & Gaume, R. A. 1998, ApJ 500, 847

Güsten, R. & Downes, D. 1983, A&A 117, 343

Herrnstein, R. M. & Ho, P. T. P. 2005, ApJ 620, 287

Hollis, J. M., Pedelty, J. A., Boboltz, D. A., Liu, S.-Y., Snyder, L. E., et al. 2005, ApJ 596, L235

Jones, P. A., Burton, M. G., Cunningham, M. R., Tothill, N., & Walsh, A. 2005, MNRAS 433, 221

Kauffmann, J., Pillai, T., & Zhang, Q. 2013, ApJ 765, L35

Lis, D. C., Menten, K. M., Serabyn, E., & Zylka, R. 1994, ApJ 423, L39

Liu, S.-Y. & Snyder, L. E. 1999, ApJ 523, 683

Longmore, S. N., Rathborne, J., Bastian, N., Alves, J., Ascenso, J., et al. 2005, ApJ 746, 117 Martín, S., Martín-Pintado, J., Montero-Castaño, M., Ho, P. T. P., et al. 2012, A&A 539, 21 Martín-Pintado, J., Gaume, R. A., Rodríguez-Fernández, N., et al. 1999, ApJ 519, 667

- Mills, E. A. C. & Morris, M. R. 2013, ApJ 772, 105
- Peng, Y., Vogel, S. N., & Carlstrom, J. E. 1993, ApJ 418, 255
- Pierce-Price, D., Richer, J. S., Greaves, J. S., Holland, W. S., et al. 2000, ApJ 545, L121
- Qin, S. L., Schilke, P., Rolffs, R., Comito, C., Lis, D. C., & Zhang, Q. 2011, A&A 530, L9
- Sjouwerman, L. O., Lindqvist, M., van Langevelde, H. J., & Diamond, P. J. 2002, $A\mathscr{C}A$ 391, 967
- Sjouwerman, L. O., Pihlström, Y. M., & Fish, V. L. 2010, ApJ 710, L111
- Vogel, S. N., Genzel, R., & Palmer, P. 1987, ApJ 316, 243
- Yusef-Zadeh, F., Braatz, J., Wardle, M., & Roberts, D. 2008, ApJ 683, L147