A NOTE ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION WITH A GENERAL ERROR FUNCTION

AI-HUA FAN

Department of Mathematics, Wuhan University, Wuhan, Hubei, 430072, P.R.China and LAMFA, CNRS UMR 6140, Université de Picardie, 80039 Amiens, France e-mail: aihua.fan@u-picardie.fr

and JUN WU

Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China and LAMFA, CNRS UMR 6140, Université de Picardie, 80039 Amiens, France e-mail: wujunyu@public.wh.hb.cn

(Received 22 November, 2004; revised 17 January, 2006; accepted 10 February, 2006)

Abstract. Let α be an irrational number and $\varphi \colon \mathbb{N} \to \mathbb{R}^+$ be a decreasing sequence tending to zero. Consider the set

 $E_{\varphi}(\alpha) = \{\beta \in \mathbb{R} : \|n\alpha - \beta\| < \varphi(n) \text{ holds for infinitely many } n \in \mathbb{N}\},\$

where $\|\cdot\|$ denotes the distance to the nearest integer. We show that for general error function φ , the Hausdorff dimension of $E_{\varphi}(\alpha)$ depends not only on φ , but also heavily on α . However, recall that the Hausdorff dimension of $E_{\varphi}(\alpha)$ is independent of α when $\varphi(n) = n^{-\gamma}$ with $\gamma > 1$.

2000 Mathematics Subject Classification. 11J83, 28A80.

1. Introduction. Let α be an irrational real number. Minkowski [9] showed that the inequality

$$\|n\alpha - \beta\| < \frac{1}{4n}$$

has infinitely many solutions for any β which is not in the orbit of α , i.e. $\beta \notin \mathbb{Z} + \alpha \mathbb{Z}$. In general the constant $\frac{1}{4}$ is the best possible (see [4]). In 1999, Bernik and Dodson [1, p. 105] considered the set of real numbers which are well approximated by $(\{n\alpha\})_{n>1}$:

$$E_{\gamma}(\alpha) = \left\{ \beta \in \mathbb{R} : \|n\alpha - \beta\| < \frac{1}{n^{\gamma}} \text{ holds for infinitely many } n \in \mathbb{N} \right\}$$

where $\gamma > 1$ and $\{\cdot\}$ denotes the fractional part. They proved that the Hausdorff dimension of $E_{\gamma}(\alpha)$ satisfies

$$\frac{1}{\omega\gamma} \le \dim E_{\gamma}(\alpha) \le \frac{1}{\gamma} \tag{1}$$

where $\omega \ge 1$ is any positive number for which

$$||n\alpha|| \ge \frac{1}{n^{\omega}}$$
 for all sufficiently large integers *n*. (2)

This, together with Khintchine's theorem, see [3, Theorem 1.10], implies that for almost all real numbers α (with respect to the Lebesgue measure)

$$\dim E_{\gamma}(\alpha) = \frac{1}{\gamma}.$$
(3)

In 2003, Bugeaud [2], Schmeling and Troubetzsky [10] improved, independently, the above result due to Bernik and Dodson as follows.

THEOREM 1 (Bugeaud-Schmeling-Troubetzsky). For any irrational number α ,

$$\dim E_{\gamma}(\alpha) = \frac{1}{\gamma}.$$

Schmeling and Troubetzsky [10] used Theorem 1 and an inhomogeneous version of Jarník-Besicovitch theorem to show some strong recurrence properties of the billiard flow in certain polygons.

In this note we would like to know what happens when $n^{-\gamma}$ is replaced by a general decreasing sequence. Let $\varphi \colon \mathbb{N} \to \mathbb{R}^+$ be a function satisfying the following hypothesis

$$\varphi(n) \downarrow 0 \text{ as } n \to \infty, \qquad n\varphi(n) \le \frac{1}{2} \text{ for large } n.$$
 (H)

Let α be an irrational number. Consider the set

$$E_{\varphi}(\alpha) = \{\beta \in \mathbb{R} : \|n\alpha - \beta\| < \varphi(n) \text{ holds for infinitely many } n \in \mathbb{N}\}.$$

It may be proved that for almost all real numbers α ,

$$\dim E_{\varphi}(\alpha) = \limsup_{n \to \infty} \frac{\log n}{-\log \varphi(n)}.$$
(4)

In fact, the lower bound of dim $E_{\varphi}(\alpha)$ can be deduced from [1, Theorem 5.1] and the arguments in [1, p. 105]. The upper bound is a consequence of Theorem 1 (see also the formula (6) below). The formula (4) also holds when α is an irrational number with bounded partial quotients (see the remark at the end of the note).

All these results show that the formula (4) doesn't depend on α in all cases studied. However, as we shall prove, in general the Hausdorff dimension of $E_{\varphi}(\alpha)$ depends not only on φ , but also heavily on α . The formula (4) is not always true.

THEOREM 2. There exist an irrational number α_0 and a function $\varphi \colon \mathbb{N} \to \mathbb{R}^+$ satisfying (H) such that

$$\limsup_{n\to\infty}\frac{\log n}{-\log\varphi(n)}>0, \quad but \quad \dim E_{\varphi}(\alpha_0)=\liminf_{n\to\infty}\frac{\log n}{-\log\varphi(n)}=0.$$

188

2. Proof of Theorem 2. Define

$$l(\varphi) = \limsup_{n \to \infty} \frac{\log n}{-\log \varphi(n)}, \quad u(\varphi) = \liminf_{n \to \infty} \frac{\log n}{-\log \varphi(n)}.$$
 (5)

These quantities $l(\varphi)$ and $u(\varphi)$ are closely related to the upper and lower orders at infinity of $1/\varphi$, used by Dodson [6] (see also Dodson [7] and Dickinson [5]) to generalize the Jarník-Besicovitch theorem. We remark that it is easy to deduce from Theorem 1 that for any irrational number α ,

$$u(\varphi) \le \dim E_{\varphi}(\alpha) \le l(\varphi).$$
(6)

For a given irrational number $\alpha \in (0, 1)$, let $[0; a_1, a_2, \dots, a_n, \dots]$ be the simple continued fraction expansion of α . The convergents are obtained via finite truncations

$$\frac{p_n}{q_n} := [0; a_1, a_2, \cdots, a_n]$$

With the convention $p_{-1} = q_0 = 1$, $q_{-1} = p_0 = 0$, we have the well known recursive relations

$$p_n = a_n p_{n-1} + p_{n-2} \quad \text{for } n \ge 1,$$
 (7)

$$q_n = a_n q_{n-1} + q_{n-2} \quad \text{for } n \ge 1.$$
 (8)

We are now going to construct our desired number $\alpha_0 \in (0, 1)$ and sequence $(\varphi(n))_{n \ge 1}$ satisfying (H).

Construct $\alpha_0 = [0; a_1, a_2, \dots, a_n, \dots]$ by choosing a_n in the following recursive way,

$$a_1 = 1$$
, $a_{n+1} = 2^{3q_n}$ for any $n \ge 1$

where the q_n are recursively determined by (8). For any $k \ge 1$, write

$$N_k = q_{k-1} + q_k + a_{k+1}^{1/3} \cdot q_k - 1.$$

Let $1 < \gamma < 2$. Define

$$\varphi(n) = \frac{1}{N_k^{\gamma}}, \text{ if } N_{k-1} < n \le N_k.$$

It is easy to check that

$$l(\varphi) = \frac{1}{\gamma}, \quad u(\varphi) = 0.$$

It remains to prove dim $E_{\varphi}(\alpha_0) = 0$ for the above defined α_0 and φ . At first we prove that dim $(E_{\varphi}(\alpha_0) \cap [0, 1)) = 0$. Obviously we can regard \mathbb{R}/\mathbb{Z} as [0, 1). For any $k \ge 1$, we consider the finite sequence of points $\{n\alpha_0\}$ with $q_{k-1} + q_k \le n < q_k + q_{k+1}$. The distribution of these points is well described by Three Distance Theorem (see Halton [8] or Slater [11]). Since $q_k + q_{k+1} = q_{k-1} + q_k + a_{k+1} \cdot q_k$ (see (8)), any *n* satisfying $q_{k-1} + q_k \le n < q_k + q_{k+1}$ can be written as

$$n = q_{k-1} + q_k + t \cdot q_k + m$$
, with $0 \le t < a_{k+1}$ and $0 \le m < q_k$.

For any fixed $0 \le m < q_k$, we call $\{(q_{k-1} + q_k + t \cdot q_k + m)\alpha_0, 0 \le t < a_{k+1}\}$ the *m*th subsequence. Thus the finite sequence $\{n\alpha_0, q_{k-1} + q_k \le n < q_k + q_{k+1}\}$ can be decomposed into q_k subsequences of length a_{k+1} corresponding to $m = 0, 1, \ldots, q_k - 1$. For any fixed $0 \le m < q_k$, consider the set of points

$$A_k(m) := \left\{ \{ (q_{k-1} + q_k + i \cdot q_k + m)\alpha_0 \}, \ i = 0, 1, \cdots, a_{k+1}^{1/3} - 1 \right\}$$

which consists of the first $a_{k+1}^{1/3}$ points in the *m*th subsequence and $\bigcup_{m=0}^{q_k-1} A_k(m)$ coincides with $\{n\alpha_0\}$ for which $q_{k-1} + q_k \le n \le N_k$. Observe that the distance of two consecutive points in $A_k(m)$ satisfies

$$\begin{aligned} \|(q_{k-1} + q_k + (i+1) \cdot q_k + m)\alpha_0 - (q_{k-1} + q_k + i \cdot q_k + m)\alpha_0\| \\ &= \|q_k\alpha_0\| < \frac{1}{q_{k+1}} < \frac{1}{a_{k+1} \cdot q_k}. \end{aligned}$$

It follows that for any two points $x, y \in A_k(m)$ we have

$$\|x - y\| < \frac{1}{a_{k+1}^{2/3} \cdot q_k}$$

When k is large enough, we have $\frac{1}{a_{k+1}^{2/3}, q_k} \leq N_k^{-\gamma}$. Thus for large k we have

$$\bigcup_{i=0}^{a_{k+1}^{i/3}-1} B\big(\{(q_{k-1}+q_k+i\cdot q_k+m)\alpha_0\}, N_k^{-\gamma}\big) \subset B\big(\{(q_{k-1}+q_k+m)\alpha_0\}, 3N_k^{-\gamma}\big),$$

where B(x, r) denotes the ball with centre x and radius r. Consequently, for any integer $n \ge 1$ the set $E_{\varphi}(\alpha_0) \bigcap [0, 1)$ is contained in

$$\bigcup_{k=n}^{\infty} \left(\bigcup_{m=0}^{q_{k}-1} B(\{(q_{k-1}+q_{k}+m)\alpha_{0}\}, 3N_{k}^{-\gamma}) \bigcup \bigcup_{p=N_{k}+1}^{q_{k}+q_{k+1}-1} B(\{p\alpha_{0}\}, N_{k+1}^{-\gamma}) \right).$$

Then, for any s > 0, by the definitions of α_0 and φ , we can estimate the *s*-dimensional Hausdorff measure as follows:

$$\begin{aligned} \mathcal{H}^{s}(E_{\varphi}(\alpha_{0})\cap[0,1)) &\leq \liminf_{n\to\infty}\sum_{k=n}^{\infty}\left[q_{k}\left(6N_{k}^{-\gamma}\right)^{s} + \left(a_{k+1} - a_{k+1}^{1/3}\right)\cdot q_{k}\cdot\left(2N_{k+1}^{-\gamma}\right)^{s}\right] \\ &\leq \liminf_{n\to\infty}\sum_{k=n}^{\infty}\left[q_{k}\left(6N_{k}^{-\gamma}\right)^{s} + a_{k+1}\cdot q_{k}\cdot\left(2N_{k+1}^{-\gamma}\right)^{s}\right] = 0.\end{aligned}$$

Thus dim $(E_{\varphi}(\alpha_0) \cap [0, 1)) = 0$. Since $E_{\varphi}(\alpha_0)$ is invariant under translations by \mathbb{Z} , so the full theorem follows from the conclusion in the unit interval.

Using the similar idea as that in Bugeaud [2], Schmeling and Troubetzsky [10], we can get the following result (the details are omitted).

THEOREM 3. If α is an irrational number with bounded partial quotients and φ : $\mathbb{N} \to \mathbb{R}^+$ is a function satisfying (H), we have

$$\dim E_{\varphi}(\alpha) = u(\varphi).$$

REFERENCES

1. V. I. Bernik and M. M. Dodson, *Metric diophantine approximation on manifolds*, Cambridge Tracts in Mathematics **137** (Cambridge University Press 1999).

2. Y. Bugeaud, A note on inhomogeneous Diophantine approximation, *Glasgow Math. J.* 45 (2003), 105–110.

3. Y. Bugeaud, *Approximation by algebraic numbers*, Cambridge Tracts in Mathematics **160** (Cambridge University Press 2004).

4. J. W. S. Cassels, *An introduction to Diophantine approximation*, Cambridge Tracts in Math. and Math. Phys. **99** (Cambridge University Press 1957).

5. H. Dickinson, A remark on a theorem of Jarník, Glasgow Math. J. 39 (1997), 233–236.

6. M. M. Dodson, Hausdorff dimension, lower order and Khintchine's theorem in metric Diophantine approximation, *J. Reine Angew. Math.* **432** (1992), 69–76.

7. M. M. Dodson, Geometric and probabilistic ideas in the metrical theory of Diophantine approximation, *Russian Math. Surveys* **48** (1993), 73–102.

8. J. H. Halton, The distribution of the sequence $\{n\xi\}(n = 0, 1, 2, ...)$, *Proc. Cambridge Phil. Soc.* **61** (1965), 665–670.

9. H. Minkowski, Diophantische Approximationen (Teubner: Leipzig, Berlin 1907).

10. J. Schmeling and S. Troubetzkoy, Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons, *Math. Sbornik* **194** (2003), 295–309.

11. N. B. Slater, Gaps and steps for the sequence $n\theta \mod 1$, *Proc. Cambridge Phil. Soc.* **63** (1967), 1115–1123.