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Abstract. Let α be an irrational number and ϕ: � → �+ be a decreasing sequence
tending to zero. Consider the set

Eϕ(α) = {β ∈ � : ‖nα − β‖ < ϕ(n) holds for infinitely many n ∈ �},

where ‖·‖ denotes the distance to the nearest integer. We show that for general error
function ϕ, the Hausdorff dimension of Eϕ(α) depends not only on ϕ, but also heavily
on α. However, recall that the Hausdorff dimension of Eϕ(α) is independent of α when
ϕ(n) = n−γ with γ > 1.

2000 Mathematics Subject Classification. 11J83, 28A80.

1. Introduction. Let α be an irrational real number. Minkowski [9] showed that
the inequality

‖nα − β‖ <
1

4n

has infinitely many solutions for any β which is not in the orbit of α, i.e. β �∈ � + α�.
In general the constant 1

4 is the best possible (see [4]). In 1999, Bernik and Dodson [1,
p. 105] considered the set of real numbers which are well approximated by ({nα})n≥1:

Eγ (α) =
{
β ∈ � : ‖nα − β‖ <

1
nγ

holds for infinitely many n ∈ �

}

where γ > 1 and {·} denotes the fractional part. They proved that the Hausdorff
dimension of Eγ (α) satisfies

1
ωγ

≤ dim Eγ (α) ≤ 1
γ

(1)
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where ω ≥ 1 is any positive number for which

‖nα‖ ≥ 1
nω

for all sufficiently large integers n. (2)

This, together with Khintchine’s theorem, see [3, Theorem 1.10], implies that for almost
all real numbers α (with respect to the Lebesgue measure)

dim Eγ (α) = 1
γ

. (3)

In 2003, Bugeaud [2], Schmeling and Troubetzsky [10] improved, independently, the
above result due to Bernik and Dodson as follows.

THEOREM 1 (Bugeaud-Schmeling-Troubetzsky). For any irrational number α,

dim Eγ (α) = 1
γ

.

Schmeling and Troubetzsky [10] used Theorem 1 and an inhomogeneous version
of Jarnı́k-Besicovitch theorem to show some strong recurrence properties of the billiard
flow in certain polygons.

In this note we would like to know what happens when n−γ is replaced by a general
decreasing sequence. Let ϕ: � → �+ be a function satisfying the following hypothesis

ϕ(n) ↓ 0 as n → ∞, nϕ(n) ≤ 1
2

for large n. (H)

Let α be an irrational number. Consider the set

Eϕ(α) = {β ∈ � : ‖nα − β‖ < ϕ(n) holds for infinitely many n ∈ �} .

It may be proved that for almost all real numbers α,

dim Eϕ(α) = lim sup
n→∞

log n
− log ϕ(n)

. (4)

In fact, the lower bound of dim Eϕ(α) can be deduced from [1, Theorem 5.1] and the
arguments in [1, p. 105]. The upper bound is a consequence of Theorem 1 (see also the
formula (6) below). The formula (4) also holds when α is an irrational number with
bounded partial quotients (see the remark at the end of the note).

All these results show that the formula (4) doesn’t depend on α in all cases studied.
However, as we shall prove, in general the Hausdorff dimension of Eϕ(α) depends not
only on ϕ, but also heavily on α. The formula (4) is not always true.

THEOREM 2. There exist an irrational number α0 and a function ϕ: � → �+

satisfying (H) such that

lim sup
n→∞

log n
− log ϕ(n)

> 0, but dim Eϕ(α0) = lim inf
n→∞

log n
− log ϕ(n)

= 0.
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2. Proof of Theorem 2. Define

l(ϕ) = lim sup
n→∞

log n
− log ϕ(n)

, u(ϕ) = lim inf
n→∞

log n
− log ϕ(n)

. (5)

These quantities l(ϕ) and u(ϕ) are closely related to the upper and lower orders at
infinity of 1/ϕ, used by Dodson [6] (see also Dodson [7] and Dickinson [5]) to generalize
the Jarnı́k-Besicovitch theorem. We remark that it is easy to deduce from Theorem 1
that for any irrational number α,

u(ϕ) ≤ dim Eϕ(α) ≤ l(ϕ). (6)

For a given irrational number α ∈ (0, 1), let [0; a1, a2, · · · , an, · · ·] be the simple
continued fraction expansion of α. The convergents are obtained via finite truncations

pn

qn
:= [0; a1, a2, · · · , an].

With the convention p−1 = q0 = 1, q−1 = p0 = 0, we have the well known recursive
relations

pn = anpn−1 + pn−2 for n ≥ 1, (7)

qn = anqn−1 + qn−2 for n ≥ 1. (8)

We are now going to construct our desired number α0 ∈ (0, 1) and sequence
(ϕ(n))n≥1 satisfying (H).

Construct α0 = [0; a1, a2, . . . , an, . . .] by choosing an in the following recursive way,

a1 = 1, an+1 = 23qn for any n ≥ 1

where the qn are recursively determined by (8). For any k ≥ 1, write

Nk = qk−1 + qk + a1/3
k+1 · qk − 1.

Let 1 < γ < 2. Define

ϕ(n) = 1
Nγ

k

, if Nk−1 < n ≤ Nk.

It is easy to check that

l(ϕ) = 1
γ

, u(ϕ) = 0.

It remains to prove dim Eϕ(α0) = 0 for the above defined α0 and ϕ. At first we prove
that dim(Eϕ(α0)

⋂
[0, 1)) = 0. Obviously we can regard �/� as [0, 1). For any k ≥ 1,

we consider the finite sequence of points {nα0} with qk−1 + qk ≤ n < qk + qk+1. The
distribution of these points is well described by Three Distance Theorem (see Halton
[8] or Slater [11]). Since qk + qk+1 = qk−1 + qk + ak+1 · qk (see (8)), any n satisfying
qk−1 + qk ≤ n < qk + qk+1 can be written as

n = qk−1 + qk + t · qk + m, with 0 ≤ t < ak+1 and 0 ≤ m < qk.
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For any fixed 0 ≤ m < qk, we call {(qk−1 + qk + t · qk + m)α0, 0 ≤ t < ak+1} the mth
subsequence. Thus the finite sequence {nα0, qk−1 + qk ≤ n < qk + qk+1} can be de-
composed into qk subsequences of length ak+1 corresponding to m = 0, 1, . . . , qk − 1.
For any fixed 0 ≤ m < qk, consider the set of points

Ak(m) :=
{
{(qk−1 + qk + i · qk + m)α0}, i = 0, 1, · · · , a1/3

k+1 − 1
}

which consists of the first a1/3
k+1 points in the mth subsequence and

⋃qk−1
m=0 Ak(m) coincides

with {nα0} for which qk−1 + qk ≤ n ≤ Nk. Observe that the distance of two consecutive
points in Ak(m) satisfies

‖(qk−1 + qk + (i + 1) · qk + m)α0 − (qk−1 + qk + i · qk + m)α0‖
= ‖qkα0‖ <

1
qk+1

<
1

ak+1 · qk
.

It follows that for any two points x, y ∈ Ak(m) we have

‖x − y‖ <
1

a2/3
k+1 · qk

.

When k is large enough, we have 1
a2/3

k+1·qk
≤ N−γ

k . Thus for large k we have

a1/3
k+1−1⋃
i=0

B
({(qk−1 + qk + i · qk + m)α0}, N−γ

k

) ⊂ B
({(qk−1 + qk + m)α0}, 3N−γ

k

)
,

where B(x, r) denotes the ball with centre x and radius r. Consequently, for any integer
n ≥ 1 the set Eϕ(α0)

⋂
[0, 1) is contained in

∞⋃
k=n

⎛
⎝qk−1⋃

m=0

B
({(qk−1 + qk + m)α0}, 3N−γ

k

) ⋃ qk+qk+1−1⋃
p=Nk+1

B
({pα0}, N−γ

k+1

)⎞⎠ .

Then, for any s > 0, by the definitions of α0 and ϕ, we can estimate the s-
dimensional Hausdorff measure as follows:

Hs(Eϕ(α0) ∩ [0, 1)) ≤ lim inf
n→∞

∞∑
k=n

[
qk

(
6N−γ

k

)s + (
ak+1 − a1/3

k+1

) · qk · (
2N−γ

k+1

)s
]

≤ lim inf
n→∞

∞∑
k=n

[
qk

(
6N−γ

k

)s + ak+1 · qk · (
2N−γ

k+1

)s
]

= 0.

Thus dim(Eϕ(α0) ∩ [0, 1)) = 0. Since Eϕ(α0) is invariant under translations by �, so the
full theorem follows from the conclusion in the unit interval. �

Using the similar idea as that in Bugeaud [2], Schmeling and Troubetzsky [10], we
can get the following result (the details are omitted).

THEOREM 3. If α is an irrational number with bounded partial quotients and ϕ:
� → �+ is a function satisfying (H ), we have

dim Eϕ(α) = u(ϕ).
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