ORDER AND NORM CONVERGENCE IN BANACH LATTICES

by ANDREW WIRTH†

(Received 27 June, 1972; revised 19 September, 1972)

Let \((V, \leq, \| \cdot \|) \) be a Banach lattice, and denote \(V\setminus\{0\} \) by \(V' \). For the definition of a Banach lattice and other undefined terms used below, see Vulikh [4]. Leader [3] shows that, if norm convergence is equivalent to order convergence for sequences in \(V \), then the norm is equivalent to an \(M \)-norm. By assuming the equivalence for nets in \(V \) we can strengthen this result.

THEOREM. Let \((V, \leq, \| \cdot \|) \) be a Banach lattice; then the following statements are equivalent:

(i) Norm convergence is equivalent to order convergence, for nets in \(V \).

(ii) \(V \) is finite-dimensional.

Proof. (i) implies (ii). If \(\alpha, \beta \in V' \), write \(\alpha \leq \beta \) to mean \(\| \alpha \| \geq \| \beta \| \). Then \((V', \leq) \) is a preordered set directed to the right. Let \(x_a = \alpha \) for all \(\alpha \in V' \); then \(\liminf x_a = 0 \), and so \(0\text{-lim} x_a = 0 \). Hence \((V, \leq) \) has a strong unit, \(e \) say. Define \(\| \cdot \|_e \) by \(\| x \|_e = \inf \{ \lambda : \| x \| \leq \lambda e \} \), for \(x \in V \). By Birkhoff [1], \(\| \cdot \| \) and \(\| \cdot \|_e \) are equivalent norms. In fact \((V, \leq, \| \cdot \|_e) \) is a Banach lattice with unity \(e \) and so an \(M \)-space, Birkhoff [1]. So \((V, \leq, \| \cdot \|_e) \) is isomorphic with \((C(X), \leq, \text{sup norm}) \), \(X \) compact Hausdorff, by Kelley and Namioka [2].

Let \(x_0 \in X \) and let \(g \) be the characteristic function for the point \(x_0 \). Define

\[
F = \{ f \in C(X) : f \geq 0 \quad \text{and} \quad f(x_0) = 1 \};
\]

then \((F, \geq) \) is directed to the right. Let \(f_\alpha = \alpha \) for all \(\alpha \in F \). Then, by Urysohn’s Lemma, \(f_\alpha \downarrow g \) pointwise. If \(g \in C(X) \), then \(0\text{-lim} f_\alpha = g \); otherwise \(0\text{-lim} f_\alpha = 0 \). Now \(\| \cdot \|_e - \lim f_\alpha = 0 \) is impossible; so \(g \in C(X) \). Hence \(\{ x_0 \} \) is open; so \(X \) is discrete and hence finite.

(ii) implies (i). The proof of this is trivial.

The author is grateful to the referee for suggesting an improvement to the paper.

REFERENCES

MONASH UNIVERSITY

CLAYTON, VICTORIA, AUSTRALIA, 3168

† This research was supported by a Commonwealth Postgraduate Research Award.