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ON CONVERSE DUALITY FOR A
NONDIFFERENTIABLE PROGRAM

T.R. GuLATI

A nonlinear nondifferentiable program with linear constraints is
considered and a converse duality theorem is discussed. First we
weaken an assumption previously made by Bhatia, and then give a
simple proof under this weaker hypothesis, using the Fritz John
conditions. Finally, defining a generalized Slater constraint
qualification which implies Abadie's constraint qualification, we
give a simple condition for the dual problem to satisfy this

constraint qualification.

1. Introduction

Consider the pair of problems:

t .
PRIMAL PROBLEM: Maximize flx) =p'z - % (x'Dlx)%
=
Subject to Ax = .
x =0 ;

and
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DUAL PROBLEM:

Minimize hly) =b'y
Loy
Subject to A'y + Y Dw, zp,
=1
7 .
wéDwisl, t1=1,2, ..., t,
y =0,

where A is an m X»n matrix, b is an m-dimensional vector, p is an

n-dimensional vector and D° (i = 1, 2, ..., t) are n xn symmetric
positive semidefinite matrices. These problems were first considered by

Sinha [13], who proved these results:
THEOREM 1 (Weak Duality Theorem). Sup f(x) < Inf h(y) .

THEOREM 2 (Direct Duality Theorem). Assume that the constraint set
of the primal problem is bounded. If x 1is an optimal solution of the

primal problem, then there exists an optimal solution (g, Ei) R

1 =1, 2, ..., t , of the dual problem and the two optimal values are
equal.

THEOREM 3 (Converse Duality Theorem). Assume that the constraint
set of the primal problem ig bounded. If (y, Qi) s 1=1,2, ..., t, 18

an optimal solution of the dual problem, then there exists a vector % ,
which is optimal for the primal problem and the two optimal values are

equal.

To prove Theorem 3, Sinha used Eisenberg's duality in homogeneous
programming [5]. Bhatia [3] proved Theorem 2 without the boundedness
restriction on the primal constraint set. She also observed that if this
assumption is removed, Sinha's proof of Theorem 3 is still valid under the

less restrictive Eisenberg's hypothesis, namely
(1) Az =0, 220, flx)20=x2=0.

Mond [9] studied duality for a complex version (with ¢ = 1 ) of the
above problems. He proved a converse duality theorem assuming the Kuhn-

Tucker constraint qualification for the dual problem.

This paper is divided into four sections. 1In the second section we
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prove a converse duality theorem under an assumption weaker than (1). This
proof depends on Sinha's proof of Theorem 3 and on some of the results of
Bhatia [3]. A simpler proof, using the well-known Fritz John necessary
optimality conditions, is then given in Section 3. 1In the last section,
defining a generalized Slater constraint gqualification which implies
Abadie's constraint qualification, we give a simple condition for the dual

problem to satisfy this constraint qualification.

For notations and definitions of convex-like functions we refer to

Mangasarian [§].

2. Converse duality theorem
We shall need the following lemmas:
xn . . .. .
LEMMA 1 [3]. Let D ¢ R’ be a positive semidefinite matri.
Then
- — - =%
[(xc+z) 'D(2+2)]? =< (x'Dx)% + (x'Dx)* .
LEMMA 2. If the dual problem is feasible and h(y) is bounded
below, then
(a) the primal problem is feasible, and
(b) the set S ={x | Ax =0, z =0, flz) >0} is empty.
Proof. (a) The proof is given in [3].
(b) From (a) the primal problem is feasible. Suppose x € S . Then
for a feasible solution x of the primal problem and any nonnegative

number A , x + Ax is feasible for the primal problem. Also, using Lemma
1,

t .
p'(zE) - ¥ [(and) 0 (zn13)]*

1=1

flx+Ax)

n

v

t ne © L
p'(x+xx) - ¥ [(z'D*z)%+r(z'0%%)7]
i=1

flx) + Af(z) .

Since f(z) > 0 , the above inequality implies that f(z+AZ) + » as
A + o . Therefore, from Theorem 1, the dual problem is infeasible. This

contradicts the hypothesis. Hence the set S is empty.
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THEOREM 4. Asswme that
(2) Ax =0, 220, flz)=0xz=0.
5 (v, ﬁi) , i=1,2, ..., t, is an optimal solution of the dual

problem, then there exists a vector & , which is optimal for the primal

problem and the two optimal values are equal.

Proof. Since the dual problem has an optimal solution, by Lemma 2,
the set S is empty. This, with (2), implies condition (1). The proof
then follows from Bhatia [3] and Sinha [713].

3. A simple proof using Fritz John conditions

The above proof of Theorem 4 depends on some of the results of Bhatia
[3] and on Sinha's proof of Theorem 3. This makes the whole proof lengthy
and complicated. We now give a simpler proof using the well-known Fritz
John necessary optimality conditions. In fact, observations of the last
section are outcomes of this section. Mond [10] has also used the Fritz
John conditions to prove a converse duality theorem for a more general
class of problems but his hypothesis is not satisfied by our problems. See
[4], for a discussion of the advantages of using the Fritz John conditions

rather than the Kuhn-Tucker conditions to prove converse duality.

We first state the following lemma:

LEMMA 3 [6], [10]. Let D ¢ A" be a symmetric positive semi-

definite matrix. Then

(3) Do < (2'Dx)¥(w'w)¥ .

IA

Equality holds if, for some X = 0, Dx = Aw .

An Alternative Proof of Theorem 4 - Since (y, Gi) s

2=1, 2, ..., t , is an optimal solution of the dual problem, by the Fritz

John Theorem (Theorem 7.3.2 in [8]), there exist » € R , I € o4 .

aecr . 5i €R t=1,2, ..., t , satisfying
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(%) AT +7h=u=0,
i- = i )
(5) Dx-vtii—0,1—1,2,.,t,
t . !
(6) p-A'5 - ¥ D'”Z:i z=0,
1=1
= 1pts = -
(1) [sz wi'l]vi =0, 1=1,2, , t,
(8) =0,
(9) (-i', &, a, .l_)l’ 52, sy z—Jt] z O bl
(10) (7, CA O vt) £0 .

We now show that P > 0 and X% = x/r is feasible for the primal

problem. If possible, let 2 =0 . Then, from (4),
(11) A = -u <0 .

Also, from (L4) and (8),

(12) y'dx = -y'u =0 .

Since (5) is the condition of equality in Lemma 3,

%

. . . 2
(13) 20D, = (5'015)%[5é015i] s 1=1,2, cuu, t .
From (7), for each 7 , either 5i =0 or ﬁéDzﬁi =1 . 1In either case,
from (5) and (13) we get
(14) B0, = E0'H)*, i=1,2, ..., t.
Now (14), (6) and (12) give
- R S
fz) =p'z - ¥ (x'D°x)*
1=1

1
<
&
I
™
81
Q%.
(A
o,
| SE—

=y'4x =0 .

Thus we have Ax <0, x>0 and f(z) = 0 . Therefore, from
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assumption (2), x =0 . This, with (5) and (7), implies that 57: =0 for

41=1,2, ..., t , contradicting (10). Hence » > 0 , and from (4) and

X = 0 we obtain that % = x/r is feasible for the primal problem. Also,

as above
t
flzg) =p'z- Y ( 'D :x:)2

=1
t i

=p'E - Y [E'D wi]
i=1

= §'A%

=§'b - §'R/7

= b'g = h(y)

Hence, from Theorem 1, &% is optimal for the primal problem.

REMARK. Note that the above proof gives also the relations
D'% = kiDiﬁi , where Ai = ﬁi/i , between the optimal solutions of the

primal and dual problems. Thus if, for some < , D has an inverse, for
example, if 0t is positive definite, then 2 = Aiﬁi . This fact was also

pointed out by Mond [9]. Sinha's proof does not provide these relations.

However, he obtained them at the end of his paper.

4. Generalized Slater constraint qualification

Francis and Cabot [7] have given an application of Theorems 1 to 3 in
a multifacility location problem wherein the objective function is the sum
of costs which are directly proportional to the Euclidian distances. They
use a converse dquality theorem due to Mond [9], who assumed the Kuhn-Tucker
constraint qualification for the dual problem in order to apply the Kuhn-
Tucker necessary conditions. However, these conditions hold under several
other constraint qualifications [1], [2], [§], [12] and sometimes it is
easier to verify other constraint qualifications than that of Kuhn-Tucker.
For example, in Francis and Cabot's problem the vector p is a zero
vector. There may also be problems in which p 1is the negative of a cost
vector (thus p =0 ). In this section we define a generalized Slater
constraint qualification and give a simple sufficient condition (implied by

P < 0 ) for the dual problem to satisfy this constraint qualification. We
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also show that it implies Abadie's constraint qualification, which in turn
implies ([7], Theorem 3) the Kuhn-Tucker constraint qualification (as
defined in [8], p. 102).

To define some of the constraint qualifications we consider the non-

linear program:
NLP: Minimize 6(x)
Subject to z € S ={z | x € X, g(x) =0},
where X 1is an open set in o ,and 6 and g are respectively a

numerical function and an m-dimensional vector function both defined on

X .
Let z €5 and I = {7 | gi(i) = 0} . The function ¢ is said to
satisfy

(i) Slater's weak constraint qualification [2], [§] at x if

9r is pseudoconvex at Z and there exists an % € S
such that gI(i) <0
(ii) The generalized Slater constraint qualification I [11] on

X if X 1is a convex set, g 1is a convex function on X

and there exists an % € S such that gJ(E) < 0 , where

J={i ] g; is nonlinear} ;

(iii) Abadie's constraint qualification [11, [12] at =z if gr

4is differentiable at x and if

<VgM(:'r:)x >0

VgN(i')x > 0> has a solution X € Rn s

where M = {1 | gi(i) =0 and g is linear} and N = I ~ M .,

We combine the two generalizations of Slater's constraint

qualification to define:

DEFINITION. The function g is said to satisfy the generalized

Slater constraint qualification II at z € S if gy 1is pseudoconvex at z

and there exists an % € § such that gN(i) < 0 , where
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v={i | gi(i) = 0 and g, is nonlinear}

We now show some relations among the above constraint qualifications.
THEOREM 5. Let X, S, I and g be as defined above, and let gr
be differentiable at x € S .

(a) If g satisfies Slater's weak constraint qualification at x or
the generalized Slater constraint qualification I on X , then g

satisfies the generalized Slater constraint qualification II at X .

(b) If g satisfies the generalized Slater constraint qualification

II at x , then g satisfies Abadie's constraint qualification at x .

Proof. (a) With sets N, I, J as defined above, N is a subset of

both I and J , hence the proof is immediate.

(b) Since g satisfies the generalized Slater constraint

qualification II at Z € S there exists an % € S such that
gy(E) <0 = g(3) .
Since 9y is pseudoconvex at x , the above inequality implies
Vg, (8)(8-%) <0 .

Now let M =1~N

{z ] gi(i) = 0and g, is linear} . Therefore

Vg, (3-2) = g,(&) - g,(F) =0 .

8

By taking x = - £ , we have that Vg (Z)x =2 0 and Vg,(x)x > 0 . Hence
M 9y

g satisfies Abadie's constraint qualification at T .

The following examples respectively show that the converses of the

implications in Theorem 5 are not true in general.

EXAMPLE 1. ¥ = B , g(x) = (x1+a: -1, —X -x_+1, -X, _x2) R

2 1 2 1

9(x)=:z:l+2x2, x = (1, 0) .

3 -

EXAMPLE 2. X xz +x, 6z)=-x, x =0.

R

, glx)

EXAMPLE 3. X =R, g(x) =-z> +z, 6(z) =a°, =0 .

In view of Theorem 5 above and Theorem 2 in [/], the Kuhn-Tucker
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necessary conditions hold for NLP if 6 and g are differentiable, and g
satisfies the generalized Slater constraint qualification IT at the optimal
point. We give below a simple sufficient condition for our dual problem to

satisfy the generalized Slater constraint qualification I (and hence II).
THEOREM 6. If the system
(15) A'y 2p, y =20 has a solution,

then the dual problem satisfies the generalized Slater constraint

qualification I.

Proof. Let there exist a 7 = O such that A'J =p . Then
(y, Ei = 0) , 1=1,2, ..., t , is a feasible solution of the dual

problem. Moreover, all the nonlinear constraints, which are differentiable

and convex, hold as striect inequalities. This proves the theorem.

Therefore, using the Kuhn-Tucker necessary condition, we can obtain a
result similar to Theorem b4 with assumption (2) replaced by (15). Also,
note that if p < 0 , then (15) holds. Since in the multifacility location
problem of Francis and Cabot [7] the vector p = 0 , it follows from
Theorems 6 and 5 above and Theorem 3 in [1] that their dual satisfies the

Kuhn-Tucker constraint qualification which, therefore, need not be assumed.
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