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ON CONVERSE DUALITY FOR A
NONDIFFERENTIABLE PROGRAM

T.R. GULATI

A nonlinear nondifferentiable program with linear constraints is

considered and a converse duality theorem is discussed. First we

weaken an assumption previously made by Bhatia, and then give a

simple proof under this weaker hypothesis, using the Fritz John

conditions. Finally, defining a generalized Slater constraint

qualification which implies Abadie's constraint qualification, we

give a simple condition for the dual problem to satisfy this

constraint qualification.

1. Introduction

Consider the pair of problems:

t
PRIMAL PROBLEM: Maximize f(x) = p'x - £

i=l

Subject to Ax 5 b ,

x > 0 ;

and
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7 2 T . R . G u l a t i

DUAL PROBLEM:

Minimize My) = b'y

t .
Sub jec t t o A'y + £ D u . > p ,

W ^ V < 1 , i = 1, 2, ..., t ,

y ± o ,

where <4 is an m x n matrix, 2> is an m-dimensional vector, p is an

w-dimensional vector and D (i = 1, 2, ... , t) are n x n symmetric

positive semidefinite matrices. These problems were first considered by

Sinha [73], who proved these results:

THEOREM 1 (Weak Duality Theorem). Sup f(x) 5 Inf My) .

THEOREM 2 (Direct Duality Theorem). Assume that the constraint set

of the primal problem is bounded. If x is an optimal solution of the

primal problem, then there exists an optimal solution [y, u.) }
"is

£ = 1, 2, ..., t } of the dual problem and the two optimal values are

equal.

THEOREM 3 (Converse Duality Theorem). Assume that the constraint

set of the primal problem is bounded. If [y, w.) , i = l, 2, ... , t , is

an optimal solution of the dual problem, then there exists a vector x }

which is optimal for the primal problem and the two optimal values are

equal.

To prove Theorem 3, Sinha used Eisenberg's duality in homogeneous

programming [5]. Bhatia [3] proved Theorem 2 without the boundedness

restriction on the primal constraint set. She also observed that if this

assumption is removed, Sinha's proof of Theorem 3 is still valid under the

less restrictive Eisenberg's hypothesis, namely

(1) A t 5 0 , I S O , f(x) > 0 =» x = 0 .

Mond [9] studied duality for a complex version (with t = 1 ) of the

above problems. He proved a converse duality theorem assuming the Kuhn-

Tucker constraint qualification for the dual problem.

This paper is divided into four sections. In the second section we
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Converse duality for nondifferentiabIe program 73

prove a converse duality theorem under an assumption weaker than (l). This

proof depends on Sinha's proof of Theorem 3 and on some of the results of

Bhatia [3]. A simpler proof, using the well-known Fritz John necessary

optimality conditions, is then given in Section 3. In the last section,

defining a generalized Slater constraint qualification which implies

Abadie's constraint qualification, we give a simple condition for the dual

problem to satisfy this constraint qualification.

For notations and definitions of convex-like functions we refer to

Mangasarian [S].

2. Converse duality theorem

We shall need the following lemmas:

LEMMA 1 [3]. Let D t. TT n be a positive semidefinite matrix.

Then

[(x+x)'D(x+x)]% 5 (x'Dx)* + (x'Dx)* .

LEMMA 2. If the dual problem is feasible and h(y) is bounded

below, then

(a) the primal problem is feasible, and

(b) the set S = {x | Ax 5 0, x > 0, f(x) > 0} is empty.

Proof. (a) The proof is given in [3].

(b) From (a) the primal problem is feasible. Suppose x € S . Then

for a feasible solution x of the primal problem and any nonnegative

number X , x + Xx is feasible for the primal problem. Also, using Lemma

1,

t . ,
f(x+Xx) = p'(x+Xx) - £ [{x+\x)'Dl(.x+\x)y

i=l

t . . . ,
>p'(x+Xx)- £ [{xlDlx)*+\[x'Dlx)*2

i=\

= fix) + \f(x) .

Since f(x) > 0 , the above inequality implies that /(x+Xx) -»• °° as

X -*•«>. Therefore, from Theorem 1, the dual problem is infeasible. This

contradicts the hypothesis. Hence the set S is empty.
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THEOREM 4. Assume that

(2) Ax 2 0 , x > 0 , fix) = 0 =* x = 0 .

-*/ Q/> "•) * i = 1, 2, ..., t , is an optimal solution of the dual

problem, then there exists a vector x , which is optimal for the primal

problem and the two optimal values are equal.

Proof. Since the dual problem has an optimal solution, by Lemma 2,

the set 5 is empty. This, with (2), implies condition (l). The proof

then follows from Bhatia [3] and Sinha [73].

3. A simple proof using Fritz John conditions

The above proof of Theorem h depends on some of the results of Bhatia

[3] and on Sinha's proof of Theorem 3- This makes the whole proof lengthy

and complicated. We now give a simpler proof using the well-known Fritz

John necessary optimality conditions. In fact, observations of the last

section are outcomes of this section. Mond [70] has also used the Fritz

John conditions to prove a converse duality theorem for a more general

class of problems but his hypothesis is not satisfied by our problems. See

[4], for a discussion of the advantages of using the Fritz John conditions

rather than the Kuhn-Tucker conditions to prove converse duality.

We first state the following lemma:

LEMMA 3 [6], [70]. Let D (. if1 n be a symmetric positive semi-

definite matrix. Then

(3) x'Dw 5 (x'Dx)*(w'Du)* .

Equality holds if, for some A > 0 , Dx = \Dw .

An Alternative Proof of Theorem 4• Since (y, w.) ,

i = l, 2, ..., t , is an optimal solution of the dual problem, by the Fritz

John Theorem (Theorem 7.3.2 in LSI), there exist r i R , x € /?" ,

u € if , V. € R , i = l, 2, ..., t , satisfying
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CO

(5)

(6)

(T)

(8)

(9)

(10)

-Ax + rb = u > 0 ,

%x - v.tfw. = 0 , i = 1, 2, . . . , t ,
Is %

p-A 'y - Y D u,- 5 = 0 ,

w'.D\.-l\v. = 0 , i = 1 , 2 , . . . , * ,
U Is \ Is

p'u = 0 ,

vt) > 0 ,

(r, i51, v2, ..., vt) * 0

We now show that r > 0 and 5 = x/r is feasible for the primal

problem. If possible, let r = 0 . Then, from (U),

(11) Ji = -M 5 0 .

Also, from (it) and (8),

(12) y'Ax = -y'u = 0 .

Since (5) is the condition of equality in Lemma 3,

(13) x'Dzw. = [x'Dlx)*\w'.DLw.\ , i = 1, 2, ..., t .

From (7), for each i , either u. = 0 or w'.D w. = 1 . In either case,
t If tr

from (5) and (13) we get

x'Z?V = (i'D*5)* , % = 1, 2, ..., t .

Now (ll*), (6) and (12) give

fix) = p'x - Y, [x'Dlx)z

= p'x -

= y'Ax = 0 .

Thus we have Ax 5 0 , x > 0 and /(x) = 0 . Therefore, from
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assumption (2), x = 0 . This, with (5) and (7), implies that V. = 0 for

£ = 1, 2, ..., t , contradicting (10). Hence r > 0 , and from (U) and

x > 0 we obtain that x = x/r is feasible for the primal problem. Also,

as above

t . p

f(x) = p'x - £ [x'D1*)*

t r £_
= v'x — V \x'D w.

= y'b - y'u/r

= b'y = My) .

Hence, from Theorem 1, x is optimal for the primal problem.

REMARK. Note that the above proof gives also the relations

D x = X .D w. , where X. = V./r , between the optimal solutions of the

primal and dual problems. Thus if, for some i , D has an inverse, for

example, if D is positive definite, then x = X .w. . This fact was also

pointed out by Mond [9]. Sinha's proof does not provide these relations.

However, he obtained them at the end of his paper.

4. Generalized Slater constraint qualification

Francis and Cabot [7] have given an application of Theorems 1 to 3 in

a multifacility location problem wherein the objective function is the sum

of costs which are directly proportional to the Euclidian distances. They

use a converse duality theorem due to Mond [9], who assumed the Kuhn-Tucker

constraint qualification for the dual problem in order to apply the Kuhn-

Tucker necessary conditions. However, these conditions hold under several

other constraint qualifications [J], [2], [8], [72] and sometimes it is

easier to verify other constraint qualifications than that of Kuhn-Tucker.

For example, in Francis and Cabot's problem the vector p is a zero

vector. There may also be problems in which p is the negative of a cost

vector (thus p 5 0 ). In this section we define a generalized Slater

constraint qualification and give a simple sufficient condition (implied by

p S 0 •) for the dual problem to satisfy this constraint qualification. We
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also show tha t i t implies Abadie's cons t ra in t qua l i f i c a t i on , which in turn

implies ( [ I ] , Theorem 3) the Kuhn-Tucker cons t ra in t qua l i f i ca t ion (as

defined in [ « ] , p . 102).

To define some of the cons t ra in t qua l i f i ca t ions we consider the non-

l i nea r program:

NLP: Minimize 6(x)

Subject to x € S = {x | x € X, g(x) < 0} ,

where X is an open set in It , and 9 and g are respectively a

numerical function and an m-dimensional vector function both defined on

X .

Let x € S and J = {{• \ g . (x) = 0} . The function g is said to
tr

satisfy

(i) Slater's weak constraint qualification [2], [S] at x if

gj is pseudoconvex at x and there exists an x € 5

such that g\-(x) < 0 ;

(ii) The generalized Slater constraint qualification I [II] on

X if X is a convex set, g is a convex function on X

and there exists an x € S such that 9'T(5) < 0 , where

J = {i \ g. is nonlinear} ;

(iii), Abadie's constraint qualification [1], [12] at x if gT

is differentiable at x and if

M(x)x > 0\

v%(x)x > 0/
 h a s a s o l u t i o n

where W = {i | g .(x) = 0 and g. is linear} and N = I ~ M .

We combine the two generalizations of Slater's constraint

qualification to define:

DEFINITION. The function g is said to satisfy the generalized

;r constraint qualification II at x € 5 if g is

and there exists an x € 5 such that ff«(x) < 0 , where

Slater constraint qualification II at x € 5 if g is pseudoconvex at x
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N = {i | g.{x) = 0 and g. is nonlinear} .

We now show some relations among the above constraint qualifications.

THEOREM 5. Let X, S, I and g be as defined above, and let gx

be differentiable at x € S .

(a) If g satisfies Slater's weak constraint qualification at x or

the generalized Slater constraint qualification I on X , then g

satisfies the generalized Slater constraint qualification II at x .

(b) If g satisfies the generalized Slater constraint qualification

II at x s then g satisfies Abadie 's constraint qualification at x .

Proof. (a) With sets N, I, J as defined above, I is a subset of

both I and J , hence the proof is immediate.

(b) Since g satisfies the generalized Slater constraint

qualification II at x € S there exists an x € 5 such that

gN(x) < 0 = gN(x) .

Since g^ is pseudoconvex at x , the above inequality implies

VgN(x)(x-x) < 0 .

Now let M = J ~ N = {i | g.(x) = 0 and g. is linear} . Therefore

VgM(x)(x-x) = gM(x) - g^x) S 0 .

By taking x = x - x , we have that Vg (x)x > 0 and Vg (x)x > 0 . Hence

g satisfies Abadie1s constraint qualification at x .

The following examples respectively show that the converses of the

implications in Theorem 5 are not true in general.

EXAMPLE 1. X = £ , g(x) = (x^-l, -^-a^+l, -*r -*2) ,

0(x) = xi + 2x2 , x = (l, 0) .

EXAMPLE 2. X = R , g(x) = x3 + x , Q(x) = -x , x = 0 .

EXAMPLE 3. X = R , g{x) = -x2 + x , e(x) = x2 , x = 0 .

In view of Theorem 5 above and Theorem 2 in [/], the Kuhn-Tucker
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necessary conditions hold for NLP if 8 and g are differentiate, and g

satisfies the generalized Slater constraint qualification II at the optimal

point. We give below a simple sufficient condition for our dual problem to

satisfy the generalized Slater constraint qualification I (and hence II).

THEOREM 6. If the system

(15) A'y > p j j 2 0 has a solution,

then the dual problem satisfies the generalized Slater constraint

qualification I.

Proof. Let there exist a j > 0 such that A'y > p . Then

(y, w. = o) , i = 1, 2, ..., t , is a feasible solution of the dual

problem. Moreover, all the nonlinear constraints, which are differentiable

and convex, hold as strict inequalities. This proves the theorem.

Therefore, using the Kuhn-Tucker necessary condition, we can obtain a

result similar to Theorem U with assumption (2) replaced by (15). Also,

note that if p - 0 , then (15) holds. Since in the multifacility location

problem of Francis and Cabot [7] the vector p = 0 , it follows from

Theorems 6 and 5 above and Theorem 3 in [/] that their dual satisfies the

Kuhn-Tucker constraint qualification which, therefore, need not be assumed.
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