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ABSTRACT
In the previous works by the authors, an efficient method of control of the inversion of the
spinning spacecraft was proposed. This method was prompted by the Dzhanibekov’s Effect
or Tennis Racket Theorem, which are often seen by many as odd or even mysterious. For
the spacecraft, initially undergoing periodic flipping motion, proposed method allows to
completely stop these flips by transferring the unstable motion into the regular stable spin.
Similarly, the method allows activation of the flipping motion of the spacecraft, which is
initially undergoing its stable spin. In this paper, spacecraft designs, which have inertial mor-
phing capabilities, are considered and their advantages are further investigated. For general
formulation, the ability of the spacecraft to change its inertial properties, associated with
all three principal axes of inertia, are assumed. For simulation of these types of spacecraft
systems, extended Euler’s equations are used and peculiar dynamics of the spacecraft is illus-
trated with a several study cases. Complex spacecraft attitude dynamics manoeuvres, using
geometric interpretation, employing angular momentum spheres and kinetic energy ellip-
soids, are considered in detail. Contributions of the inertial morphing to the changes of the
shape of the kinetic energy ellipsoid are demonstrated and are related to the resultant var-
ious feature manoeuvres, including inversion and re-orientation. A method of reduction of
the compound rotation of the spacecraft into a single stable predominant rotation around one
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of the body axes was proposed. This is achieved via multi-stage morphing and employing
proposed instalment into separatrices. Implementation of the morphing control capabilities
are discussed. For the periodic inversion motions, calculation of the periods of the flipping
motion, based on the complete elliptic integral of the first kind, is performed. Flipping periods
for various combinations of inertial properties of the spacecraft are presented in a systematic
way. This paper discusses strategies to the increase or reduction the flipping and/or wobbling
motions. A discovered asymmetric ridge of high periods for peculiar combinations of the
inertial properties is discussed in detail. Numerous examples are illustrated with animations
in virtual reality, facilitating explanation of the analysis and control methodologies to a wide
audience, including specialists, industry and students.

Keywords: Spacecraft attitude dynamics; Euler’s equations of motion; morphing space-
craft; reaction wheel (RW); angular momentum sphere; kinetic energy ellipsoid; flipping
period

1.0 INTRODUCTION
Prompted by an interesting phenomenon, known as the Dzhanibekov’s Effect and Tennis
Racquet Theorem, this paper, along with previous works(1–5), aims to contribute to the atti-
tude dynamics and control of spacecraft. Developing numerical simulation tools and analysis
to explore these phenomenon and its geometric interpretation, it was possible to discover
a new concept of the inertial morphing of the spacecraft systems to effectively control the
Dzhanibekov’s Effect(6), presented in the recent works(1–5) by the authors and extend it further
to enable attitude control of the spinning/tumbling systems, converting compound motions
into simple spins about one of the selected/nominated body axes.

2.0 EULER’S DYNAMIC EQUATIONS FOR THE MOTION
OF A RIGID BODY

The spacecraft systems with constant values of the principal moments of inertia are consid-
ered first. For their analysis, the Euler dynamic equations of motion of the rigid body are
used(7): ⎧⎪⎨

⎪⎩
Ixx ω̇x = (Iyy − Izz)ωyωz

Iyy ω̇y = (Izz − Ixx)ωzωx

Izz ω̇z = (Ixx − Iyy)ωxωy

· · · (1)

These differential equations can be easily solved numerically providing that particular initial
conditions are specified. One of the possible techniques is based on the Runge-Kutta methods,
implemented in MATLAB and Cleve Moler, founder of Mathworks R©, provides interactive
tools to implement this strategy(8). Another possibility is to re-write Eqs. (1) in terms of the
quaternions and solve these resultant equations.

3.0 NON-DIMENSIONAL FORMULATION OF THE
EQUATIONS

For the main derivations in this paper it will be typically assumed that the system has three dis-
tinct principal moments of inertia, which are arranged in the following order: Ixx < Iyy < Izz.
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For more generic formulations, two non-dimensional parameters, η and ξ , both restricted in
their values within the range between 0 and 1 are introduced:

η= Ixx

Izz
; ξ = Iyy − Ixx

Izz − Ixx
; (0<η < 1; 0< ξ < 1) · · · (2)

Parameter ξ in this case would have a similar meaning of the non-dimensional coordinate
counterpart from the Finite Element Method, defining the current position within the finite
element. In the context of this study, ξ is specifying the non-dimensional relative position
coordinate of the intermediate value of the moment of inertia between the minimum value of
the moment of inertia Ixx and the maximum value of the moment of inertia Izz. In other words,
it can be said that ξ is the non-dimensional parameter in the Hermite functions, enabling
calculation of Iyy using Ixx and Izz, using the following relationship:

Iyy = Ixx (1 − ξ)+ Izzξ · · · (3)

The zero value of ξ would now correspond to Ixx and unit value of ξ would correspond to Izz

and any intermediate value of ξ , expressed via 0 < ξ < 1, would correspond to Iyy. With these
notations, we can also derive several relationships, enabling useful conversions in the future:

Iyy = Ixx

(
1 − ξ + 1

η

)
; Izz = Ixx

η
. · · · (4)

For illustration purposes, we solve Euler’s Eqs. (1) for the same system with Ixx = 2; Iyy =
3; Izz = 4 [all in kg×m2], which corresponds to ξ = 0.5 and η = 0.5, but consider three
contrast cases of the initial conditions. An example of the results of the numerical simulations
for ωx, ωy, ωz are shown in Fig. 1.

For the more general interpretation, the introduction of non-dimensional angular momen-
tum coordinates is proposed:

Hx(t) = Hx/H0 = Ixxωx/

√
(Ixxωx)

2 + (Iyyωy

)2 + (Izzωz)
2

Hy(t) = Hy/H0 = Iyyωy/

√
(Ixxωx)

2 + (Iyyωy

)2 + (Izzωz)
2 · · · (5)

Hz(t) = Hz/H0 = Izzωz/

√
(Ixxωx)

2 + (Iyyωy

)2 + (Izzωz)
2

where H0 is the initial value of the angular momentum of the system, and Hx, Hy, and
Hz are its components in the body axes system x, y and z. Non-dimensional coordinates
Hx, Hy, Hz enable us to express the law of conservation of the angular momentum in the
compact form

Hx
2 + Hy

2 + Hz
2 = 1 · · · (6)

Equation (6) can be conveniently interpreted as a unit sphere, known as the angular momen-
tum sphere, AMS. This concept will be consistently used in this paper to illustrate simulation
results. For example, Fig. 2 provides with an alternative interpretation of the previous cases A,
B and C with polhodes(7) — trajectories of the tips of the non-dimensional angular momen-
tum vectors, HA, HB and HC (these three polhodes are marked with the red color), residing
on the AMS. Figure 2 also shows three superimposed quiver plots for these HA, HB and HC

vectors.
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Figure 1. Time histories for angular velocity components ωx, ωy, ωz for three contrast cases of initial condi-
tions: (A) ωx0 = 0.01,ωy0 = 1.5,ωz0 = 0.01; (B) ωx0 = 0.4,ωy0 = 1,ωz0 = 0.8; (C) ωx0 = 1.3,ωy0 = 0.6,ωz0 = 0.3

(here and further all angular velocities are given in rad/s).

Figure 2. Polhodes: (a) for demonstration cases A, B and C in Fig. 1; (b) examples of broad coverage of
initial conditions.

4.0 POLHODES AND SEPARATRICES
Figure 2b shows that the polhodes can be split into four groups, separated by the (shown as
bold black) lines, called separatrices. In case of Iyy being the intermediate moment of inertia,
two separatrices intersect at the points on the y axis. It is possible to show that polhodes are
seen on orthogonal projections as ellipses, hyperbolas and ellipses, and separatrices are seen
on the x-z projection as two lines, passing through the y axis, reduced on projection to a dot
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Figure 3. Changes in the angle α due to the variation in both, η and ξ : (a) 3D surface plot for α(η, ξ )
function with colorbar added; (b) 2D projection of the α(η, ξ ) surface with its contour lines: η = 0: 0.1: 1;

α = 0: 10: 90.

point. We can calculate an important characteristic of the rotational motion of the spacecraft,
α - angle of inclination of the separatrix plane with respect to the z axis(3):

α= arctan

(√
Ix (Iy − Iz)

Iz (Ix − Iy)

)
= arctan

(√
η

(
1

ξ
− 1

))
· · · (7)

(only applicable for the Ixx < Iyy < Izz notations and 0<η < 1 and 0< ξ < 1)

Changes in the angle α due to the variation in both, η and ξ , are shown in Fig. 3. Note, that
for convenience, values of α angles are presented in degrees.

The method, described in(3), was based on the calculation of the value of the intermediate
moment of inertia Iyy for the specified angle α and known values of Ixx = 2.4 and Izz = 3.15.
For this formulation, Eq. (7) can be re-written as follows:

ξ = {1 + [(tan α)2/η
]}−1 · · · (8)

In the particular case considered in reference(4), for Ixx = 2.4 and Izz = 3.15, the correspond-
ing value of η is equal to η = 0.7619; furthermore, Eq. (8) gives ξ = 0.5907, which (as per
Eq. (3)), corresponds to Ixx = 2.8430.

The generic graphical method, corresponding to this procedure, is illustrated in Fig. 4,
where angle α (shown in degrees) is plotted as a function of ξ for various values of η = [.1,
.2, .3, .4, .5, .6, .7, .8, .9, 1].

5.0 KINETIC ENERGY ELLIPSOID AND GEOMETRIC
INTERPRETATION OF POLHODES

The kinetic energy of the rotating body can be expressed in terms of the angular momentum
components, such as follows:

1

2
Ixxω

2
x + 1

2
Iyyω

2
y + 1

2
Izzω

2
z =

[
Hx(t)√

2Ixx

]2

+
[

Hy(t)√
2Iyy

]2

+
[

Hz(t)√
2Izz

]2

= K(t) · · · (9)
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Figure 4. Changes in the angle α due to the variation in ξ for selected values of η = [1:10]/10.

In the context of the inertial morphing concept (presented later in the paper), it’s essential
to consider the general case allowing for the principal moments of inertia of the system to
change with time:

[
Hx(t)√
2Ixx(t)

]2

+
[

Hy(t)√
2Iyy(t)

]2

+
[

Hz(t)√
2Izz(t)

]2

= K(t) · · · (10)

Being dedicated to the non-dimensional formulation, we divide both sides of this equation by
the constant H0

2 and rearrange result in terms of non-dimensional quantities Hx, Hy and Hz:

[
Hx(t)

H0

1√
2Ixx(t)

]2

+
[

Hy(t)

H0

1√
2Iyy(t)

]2

+
[

Hz(t)

H0

1√
2Izz(t)

]2

= K(t)

[H0]2 · · · (11)

In view of Eqs. (6), this equation can be rewritten in terms of the non-dimensional angular
momentum components:

[
Hx√
2Ixx(t)

]2

+
[

Hy√
2Iyy(t)

]2

+
[

Hz√
2Izz(t)

]2

= K(t)

[H0]2 · · · (12)

Finally, Eq. (12), can be written in its useful final form, used in this paper, as follows:

⎡
⎢⎢⎣ Hx√

2K(t) Ixx(t)

H0

⎤
⎥⎥⎦

2

+

⎡
⎢⎢⎢⎣ Hy√

2K(t) Iyy(t)

H0

⎤
⎥⎥⎥⎦

2

+

⎡
⎢⎢⎣ Hz√

2K(t) Izz(t)

H0

⎤
⎥⎥⎦

2

= 1 · · · (13)

Equation (13) corresponds to the so called kinetic energy ellipsoid (KES) in the Hx, Hy and
Hz axis, with the following values of the semi-major axes:
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Figure 5. (a),(d),(g) Angular momentum unit spheres (left column); (b),(e),(h) kinetic energy ellipsoids
(middle column) for Cases-A,B,C; (c),(f),(i) Superimposed AMSs and KEEs.

ax =
√

2K(t) Ixx(t)

H0
; ay =

√
2K(t) Iyy(t)

H0
; az =

√
2K(t) Izz(t)

H0
· · · (14)

In addition to the angular momentum spheres with specific polhodes for the cases A, B and
C (Fig. 5, left column), let us also plot corresponding kinetic energies ellipsoids (Fig. 5,
middle column). Then, combining the surfaces in these two columns, we can see that specific
polhodes are, in fact, lines of intersection between corresponding AMSs and KEEs (Fig. 5,
right column).

Utilising conveniences of the non-dimensional notations, we can illustrate influence of the
variables ξ and η on the shapes of the kinetic energy ellipsoids and polhodes. Figure 6 presents
nine contrast cases for the combinations of ξ = [0.1, 0.5, 0.9] and η = [0.2, 0.5, 0.9].

6.0 THE DZHANIBEKOV’S EFFECT AND TENNIS
RACQUET THEOREM

The motion of the spinning rigid body, labelled as Case-A, has a very special significance, as it
is related to the so called Dzhanibekov’s Effect and Tennis Racquet Theorem(6). Let us present
a brief history of this intriguing phenomenon, partially reproduced from the reference(4).
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Figure 6. Contrast cases of simulations of the rotating rigid body with the same initial conditions (ωx0 =
1;ωy0 = 0;ωz0 = 1.5 - all in rad/s) and Ixx = 2kg × m2, illustrating changes of the shape of the kinetic energy

ellipsoid due to the changes in η and ξ .

Vladimir Aleksandrovich Dzhanibekov (see Fig. 7a) is one of the USSR’s famous cos-
monauts. During his fifth space flight, on June 25, 1985, he discovered a spectacular
phenomenon: a spinning wing nut in its stable flight suddenly changed its orientation by 180
degrees and continued its flight backwards, simultaneously changing its direction of rotation
to opposite! (It should be noted that wing nuts, shown in Fig. 7a and 8a, are widely used in
space for fixing payloads: their shape enables removal of the wingnuts without special tools.)

Dzhanibekov realised that this pattern of motion repeated itself in the periodic sequence.
Similar experiments have subsequently been run on-board of the International Space Station.
Observing these experiments in space, it could be clearly seen that the spinning object always
rotates in the same direction relative to the observation camera (fixed to the inertial coordi-
nates frame): that means that in the reference frame of the rotating handle the direction of
rotation flips each time its orientation flips.

Performing detailed literature search, we were able to find even earlier demonstrations in
space of the flipping motion of the spinning rigid body, dated in 1973. Figure 7b shows a
snapshot from the space experiment video, where famous U.S. scientist-astronaut Owen Kay
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Figure 7. (a) Vladimir A. Dzhanibekov, Interview at the “Secret Signs” TV Program, explaining flip-
ping of the wing nut, https://youtu.be/dL6Pt1O_gSE (accessed 12/10/2019); (b) Owen K. Garriott,
(1973), Demonstration on board of Skylab 3 of the flipping object, spun about its intermediate axis,

https://youtu.be/xdtqVR1CgQg?t=1018 (accessed 19/02/2019).

Garriott is performing a dynamics experiment onboard Skylab-3. On the snapshot, he is ini-
tiating a spin of the rigid body in zero gravity by providing an energetic torque impulse
about the intermediate axis of inertia of the body, which instantly results in the peculiar
rotational motion of the boxed object about this axis with clearly observed periodic flipping
about this axis. Therefore, it has been documented, that the so called Dzhanibekov’s Effect
was observed in space in 1973 by Owen Garriott, twelve years before the same phenomenon
was also observed in space in 1985 by Vladimir Dzhanibekov, whose name was given to the
phenomenon.

Surprisingly, the flipping motion phenomenon, which initially was perceived by some as
counter-intuitive was conceptually predicted in 1971 by Beachley(9), however this work for
very long time has been left unnoticed and popular, in-depth explanation of the phenomenon
has only been very recently presented in the journal publication(6). The Dzhanibekov’s Effect
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Figure 8. Is our planet, Earth, flipping similar to the wingnut? (a) simple wingnut; (b) planet Earth;
(c) Herodotes, famous Greek historian; (d) imagined “flipped” Earth.

has been closely linked to the peculiar behaviour and explanation of the flipped tennis racket,
which has received special names, such as Tennis Racket Theorem and intermediate axis
theorem.

Explanation of both, Dzhanibekov’s Effect and Tennis Racket Theorem is based on the
great Euler equations, published in their canonical form in 1758(5).

Interestingly, Euler’s equations paved the theoretical ground to many scientific manifesta-
tions, including Coriolis forces, predicted by Euler, but interpreted to the world many years
later by French scientist Gaspard-Gustave de Coriolis in 1835.

Entrancingly, that promotion of the Dzhanibekov’s Effect has prompted development of the
theories, suggesting that our planet, Earth, is performing periodic flips, similar to the wing nut
(see Fig. 8d). Some researchers in the media has suggested that our planet, Earth, having much
more substantial properties (I ∼ 8 × 1037kg·m2), is performing these flips with much higher
period, estimated to be at the order of 12,000 years. There were even some substantiation
presented to justify this statement: firstly, periodicity in the changes in the magnetic field of
the Earth; secondly, reference to the ancient Greeks historian, Herodotus (lived in the fifth
century BC, c. 484–c. 425 BC, see Fig. 8c); and thirdly, references to the religious texts. For
example, reference(10) states: “Herodotus wrote that Egyptian priests had told him that four
times since Egypt became a kingdom the Sun rose contrary to his wont; twice he rose where
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Figure 9. Demonstrations of the Dzhanibekov’s Effect onboard the ISS.

Figure 10. Dancing T-handle in zero gravity.

he now sets, and twice he set where he now rises.” The Egyptians had a name for the Sun
when it rose in the west, Re-Horakhty. And the concept of the Sun rising in the west occurs in
both Christian and Muslim literature. There were also accounts of stars reversing the direction
of rising, while various texts talk of north becoming south at a time of chaos. This reversal
also appears in Greek literature, most notably in the Statesman of Plato.

The hypothesis of the flipping Earth, despite of being very intriguing, is full of controversy
(for example, under conventional assumptions, the Earth is not rotating about its intermediate
axis, etc.), and is not pursued further in this paper.

7.0 DEMONSTRATIONS OF THE DZHANIBEKOV’S
EFFECT ON BOARD OF THE ISS

Due to its simplicity and intriguing nature, the Dzhanibekov’s Effect has been became one
of the most popular educational and scientific experiments on board of the ISS. It has been
reproduced with various rigid body objects and even liquids. Various videos on these exper-
iments, available in the media, are excellent educational resources. For example, influence
of the shape of the rigid bodies, thus mass distribution in various rigid bodies, including
cylinders, cubes and right rectangular prisms, was demonstrated on board of the ISS by Dan
Burbank and Anton Shkaplerov (see Fig. 9a), members of thethirtieth expedition(11).

American astronaut Kevin Ford (NASA), (thirty-fourth expedition)(12) (see Fig. 9b) and
Japanese astronaut Koichi Wakata (JAXA), (thirty-eighth expedition)(13) (see Fig. 9c) exper-
imented onboard the ISS with nothing more complex that pliers. They used this adjustable
geometry tool as an object, capable of intriguing spinning, flipping and tumbling in zero
gravity.

One of the most fascinating movies is a continuous short-period flipping of the T-handle
onboard the ISS, fairly called as dancing T-handle(14) (see Fig. 10). This is a wonderful demon-
stration of the Dzhanibekov’s Effect, which very convincingly illustrates instability of rotation
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of the rigid body with distinct principal moments of inertia, if the main spin is provided about
its principal axis, associated with intermediate moment of inertia.

All these and other demonstrations can be explained by Euler equations. Of course, this
is of great interest to be able to explain interesting phenomenon of the flipping spinning
systems, however, we noticed new opportunities of controlling these peculiar motions and
proposed a method of control, based on the inertial morphing, involving changes of the prin-
cipal moments of inertia of the system. This concept will be explained later on in the paper.
However, before this, let us discuss the calculation of the period of the flipping motions in
the Dzhanibekov’s Effect and Tennis Racquet Theorem demos. We present some interesting
results and a relevant extract from our work(4).

8.0 CALCULATION OF THE PERIOD OF THE FLIPPING
MOTION

As stated earlier, we assume that Iyy is intermediate value of the principal moment of inertia.
Then the period of the observed unstable motion can be estimated, using Eq. (37.12) on page
154 from the L.D.Landau reference(15):

If H2 > 2K0 Iyy, · · · (15)

which is equivalent to ay < 1 (see Eq. 14), then

T = 4K

√
Ixx Iyy Izz

(Izz − Iyy)(H2 − 2K0 Ixx) · · · (16)

If H2 < 2K0 Iyy, · · · (17)

which is equivalent to ay > 1 (see Eq. 14), then

T = 4K

√
Ixx Iyy Izz

(Ixx − Iyy)(H2 − 2K0 Izz)
· · · (18)

where K is complete elliptic integral of the first kind:

K =
1∫

0

ds√(
1 − s2

) (
1 − k2s2

) =
π/2∫
0

du√
1 − k2sin2u

· · · (19)

As an illustrative example, let us assume the following parameters of the system: Ixx = 3, Izz =
3.5 (all in kg×m2), with the initial conditions iωx = 0.1, iωy = 15, iωz = 0.1 (all in rad/s). For
this case we will use equations (15)–(19) and will illustrate the influence of the intermediate
moment of inertia Iyy of the system on the period of the unstable flipping motion. The resulting
plot, presented in Fig. 11, is clearly being asymmetrical, could be easily regarded by many
as counter-intuitive, as there may be a wrongly perceived assumption of the “symmetrical”
influence of Iyy on period T .
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Figure 11. Period of the unstable flipping motion (Dzhanibekov’s Effect case) of the rigid body, as a
function of its intermediate moment of inertia Iyy for the following example: Ixx = 3; Izz = 3.5[kg × m2] ;

ωx0 = 0.1,ωy0 = 15,ωz0 = 0.1[rad/s].

The plot in Fig. 11 prompts that when Iyy is approaching any of the other moments of inertia,
Ixx or Izz, then the period of the flipping is asymptotically approaching infinite values. Also,
this plot prompts that variation in the intermediate value of the moment of inertia between Ixx

and Izz (i.e. changing the ξ value) can allow changes of the period T of the flipping motion
within wide range. However, there is a minimum value of the period, which could not be
reduced further. For the example shown, the lower threshold of the period is slightly higher
than 22.2 seconds. Also, there is a specific value of the Iyy that leads to the infinitely large value
of the T . For the example shown, this corresponding value of Iyy is approximately 3.27kg×m2.

Similarly to the example above, in the second illustrative example, we initially assume
initial conditions ωx0 = 0.01, ωy0 = 1.5, ωz0 = 0.01 (all in rad/s) for the system with Ixx =
2, Izz = 4 (all in kg×m2), which corresponds to η = 0.5 (see Eq. 2) and plot the flipping
period as a function of the intermediate moment of inertia Iyy, varying its value in-between
the minimum value of the moment of inertia Ixx and maximum value of the moment of inertia
Izz. The resultant plot is shown in Fig. 12a with a continuous red line. It allows determination
of the flipping period for the Case A, illustrated previously in Figs. 1a, 2a, 5a,5b, and 5c. This
value is equal to 47.16s, which is in agreement with Fig. 1a. Let us now, in addition to the
above, consider a similar “variable Iyy” experiment, changing only the maximum moment of
inertia value from Izz = 4 to Izz = 5, which would correspond to η = 0.4. The resultant plot for
the period is shown with dotted blue line in Fig. 12a. Comparison of the two curves allows to
suggest another avenue for manipulation with the period of the flipping motion by changing
the ratio between Ixx and Izz, i.e. η value.

Allowing variation of the Iyy and Izz values (i.e. ξ and η non-dimensional parameters), we
can also calculate more generic plot, showing influence of these principal moments of inertia
on the period T of the unstable motion. The resultant plot is shown in Fig. 12b. This is an
interesting plot, which shows more generic nature of the asymmetry, observed in Fig. 11 and
Fig. 12a. Figure 12b comprises the two curves (red and blue), presented in Fig. 12a. However,
most significant observation in Fig. 12b is that for each of the Izz values, there is a value of Iyy
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Figure 12. Period of the unstable flipping motion (Dzhanibekov’s Effect case) of the rigid body, as a func-
tion of its moments of inertia Iyy and Izz for two variation experiments: (a) variation of Iyy only in two cases
Ixx = 2; Izz = 4; and Ixx = 2; Izz = 4[kg×m2] ; ωx0 = 0.01,ωy0 = 1.5,ωz0 = 0.01[rad/s]; (b) variation of both, Iyy

and Izz in the case Ixx = 2[kg×m2] ; ωx0 = 0.01,ωy0 = 1.5,ωz0 = 0.01[rad/s].

which leads to the infinitely large period of the flipping motion. We named this area as “high
periods ridge”, clearly labelled in Fig. 12b.

9.0 CONCEPT OF THE INERTIAL MORPHING OF THE
SPACECRAFT

As an enhancement in the control capabilities of the spacecraft, in our previous works(1–5),
we proposed a concept of inertial morphing: we showed that using special devices (with, for
example moving masses) or other means and/or phenomena, (for example, moving liquids,
mass evaporation, solidification, ablation), enabling controlled modifications of the principle
moments of inertia characteristics, the attitude dynamics of the spacecraft could be efficiently
controlled.

Assume that the spacecraft has morphing capabilities, allowing independent controllable
changes of the values of the principal moments of inertia. A basic model of the morph-
ing spacecraft, involving three orthogonal dumbbells, each of which has negligible mass of

https://doi.org/10.1017/aer.2019.145 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.145


852 THE AERONAUTICAL JOURNAL JUNE 2020

Figure 13. Six-mass conceptual model of the morphing spacecraft.

the rod, connecting two equal concentrated masses at its ends, was considered in(5) and is
reproduced in Fig. 13.

Let us also assume, for conceptual simplicity, that three dumbbells are connected at the
middle points of their rods, and the corresponding masses mx, my and mz are located at the
distances rx, ry and rz from the axes of rotation x, y and z, as shown in Fig. 13. In the illustrated
conceptual design, morphing of the spacecraft is achieved via independent synchronized con-
trol of the position coordinates rx = rx(t), ry = ry(t) and rz = rz(t) of the masses mx, my

and mz.
Indeed, changing the distance between three pairs of the masses could be used to achieve

any values of the principal moments of inertia Ixx, Iyy and Izz. To achieve this objective, it
would be sufficient to move masses to the following radii:

rx =
√

Iyy + Izz − Ixx

4mx
; ry =

√
Izz + Ixx − Iyy

4my
; rz =

√
Ixx + Iyy − Izz

4mz
· · · (20)

These important relationships can be easily obtained from the equations for principal
moments of inertia of the system(16):

Ixx = 2my r2
y + 2mz r2

z ; Iyy = 2mz r2
z + 2mx r2

x ; Izz = 2mx r2
x + 2my r2

y · · · (21)

10.0 SUGGESTIONS ON SOME PRACTICAL
IMPLEMENTATION OF THE INERTIAL MORPHING

This paper does not aim to present comprehensive collection of the implementation of the
methods to control the principal moments of inertia of the spacecraft, we called “inertial
morphing”. Nevertheless, for completeness, we wish to present just a few of the meth-
ods/concepts, being considered as promising for realization in real spacecraft systems. In
these examples, for simplicity of the illustrations, the conceptual model of the spacecraft
(Fig. 13) will be used. As equations for the moments of inertia are functions of the distances
r and masses m, conceptually, there could be two main approaches to the implementation of
the inertial morphing: (a) based on variation of r - positions of the masses and (b) based on
variation of masses. These approaches are briefly explained below.

(a) The first approach to implementation of the inertial morphing is based on the controlled
re-position of the spacecraft masses, using actuators. Let us consider the following case:
mx = my = mz = 1kg; these masses are initially located at their radii: rx = 0.8m;
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Figure 14. Particular example of inertial morphing via translational re-position of the z dumbbell masses
mz, while keeping positions of the x and y masses unchanged (mx = my = mz = 1kg): (a) 3D view of the
spacecraft model; (b) time history of the position of the masses; (c) time history of the resulting principal

moments of inertia Ixx, Iyy and Izz.

ry = 1m; rz = 1.2m. Let us assume that the system is equipped with linear actuator
(motor and appropriate mechanical system), capable of translational re-positioning of the
masses mz via changing the length of rz from 1.2m to 0.6m within 1s. The morphing
process is shown in Fig. 14a, where initial positions of the masses are shown with white
spheres, and the final positions — with black spheres and where direction of the transla-
tions for two mz masses is shown with two red arrows. Also, for better perception of the
3D design, a semi-transparent yz plane is added to Fig. 14a.

In this example, the positions of the masses on the x and y axes remain unchanged, only rz is
subject to variation (as per Fig. 14b). Equation. (21) permits the calculation of the associated
resulting time history of the principle moments of inertia of the system. Figure 14c shows that
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Figure 15. Spacecraft, deploying solar arrays(17).

while Izz keeps its value unchanged, during morphing, the Ixx value is changing from 4.88 to
2.72 [kg×m2] and the Iyy is changing from 4.16 to 2.0 [kg×m2]. However, most significant
in the context of this paper is an observation that, in this example, the role of the intermediate
moment of inertia (which initially “belongs” to Iyy) is “passed” from Iyy to Izz (at t = 0.33s)
and then is further passed to Ixx (at t = 0.67s). Consequently, using only one variable rz in
the morphing process, it was possible to arrange for each of the spacecraft axes x, y and z at
different stages, to become the intermediate axis of rotation.

The method presented above can be extended to the actuation of all masses, including mx

and my. With this general arrangement, the morphing would permit continuous control of the
position of all masses, hence, would enable assignment of any arbitrary values to the principal
moments of inertia of the system, as per requirements of the morphing scenarios. Of course,
these assignments should be compatible with the mechanical/electrical/thermal constrains of
the particular designs/implementations of the morphing systems.

A variation of the same method may involve application of the special actuators to re-
position large segments of the spacecraft. This idea is illustrated with the controlled change
of the angular positions θi of the solar panels to manipulate the inertial properties of the
spacecraft (see Fig. 15).

We envisage that similar implementations of the illustrated principle can be achieved
in some other ways. For example, deployment of the masses, to the new destination (in
any, inwards, outwards or inclined directions) can be ensured via un-constraining the pre-
compressed springs, as per Fig. 16. This, however, would permit only a single discrete
actuation.

Alternatively, for continuous actuation, instead of using solid masses, heavy liquids and/or
liquid metals(18) can be used, which could be controlled via manipulation with valves and
employment of the passive inertial forces and/or controlled magnetic field forces to move
these liquid medias.

(b) The second approach to implementation of the inertial morphing is based on the con-
trolled change of the spacecraft masses and may involve, for example, mass ejection;
ablation, evaporation or solidification of the components of the structure, etc.

Geometric reconfigurations of the spacecraft systems (for example, during deployment of the
inflatable components or solar panels, and reorientation of the antennae) is a widely used
concept and proved to be successful for many space systems (for example, Spartan-207,
Hughes/Boeing HS-376, SMART-1 and RAE-B satellites, space probes Rosetta and Down,
etc.). However, these are provided to ensure the functionality of the spacecraft, without any

https://doi.org/10.1017/aer.2019.145 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.145


TRIVAILO AND KOJIMA ENHANCEMENT OF THE ATTITUDE DYNAMICS... 855

Figure 16. Particular example of inertial morphing via translational re-position of the z dumbbell masses
mz, (shown with black color) via release of the pre-constrained compressed springs (shown with red color):

(a) initial configuration; (b) masses deployed inwards.

relevance to the attitude dynamics objectives(19). In contrast, concept of spacecraft recon-
figuration, explicitly aiming to assist in attitude maneuvering(1–5), is a very new concept.
Indeed, idea of the reconfigurable spacecraft systems, transformable spacecraft, which con-
sist of multiple modules connected with each other by hinges or universal joints, proposed by
JAXA(20,21), is only one year old.

It is believed that this paper will further contribute to a much wider application of the space-
craft reconfigurations with the primary goal to enhance the attitude dynamics capabilities of
spacecraft systems, especially in view of a new findings, presented in the following sections.

11.0 NUMERICAL SIMULATION OF THE MORPHING
SYSTEMS

To simulate the spacecraft systems with morphing capabilities, the Euler equations must be
modified to treat the principle moments of inertia not as constants (assumed in the classical
Euler equations), but as variables:

⎡
⎣İxx 0 0

0 İyy 0
0 0 İzz

⎤
⎦
⎧⎨
⎩
ωx

ωy

ωz

⎫⎬
⎭+

⎡
⎣Ixx 0 0

0 Iyy 0
0 0 Izz

⎤
⎦
⎧⎨
⎩
ω̇x

ω̇y

ω̇z

⎫⎬
⎭+

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦
⎡
⎣Ixx 0 0

0 Iyy 0
0 0 Izz

⎤
⎦
⎧⎨
⎩
ωx

ωy

ωz

⎫⎬
⎭=

⎧⎨
⎩

0
0
0

⎫⎬
⎭

· · · (22)
These equations can be bundled with quaternions or Euler angles relationships. The version
from(5) is presented below:

⎡
⎢⎢⎢⎢⎢⎢⎣

Ixx 0 0 0 0 0
0 Iyy 0 0 0 0
0 0 Izz 0 0 0
0 0 0 sin θ sin φ cos φ 0
0 0 0 sin θ cos φ − sin φ 0
0 0 0 cos θ 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω̇x

ω̇y

ω̇z

ψ̇

θ̇

φ̇

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Iyy − Izz)ωyωz − İxxωx

(Izz − Ixx)ωzωx − İyyωy

(Ixx − Iyy)ωxωy − İzzωz

ωx

ωy

ωz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

· · · (23)
These equations have the following “mass matrix” format:

[M(t, x)]{ .
x} = {f (t, x)} · · · (24)
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Figure 17. Graphical representation of solutions for stopping flipping motion. White spheres — initial
unstable configuration for y main rotation, black spheres — final stable configuration.

and can be solved numerically, using, for example, ode MATLAB R© Runge-Kutta solver, with
“mass matrix” option.

12.0 BASIC DEMONSTRATION OF THE INERTIAL
MORPHING CAPABILITIES: STOPPING FLIPPING
MOTION IN THE DZHANIBEKOV’S EFFECT
DEMO [2]

Let us assume, for illustration purposes, that mx = my = mz = 1 kg, Ixx = 0.3kg×m2, Iyy =
0.35kg×m2, Izz = 0.4kg×m2. Then, equations (20) would enable us to determine the exact
values of the initial radii rx, ry and rz, compatible with the requirements for the Ixx, Iyy, Izz

values:

rx = 0.2500m; ry = 0.2958m; rz = 0.3354m. · · · (25)

Note that in our example here Iyy has an intermediate value among all principal moments of
inertia: Ixx < Iyy < Izz, therefore if the spacecraft is provided with the initial angular velocities
ωx = ωz = 0.1rad/s and ωy = 15rad/s, with the prevailing rotation about y body axis, then
the spacecraft rotation about this axis would be unstable and classical Dzhanibekov’s Effect
periodic flipping would be observed.

Let us during the flipping motion, at the instant, when the angular velocities ωx and ωz are
close to zeros, rapidly change the moment of inertia Iyy to its new value of f Iyy = 0.2kg×m2.

Then the moment of inertia Iyy stops being the intermediate value, and the rotation about y
body axis would becoming stable, without changes in the direction of ωy.

It has been demonstrated in(2,5) that there are two classes of solutions. The new values of
the position radii, corresponding to the “solution-1”, can be calculated using Eq. (20):

rx = 0.1581m; ry = 0.3536m; rz = 0.2739m. · · · (26)

The spacecraft masses at these radius positions are shown in Fig. 17(a) with dark color.
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Table 1
Numerical values of the solutions for stopping flipping motion

Solution-1
rx ry rz Ixx Iyy Izz

Initial 0.2500 0.2958 0.3354 0.30 0.35 0.40
Final 0.1581 0.3536 0.2739 0.30 0.20 0.40

Solution-2
rx ry rz Ixx Iyy Izz

Initial 0.2500 0.2958 0.3354 0.30 0.35 0.40
Final 0.3162 0.2236 0.3873 0.30 0.50 0.40

Figure 18. Graphical representation of solutions for stopping flipping motion: time histories of the required
controlled manipulation with the moment of inertia Iyy.

The flipping motion can be also stopped using “solution-2”. For the purpose of the illustra-
tion of the concept, let us consider rapid increase of the Iyy from its initial value of 0.35kg×m2

to its new value of 0.5kg×m2. The new values of the position radii, corresponding to the
“solution-2” can be calculated, using Eq. (20):

rx = 0.3162m; ry = 0.2236m; rz = 0.3873m. · · · (27)

The spacecraft masses at these radius positions are shown in Fig. 17(b) with dark color.
The morphing of the spacecraft from the initially unstable configuration, associated with

the flipping motion, to its final stable configuration and Solution1 and 2 are shown in Fig. 17,
where masses for the initial configuration are shown in white, whereas the masses for the final
configuration are shown in black color. Summary for both solutions is presented in Table 1.
It would be important to note, that in the presented cases, it was not obligatory during the
morphing of the system and its transition from the “initial” to “final” states to keep both
values of Ixx and Izz unchanged. However, it was done for purpose, to emphasize the role of
the Iyy in the process of stabilisation of the system.

Results of the corresponding numerical simulations of these two solutions are presented in
Fig. 18–20.
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Figure 19. Graphical representation of solutions for stopping flipping motion: time histories of the
ωx, ωy, ωz.

Figure 20. Graphical interpretation of solutions for stopping flipping motion.

It is interesting to note, that with Solution1, stabilisation of the spinning body is achieved
via expansion of the kinetic energy ellipsoid, which completely embraces the angular momen-
tum sphere (see Fig. 20a). On the right part of the Fig. 20a, both surfaces are just only touching
each other at the point S and on the opposite side of the y-axis.

However, with Solution-2, stabilisation of the spinning body is achieved via shrinking of
the kinetic energy ellipsoid, which becoming completely embraced by the angular momentum
sphere (see Fig. 20b). On the right part of the Fig. 20b, both surfaces are just only touching
each other at the point S and on the opposite side of the y-axis.

13.0 INVESTIGATING ORIENTATION OF THE SIDES OF
THE SPACECRAFT, EXPOSED TO THE SPECIFIC
DIRECTIONS

As spacecraft may have directional sensing equipment, attached to the sides, let us explore
possible exposure of this equipment to the specified directions of interest. For this purpose
let us introduce a semi-transparent green coloured spherical “dome”, embracing the rotating
spacecraft (which, in turn, has its rotating body axes system xyz with unit orts e1 e2 and e3).
We collocate the centre of the dome (point O) with the centre of the mass of the rotating body.
However, most significant, we fix the dome in the global coordinates XYZ, so is not rotating
with the body and its body axes xyz. Then we consecutively plot lines of intersection of the
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Figure 21. Lines of intersection of the rotating orts e1 e2 and e3 with the spherical dome (green), fixed in
the global axes system XYZ: ball-of-wool lines.

rotating orts e1 e2 and e3 with the dome. It must be emphasised, that the spheres in Fig. 21
are not the bodies of the spacecraft (which may have any arbitrary shape), but the embracing
imaginary domes.

For the illustration purposes, let us simulate the motion of the spacecraft with the following
parameters: Ixx = 2, Iyy = 4, Izz = 3 (all in kg×m2). Let us for t = 0 align xyz body axes
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Figure 22. H+ and H- hemispheres of the dome (Ixx = 2, Iyy = 4, Izz = 3, all in kg×m2;ωx = 0.01,ωy = 0.01,
ωz = 1, all in rad/s).

with XYZ global inertial axes as follows: x is aligned with X , y is aligned with Z, z is aligned
with -Y . If the spacecraft is installed in orbit with initially provided angular velocities ωx0 =
0.01, ωy0 = 0.01, ωz0 = 1 (all in rad/s), the spacecraft starts flipping along axis z, being an
intermediate axis of inertia (as Ixx < Izz< Iyy).

During this flipping process we trace all intersections of the orts e1 e2 and e3 with the
dome and present them as continuous lines with different colors. Results are shown in
Fig. 21. It should be noted, that for each of the computer screen snap-shots in this figure, the
individual viewpoint was selected for better observation of the simulation results. Selection
of the viewpoints could be clearly understood using the vector of the angular momentum H
as a reference, as it is pointing in the same direction in the global coordinates XYZ for all
presented snap-shots.

Last image for the e2 in the middle row in Fig. 22 is remarkably interesting and illustrates
our new finding! It shows that y body rotating axis, associated in this example with the maxi-
mum moment of inertia, is drawing e2 intersection lines on the dome only on the hemisphere,
bulging towards the angular momentum vector H (we call it H+ hemisphere) and is never
pointing towards the other hemisphere of the dome (shown as H - hemisphere in Fig. 23).
This is valid for the direction of y with positive component of the angular velocity along
this direction (ωy0 > 0). We have run many other various simulations, confirming that it is a
general pattern, so the side, perpendicular to the axis with maximum moment of inertia and
associated with positive angular velocity component, is never turned away from the vector H
direction.

In Fig. 21, initially, vector H is almost aligned with z body axes (which is, in turn, is
initially positioned along the –Y global axis), this is because initial values of ωx0 and ωz0 (and
ultimately Hx0 and Hz0) are small compared with ωy0 (and ultimately Hy0). Therefore, the 2D
plane surface, subdividing H+ and H- is almost parallel to the XZ plane. H+ and H- are also
shown in Fig. 22.

Let us consider additional contrast case with the following parameters: Ixx = 2, Iyy = 4,
Izz = 3 (all in kg×m2) and initial angular velocities ωx0 = 0.5, ωy0 = 0.5, ωz0 = 1 (all in
rad/s), which has much more significant initial values of ωx0 and ωy0, than in the previous
example, hence has large components of Hx0 and Hz0, as compared with Hy0. It results in
the subdivision of the dome into two parts (H+ and H-) by the inclined 2D plane, shown in
white in Fig. 23a. Results of the intersection lines of the e2 ort with the dome are shown in
Fig. 23a. They somehow resemble ball of wool (see Fig. 23b), especially with the knitting
needles resembling the H and e2 vectors. However, the simulated resulting ball-of-wool lines
are sitting on one hemisphere only! This hemisphere is on the side of the plane, perpendicular
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Figure 23. Ball-of-wool lines: (a) Simulation results for the case Ixx = 2, Iyy = 4, Izz = 3 (all in kg×m2)
and initial angular velocities ωx0 = 0.5, ωy0 = 0.5, ωz0 = 1 (all in rad/s), (b) Original balls of wool, which

prompted the used analogy and terminology.

to H vector (and we will called it H+ hemisphere). The other side of the hemisphere (H -)
does not have any threads of the ball of wool.

This discovered new result can be used in the design of various spacecraft missions. For
example, in case of the communication mission, if the spacecraft is installed in orbit with pre-
dominant rotation about an intermediate axis of inertia, and is carrying an antenna, it should
be ensured that the initial direction of the angular momentum vector H is consistent with the
source, sensed by antenna, i.e. with H+ hemisphere facing the source, otherwise spacecraft
communication would be blanked for all instants of the mission. So, it matters, which side of
the spacecraft, perpendicular to the axis with maximum moment of inertia, is selected: one
side would be good for utilising antenna, the other side would be inoperable/terminal. The
exposure efficiency of the equipment on the selected sides was explored in reference(22).

On the same token, in some other cases, when, for example, the spacecraft is subject to
directional adhere conditions (heat, radiation, flying debris) it may be advisable to reinforce
the spacecraft, facing the intended H - hemisphere, install the spacecraft in orbit with the
direction of the initial angular momentum pointing outwards the danger and place all sensi-
tive equipment on the side, perpendicular to the axis with maximum moment of inertia and
with positive component of the angular velocity along this direction (i.e. plus e2 in the two
previously considered illustration cases).

14.0 INERTIAL MORPHING IN ACTION: TWO-PHASE
ATTITUDE DYNAMICS MANOEUVER

Figure 24(a) shows non-dimensional angular momentum sphere with two separatrices and
sets of representative polhodes for the wide range initial conditions. It also shows, as a blue
bold line, a specific polhode (or hodograph of the H vector) for the Phase-1 conditions:
Ixx = 2, Iyy = 3, Izz = 4,ωx0 = 0.4,ωy0 = 1,ωz0 = 0.8.
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Figure 24. Non-dimensional angular momentum spheres with polhodes and separatrices and truncated
specific hodographs for (a) Phase-1 (before inertial morphing) conditions: Ixx = 2, Iyy = 3, Izz = 4,ωx0 =0.4,
ωy0 = 1,ωz0 = 0.8 ; specific hodograph shown with blue line; and (b) Phase-2 (after inertial morphing) con-
ditions: Ixx = 3.5, Iyy = 3, Izz = 4, ωxtQ = 0.7133,ωytQ = − 0.7318,ωztQ = 0.9016, tQ = 21.5s; hodograph shown

with red line.

Figure 25. Illustration of the transition between Phase-1 and Phase-2 of the inertial morphing of the
system: (a) side 3D view; (b) z-axis 2D view.

If the spacecraft possesses with inertial morphing capabilities, then the switch to any new
inertial properties can be simulated and illustrated graphically. Let us assume, for illustra-
tion purposes, that the new principal moments of inertia are: Ixx = 3.5, Iyy = 3, Izz = 4. Then,
for the Phase-2, its own non-dimensional angular momentum sphere with two separatrices
and sets of representative polhodes (for the wide range initial conditions) can be also pro-
duced (see Fig. 25b). Morphing can be applied at any stage during the execution of Phase-1.
For certainty, let us also assume that the morphing is rapidly applied at t = 21.5s instant.
Then, the new corresponding angular velocities of the spacecraft could be calculated, using
equations (21).

https://doi.org/10.1017/aer.2019.145 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.145


TRIVAILO AND KOJIMA ENHANCEMENT OF THE ATTITUDE DYNAMICS... 863

Figure 26. Illustration of the spacecraft tumbling motion: (a) time history of ωx, ωy, ωz - components of its
angular velocity vector �ω, (b) graphical interpretation of the motion, using KEE and AMS.

15.0 INERTIAL MORPHING IN ACTION: TRANSFER OF
THE TUMBLING MOTION INTO STEADY SPIN
ABOUT SELECTED BODY AXIS (THREE-STAGE
STABILISATION OF THE SPACECRAFT VIA
INERTIAL MORPHING AND UNSTABLE FLIPPING)

Let assume that the spacecraft with given initial values of the moments of inertia (Ixx = 2.5, Iyy

= 2.4, Izz = 3.15) is originally in arbitrary free rotation, involving all three angular velocities,
as shown in Fig. 26a.

This motion can be visualised, using intersecting kinetic energy ellipsoid and angular
momentum sphere, as shown in Fig. 26b. The H vector of unit genuine length cannot be
used for visualization, as its length is equal to one and it would not be seen at any instant, as
it would be completely hided by the embracing angular momentum sphere with unit radius.
Therefore, for visualisation of the instantaneous orientation of H in the Fig. 26b, a black line
is used with a dot at its end and extruding beyond the surface of the sphere. The hodograph of
the vector is shown with a black line on the surface of the angular momentum sphere, coming
strictly along the intersection between the AMS and KEE.

Let us set a task to control rotations of the system, via the changes of the values of its
principal moments of inertia. In each case of using flipping mode for escaping from the closed
smooth polhode, we need to apply change to moments of inertia, which could be calculated
based on the parameters of the targeted separatrix, using Eqs. (7)–(8).

An example of complete set of morphings, stabilising the system, being initially in the state
of tumbling, is illustrated with Fig. 27.

Figure. 27 explains the sequence and nature of the inertial changes, deliberately applied to
the system. Figure 28 gives consecutive snap-shots from the simulation process, illustrating
changes of the kinetic energy ellipsoid and polhodes — resultant feasible trajectories for the
angular momentum vector.

It is interesting to observe, that at the initial stage of the motion of the system, its e2 body
axes ort is drawing a pretty spread trajectory on the “dome” (Fig. 29a). However, after stabi-
lization is completed, this trajectory is essentially reduced to the point (Fig. 29b). Also, at the
last stage of the simulation, trajectories for e1 and e3 are very close to the equatorial plane,
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Figure 27. Three-stage stabilisation of the tumbling spacecraft via morphing: time history of the morphed
principal moments of inertia Ixx, Iyy, Izz.

Figure 28. Critical instances of spacecraft stabilisation: (a) Start of the simulation; (b) Initially, hodograph is
circling around z axis, (c) Stage-1 ends, transition to flipping is initiated, t = 9.792s; (d) approch to the saddle
point-1, t = 12s; (e) near the saddle point-1 (possible parking or stabilisation point), t = 15s (f) passing
saddle point-1, t = 19s; (g) approach to the saddle point-2, t = 22s; (h) stage-2 ends and third stage starts

at t = 26s, parking at the stable saddle point-2 arrtactor is activated, stabilisation is completed.

which confirms that the stabilized motion is close to the rotation of the body along the direc-
tion of the angular momentum vector. The feature of the example is: the final direction of
the y body axes system, selected for stabilisation in this example, is opposite to the direction
of H. If the goal of stabilisation was to have them both aligned, then third stage should be
activated at instant close to 15s, as evidenced by the Fig. 30b.
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Figure 29. Balls of wool for : (a) the first stage of spacecraft motion with tumbling/coning (t = 0 ÷ 9.792s);
(b) last stage of stabilisation of the spacecraft (t = 26 ÷ 38s) with e1, e2 and e3 intersection lines with the

dome.

16.0 COMBINED MULTI-PHASE DEMO: CONSECUTIVE
PARADE OF ALL THREE ORTHOGONAL
INVERSIONS, ASSOCIATED WITH X, Y AND Z
BODY AXES

In order to demonstrate capability of the proposed method, in Fig. 31 we present results for
a single simulation case, during which the spinning body is reconfigured four times. The
carefully selected scenario for the applied inertial morphing (changes in the system, leading
to the change of the values of the principal moments of inertia) enables to achieve the flowing:

(1) Established flipping motion along y axis (with possibility for y inversion), distinguished
with a white background in Fig. 31;

(2) Established flipping motion along z axis (with possibility for z inversion), distinguished
with green background in Fig. 31;

(3) Established flipping motion along x axis (with possibility for x inversion) distinguished
with pink background in Fig. 31.

Consequently, it has been demonstrated that the predominant spin can be consecutively passed
on to any of the body axis with multiple possibilities for inversion at any stage of the stabilised
motion and then stabilisation of the desirable orientation. In other words, if the object had a
cube shape, based on this example, it was possible to perform transition of the spinning motion
of the cube, allowing exposure of each of its six faces to the direction of the initial angular
momentum vector. We call this compound demo case “all-axes inversion parade”.
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Figure 30. Time histories of the (a) ωx, ωy, ωz; (b) Htotal, Hx, Hy, Hz and (c) ax, ay and az during two-stage
stabilisation of the tumbling spacecraft via morphing.

17.0 ENHANCEMENT OF THE REORIENTATION AND
CHANGE OF THE SPIN AXIS USING REACTION
WHEELS

For completeness of this paper, we need to mention another powerful aspect of further
enhancement of the spinning spacecraft attitude control capabilities: adding one or a set of
moment reaction wheels, which are often used on various space systems(23).
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Figure 31. Time history for the following parameters during four-stage all-axes inversion parade: (a) Ixx,
Iyy, Izz ; (b) ωx, ωy, ωz; (c) Htotal, Hx, Hy, Hz; (d) ax, ay and az.
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Figure 32. Shift of stabilisation point, achieved with compoung use of the inertial morphing and
reaction wheel.

Differential equations of motion of the spacecraft, equipped with wheels, could be
presented as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

Ixx 0 0 0 0 0
0 Iyy 0 0 0 0
0 0 Izz 0 0 0
0 0 0 sin θ sin φ cos φ 0
0 0 0 sin θ cos φ − sin φ 0
0 0 0 cos θ 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω̇x

ω̇y

ω̇z

ψ̇

θ̇

φ̇

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Iyy − Izz)ωyωz − İxxωx

(Izz − Ixx)ωzωx − İyyωy

(Ixx − Iyy)ωxωy − İzzωz

ωx

ωy

ωz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nω1 +ωyl3 −ωzl2
nω2 +ωzl1 −ωxl3
nω3 +ωxl2 −ωyl1

0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

· · · (28)

Even simple preliminary cases, involving one wheel and not sophisticated wheel’s controls,
enabled us to find significant influence of this enhancement on performance of the system. In
particular, it was possible to significantly influence the period of inversion, make inversions
asymmetrical (see Fig. 32), etc. The authors intend to explore these capabilities in more detail
in the future works.

18.0 CONCLUSIONS
In this paper, a methodological framework for enhancing attitude control of the spacecraft,
using inertial morphing, is presented. It is based on the geometrical interpretation of equa-
tions of non-linear motion (involving non-dimensionalised angular momentum unit spheres
and kinetic energy ellipsoids) and features amazing simplicity, while giving impressive
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advanced range of tools for preliminary designs of the specific missions. A comprehensive
non-dimensional mathematical construction/formalisation to formulate and solve wide range
of attitude dynamics and control problems is presented. Applications of this methodology are
vast, including (but not limited to) the following possible applications:

(a) Inertial morphing that permits stopping (i.e. completely switching off) of the unstable
flipping motion of the spinning or tumbling spacecraft, if these motions are undesir-
able, by translating the motion into the regular spin. Similarly, this methodology enables
initiation (i.e. switching on) of the spinning spacecraft unstable periodic flipping. The
combination of switching on and switching off capabilities, without using traditional
gyroscopic devices, can be used for the inversion of the spacecraft, where the for-
ward/backward flying spacecraft could be easily converted into the backward/forward
flying system. Furthermore, this technique can be used for boosting (accelerating) or
decelerating spacecraft by only one thruster (i.e. for thruster direction control). It should
be stressed that two classes of possible solutions for switching off the flipping motion
were found, which presents multiple alternatives during missions planning/design.

(b) Inertial morphing can be very effective for controlling/changing the frequency of the
flipping motion within a very wide range. However, it was shown that there is a minimum
(i.e. low bounding limit) for the period of these oscillations.

(c) Using inertial morphing, a method of reduction of the compound rotation of the space-
craft into a single stable predominant rotation around one of the body axes was proposed.
This is achieved via multi-stage morphing. One of the transformation stages employs
transition of the system into unstable, flipping motion, enabling the transfer of the motion
into a special type, which could be represented with a polhode, situated close to the sepa-
ratrix. After this instalment into the separatrix, the final stage of the transition is typically
dedicated to conversion unstable motion into the stable. With the capability of this transfer
of the spacecraft spin into a single axis spin, aligned with the angular momentum direc-
tion, spacecraft essentially could perform three types of inversions, associated with any of
three body axis. In order to demonstrate capabilities of the method, an all-axes inversion
parade was presented, during which the spinning system was transitioned through three
consecutive stages with inversion, associated with each of the body axes, x, y and z. This
is in contrast with the classical Dzhanibekov’s Effect demonstration, where only one axis
inversion is possible.

(d) Attitude orientation of different sides of the spacecraft during various spinning/tumbling
scenarios was investigated and a simple ball of wool method to determine the most advan-
tageous sides of the spacecraft for attaching special equipment, like antennae and/or
solar batteries, was proposed. It has been discovered, that for the motion, resembling
Dzhanibekov’s Effect flipping, one side of the prism-shaped spacecraft, perpendicular
to the major axis of inertia (named as H+), would be always sensed from the specified
direction, whereas the second side (named as H -), would never be sensed from the same
specified direction. This important finding suggests the strategies for proper placement
of the sensitive equipment on the right sides of the spacecraft and for reinforcement of
the side, which could be deliberately made exposed to the adverse directional conditions
(heat, radiation, flying space debris, asteroid belts, etc.)

This paper presents examples of the implementations of the inertial morphing. These methods
include, but not limited to: (i) use of mechanical actuating systems and/or pre-compressed
springs to re-position masses within the spacecraft; (ii) use of heavy liquids and/or magnetic
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liquids and associated mechanisms and valves to change the mass distribution within the
system, employing passive inertial forces and/or controlled magnetic field forces to move
these liquid medias; (iii) use mass ejection, evaporation, ablation, solidification to change the
system mass, etc.

It has been also demonstrated that a reaction wheel system could further enhance spacecraft
capabilities, enabling changes into the angular momentum of the system offering full access
to the inertial morphing strategies.
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