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The asymptotic behavior of the solutions of ordinary nonlinear differential equations
will be considered here. The growth of the solutions of a differential equation will be discussed
by establishing criteria to determine when the differential equation does not possess a solution
that is an element of the space 1/(0, oo) (j> ^ 1).

The first theorem below gives a sufficient condition which guarantees that the solutions
of a certain differential equation are not in L"(0, oo). This theorem is an extension of a
result originally due to Wintner [8], where a second-order linear differential equation was
considered. This result was successfuly extended to nonlinear second-order differential
equations by Suyemoto and Waltman [6] and Burlak [2]. Our extension is to an nth order
nonlinear differential equation, namely,

ylm)+g(t,y) = o, yM = % tt)

where
\g(t,y)\^f{t)\y\ (2)

with n 2: 1, r ^ 1, and/(<) continuous on [0, oo).
We shall assume throughout that g{t, y) is sufficiently smooth to guarantee the existence

of solutions of (1). The word " solution ", for the remainder of this note, will mean a non-
trivial (i.e., not identically zero) solution that exists on the interval [0, oo).

THEOREM 1. Let y(t) be any solution of equation (1) with condition (2) imposed; then
y(t) is not in L2r(0, oo) provided that

/•oo

tZn-1f\i)dt<oo. (3)
Jo

Proof. The proof is similar to that given in the above references and requires the following
propositions.

(I) If equation (1) has a solution y(t) in L2r(0, oo) and (3) is satisfied, then / " " ' ty ) ,
/"~2)(0> • ••> yllKO> y(0 approach zero as / approaches infinity.

(II) If equation (1) has a solution y(t) in L2r(0, oo) and (3) is satisfied, then y(t) is in
L\0, oo).

Proposition (I) will now be established. From equation (1), we obtain
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Considering the integral in equation (4), using inequality (2) and the Schwarz Inequality,
we obtain

I'g(s,y(s))ds

If XO is a solution of (1) in L2r(0, oo), then, from (4), it follows that lim y^'1^) exists,
since the integral is majorized by '~"°

If lim yin~x\t) = ^n_j =t= 0, then | y(t) |2r dt diverges, which contradicts the hypothesis
«-*oo Jo

of proposition (I); thus An^t = 0.
Suppose that it has been established that lim /""^(O = 0, where j is some fixed integer

f-»oo

such that 1 £j£n — l. From equation (1), we obtain

r r...r g(tj,
t jd jtj-i

Integration of the above equation, inequality (2) and the Schwarz Inequality lead to the
inequality

[°Vn~;)(oi^ r r r . . . r i^,
Jo Jo Jt Jr, Jtj-i

The last integrals in (5) are finite by hypothesis. Therefore, since | / " J)(s) | ds converges,
Jo

lim y(n~J ^(t) exists; let this limit be An-j-v Again, under the hypothesis of (I), it is
l -»oo

necessary that ^n_;_i = 0. This establishes proposition (I).
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To show that (II) holds, let y(t) be a solution of (1) in L2r(0, oo). Using (I), we may write

/• 00 /• 00 /* 00 /* 00

= (-l)""1 ... g(tn,y(tn))dtndtn.i...dtl.
Jt J(l Jfn-jJ'n-l

Proceeding as in (5) above, we obtain the inequality

f* 00 f* 00 f* 00 /• 00

N - /(OlX

Therefore

/•oo / * c o | ~ p o o / * c o / * o o / * o o ~|2

| X 0 | 2 ^ - / t o b ( 0 | r < M ' - i . . . * i \dt
JO J0 LJt J<. Jfn-2j ln- l J

The above inequality shows that the existence of a solution y(t) in L2r(0, oo) implies that y(t)
is in Z,2(0, oo); that is, proposition (II) is verified.

To complete the proof of Theorem 1, suppose that there exists a solution y(t) of (1)
which is in L2r(0, oo). By virtue of (I), lim y{t) = 0; therefore there exists a t = T such

t-»00

that, for all t^T, \ y{t) | < 1, and XO* 0 on [T, oo). For /• ̂  1 and f£ T, we have
| X 0 r | X | 2

An argument similar to that used in (6) with t ̂  T leads to

r

Since
- [ T ' X s ) '2 ds1 [ f"s 2 n" i

n^)i2*>o,
from (7) we have

1 ^ ^s2n-lf2(s)ds.

However, this contradicts (3) and concludes the proof of the theorem.
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Remark 1. It is clear that the above theorem can be extended to a differential equation
of the type

where g satisfies

that is, g is a bounded function of yw, >>(2), . . . . j ^ " " 1 * . The condition (3) is, in a sense, the
best possible, as it cannot be replaced by

\ t2n-l+ef2(t)dt<oD and f " t 2 " " 1 / 2 * ^ ) ^ < <*>
Jo Jo

with e > 0 (see [8]).
For the remainder of this note we shall be primarily concerned with obtaining a sufficient

condition for some of the solutions of a nonoscillatory differential equation not to be in
L"(0, oo) (p ^ 1). In [4] Kurss used the Sturm Comparison Theorems in an eigenvalue
problem to determine the nonexistence of solutions of a linear differential equation in the
Hilbert space L2(0, oo). In what follows we shall use a nonlinear analogue of the Sturm
Comparison Theorem due to Sevelo and Stelik [5] to establish the nonexistence of {Lp)-
solutions of a nonlinear second-order differential equation (cf. Theorem 4 below). Also, we
shall give a numerical comparison theorem for a pair of nonlinear differential equations (cf.
Theorem 3 below).

Consider the differential equations

,«') = 0, (8)

,v') = o, (9)

wherep'(t) is continuous on [0, oo),/>(0 ^p0 > 0,p0 is constant, and the fx(t, z, z'){i = 1 , 2 )
are continuous and satisfy conditions sufficient to guarantee the existence and uniqueness of
solutions of (8) and (9) for te [0, oo).

The following result can be found in [5].

THEOREM 2. If f2(t, u, O/t>-/i('> «,«')/« ^ 0 for all u',v', <e[0, oo), ueU = (-u,u),
veV= (—v, v)(0 <u^ oo, 0 <i? ^ oo), then between any two consecutive zeros of an arbitrary
solution u(t)eU of equation (8) there is situated at least one zero of each solution v(t)eV of
equation (9).

Remark 2. Subject to the hypotheses of the above theorem, we observe that, if equation (9)
has a nonoscillatory solution v(t) in V, then all solutions u{t) in U of equation (8) are non-
oscillatory. This is true because, if some solution of (8) is oscillatory, then, by Theorem 2,
all solutions of (9) are oscillatory.

THEOREM 3. Let u(t) and v(t) be solutions of(J) and (8), respectively, such that

«('o) = <*o) * 0, u'('o) = Ah)-
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/ /
f2(t,v,v')/v>f1(t,u,u')/u (10)

for all 16 [f0, oo), u', v', u, v, where 0 < | v | ^ | u \, then \ u(t) | > | v(t) | provided that v(t) is not zero.

Proof. The proof follows that given by Tricomi [7, p. 103] and is a consequence of the
identity

THEOREM 4. Le/ inequality (10) hold for all te[0, oo), «', t/, w, andv; furthermore, suppose
that equation (9) fa nonoscillatory. If some solution of (9) fa no? /« L"(0, oo)(p ^ 1), then some
solution of (8) is not in Lp(0, oo).

Proof. If t)(r) is a solution of the nonoscillatory equation (9) which is not in Lp(0, oo),
then, by Remark 2 with/i = / 2 , u(f) is nonoscillatory. Hence there exists & t = t0 such that
| v(t) | > 0 for t ^ r0. By virtue of Theorem 3, it follows that the solution u{t) of equation (8)
that satisfies the initial conditions

«('o) = <t0), u'(t0) = v'(t0)
also satisfies the inequality

| |

Therefore u(t) is not in LP(tQ, oo) and consequently not in Lp(0, oo).

Remark 3. The above theorem can be used as an (Lp)-existence theorem for equation (9).
We illustrate this by the following result of Bellman [1].

If all the solutions of
u" + a(t)u = 0 (11)

belong to L2(0, oo), then all the solutions of

v" + {a(t)+b(t)}v = O (12)

belong to L2(0, oo) provided that | b(t) \gc1(t> 0).
It follows from Theorem 4 that the same conclusion is now obtained without the boun-

dedness condition | b(t) \^ c1(t> 0), but under the different condition that (12) is non-
oscillatory. Actually, the equation (12) may be generalized to a nonlinear equation; for
example,

v" + a(t)v+ £ b{tyj-l=0, (12')

where b}{i) ^ 0 for ally = 1, 2, . . . , n, and bk(t) > 0 for some k = 1,2,..., n.
However, even for the linear case, the above result is not easy to apply. To observe this,

we consider the following question: When does the nonoscillatory linear equation (11)
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possess all solutions in L2(0, oo)? (The fact that (11)—and not merely (12)—must be non-
oscillatory results from Remark 2 above.)

As a partial answer, we observe that a(t) cannot be bounded [1, p. 138, Problem 8].
Also, a{t) cannot be of constant sign; for if a{t) < 0 on [0, oo), consider the equations v" = 0
and u"+a(t)u = 0. The hypotheses of Theorem 4 are satisfied and, consequently, all solutions

of u"+a(t)u - 0 cannot be in L2(0, oo). On the other hand, if a(t) > 0 on [0, oo), a(t) dt < oo

is necessary for nonoscillation [3, p. 367]; and, as remarked above, a(t) cannot be bounded.
However, if a(t) > 0, then all solutions of (11) are either oscillatory or monotone; hence,

/•oo

in the case under consideration, all solutions must be monotone. But, if a{t)dt< oo, then
/•oo

all solutions cannot be bounded [1, p. 121, Problem 2] ; therefore all solutions cannot be in
L2(0, oo).

Thus, if equation (11) is to be nonoscillatory and have all solutions in L2(0, oo), then it is
necessary that a(t) be oscillatory and lim sup | a(t) | = oo. In this situation it is an open

f-*OO

question if the hypotheses are compatible with those o n / t and/ 2 in Theorems 2, 3 and 4.

REFERENCES
1. R. Bellman, Stability theory of differential equations, McGraw-Hill (New York, 1953), p. 116.
2. J. Burlak, On the nonexistence of La solutions of a class of nonlinear differential equations,

Proc. Edinburgh Math. Soc. 14 (1965), 257-268.
3. P. Hartman, Ordinary differential equations, Wiley (New York, 1964).
4. H. Kurss, A limit point criterion for nonoscillatory Sturm-Liouville differential operators;

to appear.
5. V. N. Sevelo and V. G. Stelik, Certain problems concerning the oscillation of solutions of

nonlinear nonautonomous second order equations, Soviet Math. Dokl. 4 (1963), 383-387.
6. L. Suyemoto and P. Waltman, Extension of a theorem of A. Wintner, Proc. Amer. Math. Soc.

14(1963), 970-971.
7. F. G. Tricomi, Differential equations, Hafner (New York, 1961).
8. A. Wintner, A criterion for the nonexistence of (La)-solutions of a nonoscillatory differential

equation, / . London Math. Soc. 25 (1950), 347-351.

FLORIDA STATE UNIVERSITY

TALLAHASSEE, FLORIDA

https://doi.org/10.1017/S0017089500000203 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000203

