ON THE NONEXISTENCE OF L^p SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

by THOMAS G. HALLAM

(Received 9 December, 1966)

The asymptotic behavior of the solutions of ordinary nonlinear differential equations will be considered here. The growth of the solutions of a differential equation will be discussed by establishing criteria to determine when the differential equation does not possess a solution that is an element of the space $L^{p}(0, \infty)$ ($p \ge 1$).

The first theorem below gives a sufficient condition which guarantees that the solutions of a certain differential equation are not in $L^{p}(0, \infty)$. This theorem is an extension of a result originally due to Wintner [8], where a second-order linear differential equation was considered. This result was successfuly extended to nonlinear second-order differential equations by Suyemoto and Waltman [6] and Burlak [2]. Our extension is to an *n*th order nonlinear differential equation, namely,

$$y^{(n)} + g(t, y) = 0, \quad y^{(n)} = \frac{d^n y}{dt^n},$$
 (1)

where

$$\left|g(t,y)\right| \le f(t) \left|y\right|^r \tag{2}$$

with $n \ge 1$, $r \ge 1$, and f(t) continuous on $[0, \infty)$.

We shall assume throughout that g(t, y) is sufficiently smooth to guarantee the existence of solutions of (1). The word "solution", for the remainder of this note, will mean a non-trivial (i.e., not identically zero) solution that exists on the interval $[0, \infty)$.

THEOREM 1. Let y(t) be any solution of equation (1) with condition (2) imposed; then y(t) is not in $L^{2r}(0, \infty)$ provided that

$$\int_0^\infty t^{2n-1} f^2(t) dt < \infty.$$
(3)

Proof. The proof is similar to that given in the above references and requires the following propositions.

(I) If equation (1) has a solution y(t) in $L^{2r}(0, \infty)$ and (3) is satisfied, then $y^{(n-1)}(t)$, $y^{(n-2)}(t), \ldots, y^{(1)}(t), y(t)$ approach zero as t approaches infinity.

(II) If equation (1) has a solution y(t) in $L^{2r}(0, \infty)$ and (3) is satisfied, then y(t) is in $L^{2}(0, \infty)$.

Proposition (I) will now be established. From equation (1), we obtain

$$y^{(n-1)}(t) - y^{(n-1)}(0) = -\int_0^t g(s, y(s)) \, ds. \tag{4}$$

Considering the integral in equation (4), using inequality (2) and the Schwarz Inequality, we obtain

$$\left| \int_{0}^{t} g(s, y(s)) \, ds \right| \leq \int_{0}^{t} \left| g(s, y(s)) \right| \, ds$$
$$\leq \int_{0}^{t} f(s) \left| y(s) \right|^{r} \, ds$$
$$\leq \left[\int_{0}^{t} f^{2}(s) \, ds \right]^{\frac{1}{2}} \left[\int_{0}^{t} \left| y(s) \right|^{2r} \, ds \right]^{\frac{1}{2}}$$

If y(t) is a solution of (1) in $L^{2r}(0, \infty)$, then, from (4), it follows that $\lim_{t \to \infty} y^{(n-1)}(t)$ exists, since the integral is majorized by

$$\left[\int_0^\infty f^2(s)\,ds\right]^{\frac{1}{2}}\left[\int_0^\infty |y(s)|^{2r}\,ds\right]^{\frac{1}{2}}.$$

If $\lim_{t \to \infty} y^{(n-1)}(t) = A_{n-1} \neq 0$, then $\int_0^\infty |y(t)|^{2r} dt$ diverges, which contradicts the hypothesis of proposition (I); thus $A_{n-1} = 0$.

Suppose that it has been established that $\lim_{t\to\infty} y^{(n-j)}(t) = 0$, where j is some fixed integer such that $1 \le j \le n-1$. From equation (1), we obtain

$$y^{(n-j)}(t) = (-1)^{j+1} \int_t^{\infty} \int_{t_1}^{\infty} \dots \int_{t_{j-1}}^{\infty} g(t_j, y(t_j)) dt_j dt_{j-1} \dots dt_1.$$

Integration of the above equation, inequality (2) and the Schwarz Inequality lead to the inequality

$$\int_{0}^{\infty} |y^{(n-j)}(t)| dt \leq \int_{0}^{\infty} \int_{t}^{\infty} \int_{t_{1}}^{\infty} \dots \int_{t_{j-1}}^{\infty} |g(t_{j}, y(t_{j}))| dt_{j} dt_{j-1} \dots dt_{1} dt$$

$$\leq \int_{0}^{\infty} t_{j}^{j} |g(t_{j}, y(t_{j}))| dt_{j}$$

$$\leq \int_{0}^{\infty} s^{j} f(s) |y(s)|^{r} ds$$

$$\leq \left[\int_{0}^{\infty} s^{2j} f^{2}(s) ds \right]^{\frac{1}{2}} \left[\int_{0}^{\infty} |y(s)|^{2r} ds \right]^{\frac{1}{2}}.$$
(5)

The last integrals in (5) are finite by hypothesis. Therefore, since $\int_{0}^{\infty} |y^{(n-j)}(s)| ds$ converges, $\lim_{t\to\infty} y^{(n-j-1)}(t)$ exists; let this limit be A_{n-j-1} . Again, under the hypothesis of (I), it is necessary that $A_{n-j-1} = 0$. This establishes proposition (I). To show that (II) holds, let y(t) be a solution of (1) in $L^{2r}(0, \infty)$. Using (I), we may write

$$y(t) = (-1)^{n-1} \int_{t}^{\infty} \int_{t_{1}}^{\infty} \dots \int_{t_{n-2}}^{\infty} \int_{t_{n-1}}^{\infty} g(t_{n}, y(t_{n})) dt_{n} dt_{n-1} \dots dt_{1}$$

Proceeding as in (5) above, we obtain the inequality

$$\left| y(t) \right| \leq \int_{t}^{\infty} \int_{t_{1}}^{\infty} \dots \int_{t_{n-2}}^{\infty} \int_{t_{n-1}}^{\infty} f(t_{n}) \left| y(t_{n}) \right|^{r} dt_{n} dt_{n-1} \dots dt_{1}.$$

Therefore

$$\int_{0}^{\infty} |y(t)|^{2} dt \leq \int_{0}^{\infty} \left[\int_{t}^{\infty} \int_{t_{1}}^{\infty} \dots \int_{t_{n-2}}^{\infty} \int_{t_{n-1}}^{\infty} f(t_{n}) |y(t_{n})|^{r} dt_{n} dt_{n-1} \dots dt_{1} \right]^{2} dt$$

$$\leq \int_{0}^{\infty} \left[\int_{t}^{\infty} t_{n}^{2(n-1)} f^{2}(t_{n}) dt_{n} \right] \left[\int_{t}^{\infty} |y(t_{n})|^{2r} dt_{n} \right] dt$$

$$\leq \left[\int_{0}^{\infty} |y(s)|^{2r} ds \right] \left[\int_{0}^{\infty} s^{2n-1} f^{2}(s) ds \right] < \infty.$$
(6)

The above inequality shows that the existence of a solution y(t) in $L^{2r}(0, \infty)$ implies that y(t)is in $L^2(0, \infty)$; that is, proposition (II) is verified.

To complete the proof of Theorem 1, suppose that there exists a solution y(t) of (1) which is in $L^{2r}(0, \infty)$. By virtue of (I), $\lim y(t) = 0$; therefore there exists a t = T such t→∞ that, for all $t \ge T$, |y(t)| < 1, and $y(t) \ne 0$ on $[T, \infty)$. For $r \ge 1$ and $t \ge T$, we have $|y(t)|^{2r} \leq |y(t)|^2$ and

$$\int_t^\infty |y(t)|^{2r} dt \leq \int_t^\infty |y(t)|^2 dt.$$

An argument similar to that used in (6) with $t \ge T$ leads to

$$\int_{t}^{\infty} |y(s)|^{2} ds \leq \left[\int_{t}^{\infty} |y(s)|^{2r} ds\right] \left[\int_{t}^{\infty} s^{2n-1} f^{2}(s) ds\right]$$
$$\leq \left[\int_{t}^{\infty} |y(s)|^{2} ds\right] \left[\int_{t}^{\infty} s^{2n-1} f^{2}(s) ds\right].$$
$$(7)$$
$$\int_{t}^{\infty} |y(s)|^{2} ds > 0,$$
$$1 \leq \int_{t}^{\infty} s^{2n-1} f^{2}(s) ds.$$

from (7) we have

Since

$$1 \leq \int_t^\infty s^{2n-1} f^2(s) \, ds.$$

However, this contradicts (3) and concludes the proof of the theorem.

THOMAS G. HALLAM

Remark 1. It is clear that the above theorem can be extended to a differential equation of the type

$$y^{(n)} + g(t, y, y^{(1)}, y^{(2)}, ..., y^{(n-1)}) = 0,$$

where g satisfies

$$|g(t, y, y^{(1)}, y^{(2)}, ..., y^{(n-1)})| \leq f(t) |y(t)|^{r};$$

that is, g is a bounded function of $y^{(1)}$, $y^{(2)}$, ..., $y^{(n-1)}$. The condition (3) is, in a sense, the best possible, as it cannot be replaced by

$$\int_0^\infty t^{2n-1+\varepsilon} f^2(t) dt < \infty \quad \text{and} \quad \int_0^\infty t^{2n-1} f^{2+\varepsilon}(t) dt < \infty$$

with $\varepsilon > 0$ (see [8]).

For the remainder of this note we shall be primarily concerned with obtaining a sufficient condition for some of the solutions of a nonoscillatory differential equation not to be in $L^{p}(0, \infty)$ ($p \ge 1$). In [4] Kurss used the Sturm Comparison Theorems in an eigenvalue problem to determine the nonexistence of solutions of a linear differential equation in the Hilbert space $L^{2}(0, \infty)$. In what follows we shall use a nonlinear analogue of the Sturm Comparison Theorem due to Ševelo and Štelik [5] to establish the nonexistence of (L^{p}) solutions of a nonlinear second-order differential equation (cf. Theorem 4 below). Also, we shall give a numerical comparison theorem for a pair of nonlinear differential equations (cf. Theorem 3 below).

Consider the differential equations

$$[p(t)u']' + f_1(t, u, u') = 0,$$
(8)

$$[p(t)v']' + f_2(t, v, v') = 0,$$
(9)

where p'(t) is continuous on $[0, \infty)$, $p(t) \ge p_0 > 0$, p_0 is constant, and the $f_1(t, z, z')$ (i = 1, 2) are continuous and satisfy conditions sufficient to guarantee the existence and uniqueness of solutions of (8) and (9) for $t \in [0, \infty)$.

The following result can be found in [5].

THEOREM 2. If $f_2(t, v, v')/v - f_1(t, u, u')/u \ge 0$ for all $u', v', t \in [0, \infty)$, $u \in U = (-\bar{u}, \bar{u})$, $v \in V = (-\bar{v}, \bar{v}) (0 < \bar{u} \le \infty, 0 < \bar{v} \le \infty)$, then between any two consecutive zeros of an arbitrary solution $u(t) \in U$ of equation (8) there is situated at least one zero of each solution $v(t) \in V$ of equation (9).

Remark 2. Subject to the hypotheses of the above theorem, we observe that, if equation (9) has a nonoscillatory solution v(t) in V, then all solutions u(t) in U of equation (8) are non-oscillatory. This is true because, if some solution of (8) is oscillatory, then, by Theorem 2, all solutions of (9) are oscillatory.

THEOREM 3. Let u(t) and v(t) be solutions of (7) and (8), respectively, such that

$$u(t_0) = v(t_0) \neq 0, \quad u'(t_0) = v'(t_0).$$

136

If

$$f_2(t, v, v')/v > f_1(t, u, u')/u$$
(10)

for all $t \in [t_0, \infty), u', v', u, v$, where $0 < |v| \le |u|$, then |u(t)| > |v(t)| provided that v(t) is not zero.

Proof. The proof follows that given by Tricomi [7, p. 103] and is a consequence of the identity

$$p(t)[vu'-uv'](t) = \int_{t_0}^t u(s)v(s) \left[\frac{f_2(s,v(s),v'(s))}{v(s)} - \frac{f_1(s,u(s),u'(s))}{u(s)} \right] ds.$$

THEOREM 4. Let inequality (10) hold for all $t \in [0, \infty)$, u', v', u, and v; furthermore, suppose that equation (9) is nonoscillatory. If some solution of (9) is not in $L^p(0, \infty)$ ($p \ge 1$), then some solution of (8) is not in $L^p(0, \infty)$.

Proof. If v(t) is a solution of the nonoscillatory equation (9) which is not in $L^p(0, \infty)$, then, by Remark 2 with $f_1 = f_2$, v(t) is nonoscillatory. Hence there exists a $t = t_0$ such that |v(t)| > 0 for $t \ge t_0$. By virtue of Theorem 3, it follows that the solution u(t) of equation (8) that satisfies the initial conditions

$$u(t_0) = v(t_0), \quad u'(t_0) = v'(t_0)$$

also satisfies the inequality

$$|u(t)| > |v(t)|.$$

Therefore u(t) is not in $L^{p}(t_{0}, \infty)$ and consequently not in $L^{p}(0, \infty)$.

Remark 3. The above theorem can be used as an (L^p) -existence theorem for equation (9). We illustrate this by the following result of Bellman [1].

If all the solutions of

$$u'' + a(t)u = 0 (11)$$

belong to $L^2(0, \infty)$, then all the solutions of

$$v'' + \{a(t) + b(t)\}v = 0$$
(12)

belong to $L^2(0, \infty)$ provided that $|b(t)| \leq c_1$ (t>0).

It follows from Theorem 4 that the same conclusion is now obtained without the boundedness condition $|b(t)| \leq c_1$ (t > 0), but under the different condition that (12) is nonoscillatory. Actually, the equation (12) may be generalized to a nonlinear equation; for example,

$$v'' + a(t)v + \sum_{j=1}^{n} b_j(t)v^{2j-1} = 0, \qquad (12')$$

where $b_j(t) \ge 0$ for all j = 1, 2, ..., n, and $b_k(t) > 0$ for some k = 1, 2, ..., n.

However, even for the linear case, the above result is not easy to apply. To observe this, we consider the following question: When does the nonoscillatory linear equation (11)

THOMAS G. HALLAM

possess all solutions in $L^2(0, \infty)$? (The fact that (11)—and not merely (12)—must be non-oscillatory results from Remark 2 above.)

As a partial answer, we observe that a(t) cannot be bounded [1, p. 138, Problem 8]. Also, a(t) cannot be of constant sign; for if a(t) < 0 on $[0, \infty)$, consider the equations v'' = 0and u'' + a(t)u = 0. The hypotheses of Theorem 4 are satisfied and, consequently, all solutions of u'' + a(t)u = 0 cannot be in $L^2(0, \infty)$. On the other hand, if a(t) > 0 on $[0, \infty)$, $\int_{-\infty}^{\infty} a(t) dt < \infty$ is necessary for nonoscillation [3, p. 367]; and, as remarked above, a(t) cannot be bounded. However, if a(t) > 0, then all solutions of (11) are either oscillatory or monotone; hence, in the case under consideration, all solutions must be monotone. But, if $\int_{-\infty}^{\infty} a(t) dt < \infty$, then all solutions cannot be bounded [1, p. 121, Problem 2]; therefore all solutions cannot be in $L^2(0, \infty)$.

Thus, if equation (11) is to be nonoscillatory and have all solutions in $L^2(0, \infty)$, then it is necessary that a(t) be oscillatory and $\limsup_{t\to\infty} |a(t)| = \infty$. In this situation it is an open question if the hypotheses are compatible with those on f_1 and f_2 in Theorems 2, 3 and 4.

REFERENCES

1. R. Bellman, Stability theory of differential equations, McGraw-Hill (New York, 1953), p. 116.

2. J. Burlak, On the nonexistence of L^{2} solutions of a class of nonlinear differential equations, *Proc. Edinburgh Math. Soc.* 14 (1965), 257-268.

3. P. Hartman, Ordinary differential equations, Wiley (New York, 1964).

4. H. Kurss, A limit point criterion for nonoscillatory Sturm-Liouville differential operators; to appear.

5. V. N. Ševelo and V. G. Štelik, Certain problems concerning the oscillation of solutions of nonlinear nonautonomous second order equations, Soviet Math. Dokl. 4 (1963), 383-387.

6. L. Suyemoto and P. Waltman, Extension of a theorem of A. Wintner, Proc. Amer. Math. Soc. 14 (1963), 970-971.

7. F. G. Tricomi, Differential equations, Hafner (New York, 1961).

8. A. Wintner, A criterion for the nonexistence of (L^2) -solutions of a nonoscillatory differential equation, J. London Math. Soc. 25 (1950), 347-351.

Florida State University Tallahassee, Florida