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ABSTRACT: Gracia de Luna conducted experiments with an HMD virtual environment in which human subjects
were presented with surprise distractions. His collected data for head, dominant hand, and non-dominant hand
included 6 DOF human subject trajectories. This paper examines this data from 57 human subject responses to
those surprise virtual environment distractions using statistical trajectory clustering algorithms. The data is
organized and processed with a Dynamic Time Warping (DTW) algorithm and then analyzed using the Density
Based Spatial Clustering (DBSCAN) algorithm. The K-means method was used to determine the appropriate
number of clusters. Chi Squared goodness of fit was used to determine statistical significance. For five of the data
sets, a p value of less than 0.05 was found. These five data sets were found to have a limited relationship to the
measured variables.
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1. Introduction

The growing use of internet-of-things has made data mining an important field of research. Mobile
devices now leave a digital footprint and these footprints consist of thousands of data points distributed
across space and time, requiring the analysis and interpretation of vast amounts of data. This issue exists
for data from virtual environments where the tracking systems generate many points of data as a function
of time which need to be analysed to obtain meaning.

Gracia de Luna (2019; 2020; 2021) performed an experiment where users took different trajectories in a
virtual environment (VE) in response to 3 distractions. The locations and orientations of the users’ right
and left hand, and head in a 3D space were recorded at intervals of 0.011 seconds. Gracia’s thesis (2019)
examined the relationship between the user’s performance and their gender. Although spatial temporal
data was gathered, Gracia’s work did not analyse the spatial temporal data for relationships to user
performance. Using clustering algorithms, this paper analyses the trajectories taken in Gracia de Luna’s
(2019) experiment looking for similarities within user performance (number of times a balanced ball
drops), and user’s demographics. Using this collected but not analysed trajectory data, this study attempts
to obtain and document relationships from the trajectory analysis with DeLLuna’s study variables.

The research goals of this paper are to explore the use of trajectory clustering analysis as a means of
gaining meaning from trajectory information from a virtual environment experiment. The importance of
a potential discovery could lead to new methods in analysing user behaviour in virtual environments. To
the understanding of the authors, this type of analysis has not been published before, and if successful,
could result in techniques and methods that have the potential to enhance the usefulness of virtual
environments to the design processes and enterprise.

Gracia de Luna ’s (2019) experiment did not include analysis of trajectory in the virtual environment. So,
the purpose of this work is to delve further into the analysis of the acquired data to determine if the
subjects’ demographics, performance (balanced ball drops), and sense of presence in the VE can be
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related to their trajectory. This general objective is to compare trajectories taken by the users’ dominant
and non-dominant hand and head by generating clusters that group them if similar. By comparing the
trajectories to independent variables (number of times a balanced ball is dropped, sense of presence,
gender, game experience), a better understanding of human reaction to virtual stimuli can be achieved.
By using trajectory clustering algorithms and data analysis techniques, this study investigates whether
balance and motion response to 3 separate stimuli events in the VE correlate with the users’ self-
perception of performance, performance (balanced ball drops) and sense of presence.

The second section of this paper includes a literature review of prior work, clustering techniques used
for data analysis along with their benefits and which techniques work better with spatiotemporal data.
Section three explains the methodology used to adapt de Gracia de Luna’s (2019) data for clustering
algorithms along with the use of these algorithms and their results. The fourth section presents the
results obtained from data analysis techniques, and the last section provides conclusions and
future work.

2. Literature review

2.1. Gracia de Luna’s work

Gracia de Luna (2019) conducted an experiment where users in a VR path carried a plate on their non-
dominant hand while the dominant is used for navigation. This plate supported a ball which was balanced
with the movement of the user. To accurately capture the range of these movements, the 6 degrees of
freedom are tracked with an HTC Vive system. The HTC Vive has two tracking base stations that cover a
360-degree play area. They are placed in a designated area covering the ‘path’ that users follow. The user
wears the head-mounted display and grabs the hand controllers during the virtual walk. The lighthouses
are integrated with the sensors in the headset and controllers. The lighthouses track the headset and hand
controllers with the six DOF by measuring the position and orientation of the sensors when they are
activated. Figure 1 shows the path taken by users in an urban park setting in the virtual environment.
Others have done similar work. Hammet et al. (2017) tracked movements in X, y, z, roll, pitch, and yaw to
properly track motion in a VR snowboarding exercise. Slater et al. (1994) used logistic regression
analysis to show that visual, auditory, and kinaesthetic representation in a VE, associated with higher
reporting of presence by users.

In Gracia de Luna’s work, his designed VE included 3 different stimuli to provide a change of
environment to the user and record their spatial response. The stimuli are an explosion on the path shown
in Figure 2, meteors falling from the left side, and a bird flock crossing through the path. These
‘distractions’ are not disclosed to the user prior to occurrence.

Usoh et al. (2000) suggested a questionnaire for VR subjects to answer using a scale from 1 to 7 to
indicate their self-perception of presence in the environment. This scale is appropriate to quantify their
“sense of being there” rather than analysing open answers that may be subjective to the user. Gracia de
Luna (2019) employed a 7 question-survey for the users with the purpose of recording their level of self-
perception during the experiment. The results from this questionnaire are statistically compared to the
actual performance of the users during the test.

Figure 1. Virtual path obtained from gracia de luna’s study (2019)
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Figure 2. Stimuli events taken from gracia de luna’s study (2019) a) Explosion; b) Meteor; c) Birds

To analyse the collected data, the following statistical methods were used by Gracia de Luna (2019):
Contingency Table, T-Test, Correlation, and Phase Plane analysis. Gracia de Luna’s experiment gave
favourable results to understanding the gap between presence and performance; however, the
spatiotemporal data obtained about the users’ trajectories was not used.

While there have been attempts at analysing user’s performance on a virtual environment, there is a lack
of studies based on trajectory data. The user’s position and movement add a layer of complexity to the
data that can be challenging to analyse using traditional methods. In this study, human balance and
trajectories are examined using unsupervised machine learning.

2.2. Big data

Big Data, the term given to the massive and complex collection of data, from such sources as online
shopping and social media interactions, has become a component of current research. Zhu et al. (2018)
mentioned that Big Data “seeks to explore complex and evolving relationships among data.” Wu et al.
(2014) even compares it to blind men trying to size up a giant elephant that keeps growing.

One kind of relationship that can be found in Big Data is preferences from online shoppers. Ozer and
Cebeci (2019) experimented with two common algorithms to analyse big data and concluded that online
shoppers are more likely to be annoyed when they are either “bombarded” with unneeded information or
frustrated when they receive less than expected information. Bulagang et al. (2021) coordinated an
experiment with 20 subjects whose heart rate was tracked as they watched videos through a HTC Vive
Virtual Reality headset. The results of this experiment showed that heart rate is a good potential approach
in predicting human emotions. Hasenbein et al. (2023) investigated social comparison behaviour among
students in a virtual reality classroom. The specific behaviour examined is the participation of students by
raising their hand to answer questions. An experiment done by Birenboim et al. (2019) consisted of
participants cycling virtual routes with changing environmental characteristics and through a route with
still, static images.

Bouchard and St. Jaques (2008) studied the subjective feeling of presence from individuals in a virtual
reality environment through induced anxiety. Furthermore, Chuan et al. (2023) created virtual reality
software that helps teach cognitive-motor needling skills needed for the performance of ultrasound-
guided regional anaesthesia.

2.3. Preprocessing

The initial step before any data analysis is to pre-process the data. Data is collected as events happen,
showing location coordinates, qualitative or quantitative characteristics, and temporal position; this data
can extend to be thousands of pages long. Therefore, a helpful step is to “clean” or structure the data in a
way that can be analysed more easily (Xia et al., 2021). Ansari et al. (2020) said that irrelevant attributes
could negatively affect similarity measures.

Apart from eliminating not useful data, the remaining information can be structured in a different format;
titles could be added for easier location, dimensions can be zeroed to decrease computation time, and
format can be matched to computational programs.

2.4. Clustering

Spatiotemporal datasets represent new dimensions to track, thus, increasing the difficulty for analysis. A
common strategy to simplify this data is to develop clusters or perform a cluster analysis. By applying a
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similarity measure to trajectories, it is possible to group them based on specific characteristics and reduce
the number of paths to analyse. There are multiple algorithms for trajectory clustering, each produces
different results based on the data reviewed and the use that the analyst seeks.

Yuan et al. (2027) grouped into 5 main categories based on how they model data: model-based,
hierarchical, grid-based, density-based, and partitioning methods. Hierarchical clustering requires a large
amount of computational time since it reads every data point as a cluster and then looks to merge that data
point with others (Han and Pei, 2012). Grid-based clustering, although used in many two-dimensional
path studies, do not work well for irregular paths. Model-based clustering works by examining the
spatiotemporal data and comparing mathematical models to find the best match (Li et al., 2017).
Density-based clustering is good for the detection of shapes and clusters from different sizes, but this
method rely on other inputs (Agrawal et al., 2016). The main two algorithms of this category are Density-
Based Spatial Clustering and Ordering Points to Identify the Clustering Structure. These two algorithms
are effective for identifying nested clusters, or data points that might seem close in space, but far in other
dimensions.

Density-Based Spatial Clustering (DBSCAN) functions based on the concept that regions with a
high density of data points that are separated by sparser regions in the dataspace are identified as
clusters. Bushra and Yi (2021) explained that the DBSCAN algorithm uses a radius input and
neighbourhood points to identify the core point and measure if it is surrounded by the
neighbourhood points in the radius, if so, these points become a part of one cluster. The core points
that are in the radius of a point in that cluster are combined to it, making it larger. The points near
the cluster that are not core points are added as well but the algorithm does not look for core points
in their radius. When core points are detected far from the first cluster, they form a second cluster
using the same methodology.

Birant and Kut (2007) presented a spatial temporal version of DBSCAN that clustered weekly daytime
and nighttime temperature records. By adding a radius for temporal distance, a “ST-DBSCAN” version
was made. Another use for ST-DBSCAN comes from Chimwayi and Anuradha (2018). In his
experiment, the algorithm was used to analyse a public health dataset.

Ordering Points To Identify the Clustering Structure (OPTICS) has a clustering approach similar to
DBSCAN, but OPTICS works better over clusters with different densities (Malahan, 2017). This
algorithm uses DBSCAN’s input variables and core distance and reachability distance. Core distance
is the lowest possible radius to classify a point as core, differing from the fixed radius in DBSCAN.
Agrawal et al. (2016) developed a version of OPTICS that generated spatial-temporal clusters of the
presence of vegetation across Indian states. The algorithm steps for the ST-OPTICS are the same as the
original OPTICS algorithm but consider two core distances (one more for the time dimension).

For proper comparison between points from different trajectories, it is helpful to measure their
“similarity” or how far they are from each other in spatiotemporal coordinates. Zhuang and Chen
(2021) used Dynamic Time Warping (DTW) to measure similarity in aerial target’s trajectories.
Chen et al. (2021) explained that “DTW detects a ‘warping’ path through the matrix constructed by
two sequences that minimize the cumulative distance.” An advantage of DTW metric is that it
considers the sequence or track of past points that have existed prior to the most current when doing
the similarity calculation. Zhuang and Chen (2021) then used this similarity to feed a DBSCAN
algorithm which performed the clusters. The results were proper clusters of dynamic enemy targets
in a two dimensional which can indicate different tasks or tactics. Zhao and Shi (2019) also utilized
DTW and DBSCAN to form clusters.

Dupas et al. (2015) used DTW to identify and align storm discharge time series of different lengths and
with difference in phase. Once aligned, k-means clustering was used on them to identify common
patterns in water quality (Xing and Sela, 2019). Zhang et al. (2022) used K-means with DTW metric to
cluster driving patterns in an x-y coordinate plane with time. Similarly, Chen et al. (2021) used DTW k-
means clustering to separate lane-changing risk profiles into different categories. K-means with DTW
metric was used by Jang et al. (2011) to cluster handwritings.

As shown, there have been studies that utilize algorithms to analyse spatiotemporal data and
clustering algorithms that facilitate trajectory analysis. However, there is a lack of studies that
combine statistical spatiotemporal clustering applied to virtual reality data. Utilizing clustering
algorithms to categorize virtual reality spatiotemporal trajectories for comparison with non-spatial
metrics, is a nascent area of exploration, and this paper begins that exploration of virtual
environment trajectory data.

3364 ICED25



3. Methodology

The objective of the experiments reported in this paper is to perform statistical analysis of the collected
data to determine if there are any significant interpretations where meaning regarding a virtual
environment problem can be drawn from the spatial-temporal data. This objective requires a proper data
structure that can be clearly interpreted by a proper algorithm to produce the desired results. There are
several steps involved in obtaining the proper data structure and the desired results. These steps are
summarized and shown in Galicia Avila’s work (2023).

3.1. Data collection in Virtual Reality

As part of the data preprocessing, scaled three-dimension coordinates were used. This technique helps
interpret data more easily to scale all trajectories, so their coordinates are located within the same spatial
range, similar to the temporal standardization. The coordinates are scaled to a range between 0 and 1.
To reduce the algorithm’s loading time, the three databases are divided by trajectory. The result is 9
datasets with the same structure, whose data represents the spatiotemporal trajectories of 57 users and
their independent variables, functioning metrics for comparison:

Explosion — Head

Explosion — Dominant Hand
Explosion — Non-Dominant Hand
Meteor — Head

Meteor — Dominant Hand

Meteor — Non-Dominant Hand
Birds — Head

Birds — Dominant Hand

Birds — Non-Dominant Hand

RN WD =

This data separation helps the algorithm to focus on each situation separately, reducing loading time and
memory needed.

3.2. Algorithm: K-Means with DTW

K-Means was selected as the most appropriate algorithm to cluster the full trajectories that the users take
in the virtual path. This algorithm requires the initial input of “k” or the number of clusters desired to find
in the data, and this approach is where the Elbow Method is useful (Larose and Larose, 2015; Johnson
and Wichern, 1988). The elbow method technique consists of completing several k-means program
executions using different k-values and plotting the resultant Within Cluster Sum of Squares (WCSS).
When choosing the best k-value, a low WCSS is a reliable metric but not too low because that involves a
high number of clusters. The Elbow Method plot shows the number of clusters against their obtained
WCSS. The code is executed using k-means integrated with dynamic time warping metric to obtain the
“elbow” point of 9 scenarios: 3 stimuli events per point (for head, dominant hand, non-dominant hand). A
different k-value is expected to be obtained from each situation.

Jupyter Notebook environment is selected to execute the Python code since it easily handles running
different code blocks instead of the full code. The code blocks calculate and show: cluster formation,
colour coded clusters in spatiotemporal space, trajectory distribution among clusters chart, and the
statistical tests.

3.3. Statistical analysis

When the algorithm is executed and clusters are formed, a statistical analysis of the gathered data is done.
The clusters and the pre-processed datasets formed the foundation of this analysis. The aim in this step was
to venture beyond a mere data collection and look for the meaning of the patterns found in the clusters.
To compare the user trajectories from the user performance and presence self-evaluation, this research
focuses on the clusters obtained from the k-means with DTW metric algorithm. This comparison is
important to understand not just how users move in the virtual path, but also how this navigation
influences their perceived experience and performance. The Chi-squared (X?) test is used here as a
statistical tool to measure the strength and significance of these relationships. To properly perform this
statistical test, data is organized in the code to resemble contingency tables with the cluster labels and the
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categorical results from the metrics. Multiple tests are required to consider all combinations of cluster
labels and metrics.

The Chi-squared test helps reveal whether observed user outcomes across different trajectory clusters
occur by randomness or reflect a significant pattern. If the Chi-squared test yields significant results, it
would suggest that the way users navigate through the virtual path is linked to their performance metrics
or their perception of the experience. To perform this statistical test, it is essential to formulate a null
hypothesis (Hy) which states that there is no association between the clusters and the metrics; this null
hypothesis is either rejected or not rejected, indicating whether there is an association in the data.
The p-value is obtained to provide a probability-based perspective to the interpretation. This statistic
indicates the probability of obtaining the observed results in the null hypothesis scenario. A large p-value
indicates that the observed values are likely to occur in a null hypothesis state, supporting it. A p-value
smaller than 0.05 suggests that the observed values are unlikely to have occurred by random chance
under the null hypothesis, leading to its rejection.

4. Results

The optimal k-values per situation are shown in Table 1 where the three path distractions are shown with
their three trajectories.

4.1. Trajectory clusters

The optimal k-value determines the ideal number of clusters to be created in each of the nine scenarios
through k-means algorithm with DTW metric implemented using the Python command TimeSeries
KMeans from the tslearn library (https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.
clustering. TimeSeriesKMeans.html). Originally, the data contained 57 individual trajectories for the
different stimuli event/trajectory combinations. The use of TimeSeries KMeansCustering grouped
(clustered) individuals with similar trajectories into clusters and reduced the number of trajectories that
need to be between 5 and 8 clusters as shown in Table 1. The number of individual subjects assigned to
each cluster specified in Table 2. Notice that the total of individuals in each row sums to 57.

Table 1. K values obtained from elbow method.

Stimuli Event Trajectory K-Value

Explosion Head
Dominant Hand
Non-Dominant Hand
Meteor Head
Dominant Hand
Non-Dominant Hand
Birds Head
Dominant Hand
Non-Dominant Hand

N9 JN 0000

The clusters generated can be visually represented as centroids of the trajectories or time series. Figure 3
plots the centroid values in different colors per cluster for all three sets for one event, each corresponding
to a movement type after a distinct event. Figures for other events can be found in Galicia Avila’s thesis
(2023). To accurately represent the normalized trajectory lengths, the plots are scaled with a three-
dimensional spatial distance (X, y, and z coordinates) ranging from O to 1.

Please note that in figure 3 c), which show the clusters associated with non-dominant hand trajectories,
the trajectories appear more intermingled. It is hypothesized that this intermingling is caused by the need
to balance the ball on the plate by the non-dominant hand.

4.2. Chi-squared test results

Multiple chi-squared tests are conducted to compare the association between the clusters and the different
variables or metrics. In each of the nine situations (stimuli event/trajectory), tests are conducted to
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determine if the performance metrics of presence, ball drop, gamer and balance ball are independent of
the factors gender, cluster and hand dominance. The performance metrics are aggregated scores. The
metric presence is based upon presence survey answers ranging from 1 to 42, are categorized into three
levels reflecting presence intensity: low (1-14), neutral (15-28), and high (29-42). The number of users
whose presence survey responses fell into the three categories are distributed across the different
trajectory clusters. The performance metric drop balls is categorized into 4 levels:

Ist level is if the ball was dropped only once

2nd level is if the ball was dropped 2 times

3rd level is if the ball was dropped 3 times

4th level represents if the ball was dropped more than 3 times

Table 2. The number of time series (trajectories) grouped into clusters.

- - Cluster

Stimuli Event Trajectory 1 2 3 4 5 6 7 8

Explosion Head 6 7 4 8 13 6 13 -
Dominant Hand 6 8 1 6 12 9 15 -
Non-Dominant Hand 3 11 9 4 10 11 9 -

Meteor Head 10 10 14 9 9 3 2 -
Dominant Hand 7 5 12 9 3 6 13 2
Non-Dominant Hand 6 21 4 13 13 - - -

Birds Head 3 10 8 3 12 7 14 -
Dominant Hand 4 2 6 11 11 8 15 -
Non-Dominant Hand 8 4 12 6 12 8 7 -

The users were asked at the end of the experiment, how would they rate the difficulty balancing the ball
while walking in the virtual path and the answers were categorized by score: low expertise (1-2), medium
(3-4), and high level of expertise (5-7). A total of 162 Chi-squared tests of independence were conducted
comprising all possible combinations of the stimuli event/trajectory clusters versus the performance
metrics. A p-value of 0.05 was selected because it limits the probability of a type 1 error (incorrectly
rejecting a true null hypothesis) to 5%. This is a very commonly used p-value that the authors adopted. A
p value of 0.05 provides confidence—that the stimuli event trajectory cluster was not independent of the
performance metric. Table 3 summarizes the statistics where the p-value less than or equal to 0.05. It is
apparent that almost all of the tests of Chi-squared tests of independence of cluster versus performance
metric were not statistically significant indicating that for all tests, except for the five tests contained in
Tables, there was no difference in the performance metric due to gender, clusters or hand dominance.
Figure 4 is a bar chart containing the data for the Chi-squared test of independence provides perspective
on how the clustering relates to the variable metric sense of presence (low, neutral, and high). Figure 4 is
the best of five plots which show these relationships. Although not the exemplary results desired by the
authors, this plot gives some sense of the effectiveness of this technique. Clusters 2, 3, 4, and 6 only
containing individuals with low value of presence metric is interesting. Thus, graphically it is apparent
that the cluster values are not independent of the performance metric presence as indicated by the
statistically significant test result.

5. Conclusions and future work

The authors are unaware of any previous studies with unsupervised learning and trajectories from virtual
environments. Stated differently, the authors believe that no previous work has been reported in the
application of unsupervised learning algorithms to virtual environment trajectories. As a novel approach
to the use of unsupervised learning, the hope was that methods could be developed that would extract
meaning from virtual environment trajectory data.

The study reported in this paper, was limited to the use of existing methods in statistical trajectory
clustering, but it was applied to a new area of research, trajectories in a virtual environment. Further, this
study only examined the use of unsupervised learning methods.
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This study was successful in finding statistically significant, at the a = 0.05 level, relationships of some
trajectory clusters to some measures of presence, performance (ball drops), and self-perception. These
relationships were intended to help establish statistically significant relationships that could relate
trajectory to the measures of presence, performance (ball drops), and self-perception. Although the hoped
for relationships were not achieved as shown in Figure 4, future work may permit the user to determine
user meaningful relationships through other methods, such as supervised learning.

With supervised learning, it may be possible to relate the dependent variable such as ball drops to the
trajectory. Essentially, this approach requires advanced signal processing techniques. For example,
wavelet decomposition, splines or functional principal component analysis could be used to extract
meaningful features which may give high correlation with the responses. With future work on the Gracia
de Luna (2019) data set, better relationships may be established, possibly by supervised learning
methods, thus ushering in new tools for design in virtual environments.

Figure 3. Plotting of normalized trajectory cluster centroids for the explosion event a) Head; b)
Dominant Hand; ¢) Non-Dominant Hand

Table 3. Statistics for clusters with a p value less than or equal to 0.05.

Stimuli Trajectory X? Value X? Table Value p-Value Variable
Explosion Dominant 25.541 21.026 0.0124 Presence
Explosion Non-Dominant 21.107 12.592 0.048 Ball Drops
Meteor Head 22.372 12.592 0.033 Ball Drops
Meteor Dominant 28.197 14.067 0.013 Ball Drops
Meteor Dominant 28.129 23.685 0.013 Self-Perception

Presence Level in each Cluster

O = N W A U N 0w

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

HLow EMed mHigh

Figure 4. Relationship between cluster number and presence level
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