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Abstract

In this paper we give explicit formulas for differential characteristic classes of principal G-bundles with
connections and prove their expected properties. In particular, we obtain explicit formulas for differential
Chern classes, differential Pontryagin classes and the differential Euler class. Furthermore, we show
that the differential Chern class is the unique natural transformation from (Simons–Sullivan) differential
K-theory to (Cheeger–Simons) differential characters that is compatible with curvature and characteristic
class. We also give the explicit formula for the differential Chern class on Freed–Lott differential
K-theory. Finally, we discuss the odd differential Chern classes.
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1. Introduction

Differential characteristic classes of principal G-bundles with connections are
secondary characteristic classes which refine primary characteristic classes. A famous
example is given in [8], where the transgression form lives in the total space. In
[7] differential characters are defined with the motivation of defining secondary
characteristic classes living in the base space. The differential characteristic classes
constructed in [7] involve universal bundles and universal connections. In particular,
we have differential Chern classes, differential Pontryagin classes and the differential
Euler class (see also [9] for the use of a simplicial method to construct differential
Chern classes). Since a refinement of topological K-theory was not available at
that time, differential Chern classes were not considered as natural transformations
between refinements of the corresponding cohomology theories.

In recent years differential K-theory—the differential extension of topological
K-theory—has received extensive study because of its motivation in geometry,
topology and theoretical physics. In [2] the differential Chern classes are defined on
a model of differential K-theory which consists of vector bundles with connections
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and odd forms, where the form part has a slightly different additive structure when
compared to [10]. The total differential Chern class defined in [2] respects the direct
sum, but the ring structure of this K-theory is lost. In [4] the differential Chern class is
defined as a natural transformation between the differential extensions of topological
K-theory and ordinary cohomology (regarded as functors) which are only assumed to
satisfy the axioms of differential cohomology given in [6]. One of the advantages of
this approach is the independence of the construction of the differential Chern classes
on a particular model of differential extension of K-theory [5, 10, 14, 19] and of
ordinary cohomology [3, 7]. Roughly speaking, the differential Chern classes in [4]
are defined by approximating the classifying space of K0 by a sequence of compact
manifolds satisfying some nice properties and pulling back some universal classes.
When working with a particular model of differential K-theory, it would be nice to
have explicit formulas for the differential Chern classes.

In [1] differential characters are extended to smooth spaces, and the group of smooth
singular cycles is replaced by the group of diffeomorphism classes of smooth maps
from stratifolds to smooth spaces, which is much more geometric in nature. Inspired
by [1], we give explicit formulas for differential characteristic classes for principal
G-bundle with connections, where G is a Lie group with finitely many components.
The construction and the proofs of the expected properties do not appeal to universal
bundles and universal connections. Moreover, we give an ‘absolute’ interpretation of
the necessarily closed (2k − 1)-form α in the formula, which is the pullback of the
transgression form constructed in [8]. Such an interpretation of α is not available for
differential characters in general.

Since all the existing models of differential K-theory are isomorphic by unique
isomorphisms [6, Theorem 3.10] and the explicit isomorphisms between different
models of even differential K-theory are known [12, 13, 15], it suffices to define
differential Chern classes in any one of these models. We prove that the explicit
differential Chern class formula induces a natural transformation from Simons–
Sullivan differential K-theory to differential characters. We also give the explicit
formula for the differential Chern class defined on Freed–Lott differential K-theory,
where we do not make use of the explicit isomorphisms. Finally, we discuss the odd
differential Chern classes on the odd counterpart of Simons–Sullivan differential K-
theory.

This paper is organized as follows. Section 2 contains all the necessary background
materials, and the main results are proved in Section 3.

2. Background materials

Throughout this paper, A is a proper subring of R, G is a Lie group with finitely
many components, and X is a smooth space [1, Definition 2.2].

2.1. Geometric chains. In this subsection we recall some notions in [1]. For
n ∈ N0, let (C(X), ∂) be the complex of smooth singular n-chains on X with integral
coefficients. Denote by Zn(X) and Bn(X) the subgroups of n-cycles and n-boundaries,
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respectively. The space of smooth n-forms on X is denoted by Ωn(X). A smooth
singular chain y ∈ Cn(X) is said to be thin [1, Definition 3.1] if for all ω ∈ Ωn(X), we
have

∫
yω = 0. Denote by S n(X) ⊆Cn(X) the subgroup of thin n-chains on X. Denote by

[c]S n the equivalence class of c ∈ Cn(X) in Cn(X)/S n(X). Note that ∂S n+1(X) ⊆ S n(X),
so we have a homomorphism

Zn(X)
∂S n+1(X)

→
Cn(X)
S n(X)

.

Denote by [z]∂S n+1 the equivalence class of z ∈ Zn(X) in Zn(X)/(∂S n+1(X)).
We recall the definition and basic properties of geometric chains [1, Ch. 4]. Let

Cn(X) = {[ f : Mn → X] | f : Mn → X is a smooth map}

be the abelian semigroup of diffeomorphism classes of smooth maps f : Mn → X,
where Mn is an oriented compact n-dimensional regular p-stratifold with boundary
[16]. Elements in Cn(X) are called geometric chains. The boundary operator ∂ :
Cn(X)→ Cn−1(X) is given by restriction to the geometric boundary. Define

Ln(X) = {ξ ∈ Cn(X) | ∂ξ = 0},
Bn(X) = {ξ ∈ Cn(X) | ∃β ∈ Cn+1(X) such that ∂β = ξ}.

Elements in Ln(X) are called geometric cycles and elements in Bn(X) are
called geometric boundaries. Denote by Hk(X) := Ln(X)/Bn(X) the corresponding
cohomology group. Define a homomorphism ψn : Ln(X)→ Zn(X)/(∂S n+1(X)) by

ψn([ f : M → X]) = [ f∗(c)]∂S n+1 , (2.1)

where c ∈ Zn(M) is an n-cycle representing the fundamental class of M. ψn is
independent of the choices of c by [1, Remark 3.2].

Note that Hk(X) � Hk(X) via the map ψn [16, Theorem 20.1]. Henceforth we
write [ζ]∂S n+1 for ψn(ζ) for ζ = [ f : M → X] ∈ Ln(X). A similar convention applies
to elements in Cn(X).

Lemma 2.1 [1, Lemma 4.2]. There exist homomorphisms ζ : Cn+1(X)→ Cn+1(X), a :
Cn(X)→ Cn+1(X) and y : Cn+1(X)→ Zn+1(X) such that

(∂ζ)(c) = ζ(∂c),
[ζ(c)]S n+1

= [c − a(∂c) − ∂a(c + y(c))]S n+1
, (2.2)

[ζ(z)]∂S n+1
= [z − ∂a(z)]∂S n+1

,

for all c ∈ Cn+1(X) and all z ∈ Zn+1(X).

2.2. Cheeger–Simons differential characters. In this subsection we recall
Cheeger–Simons differential characters [7] (see also [1, Ch. 5]).

Let k ≥ 1. A degree k differential character f with coefficients in A is a group
homomorphism f : Zk−1(X)→ R/A such that there exists a fixed ω f ∈ Ωk(X) such that
for all ck ∈ Ck(X),

f (∂c) =

∫
c
ω f mod A.
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The abelian group of degree k differential characters is denoted by Ĥk(X;R/A). It is
easy to see that ω f is a closed k-form with periods in A and is uniquely determined by
f ∈ Ĥk(X;R/A).

In the diagram

0

&&

0

Hk−1(X; R/A)
−B //

i1

&&

Hk(X; A)

99

r

%%
Hk−1(X; R)

α
88

β %%

Ĥk(X; R/A)

δ2

99

δ1

$$

Hk(X; R)

Ωk−1(X)
Ωk−1

A (X) d
//

i2

99

Ωk
A(X)

s
;;

$$
0

99

0

(2.3)

the diagonal sequences are exact, and every triangle and square commutes [7,
Theorem 1.1]: here Ωk

A(X) denotes the group of closed k-forms on X with periods
in A. The maps are defined as follows: r is induced by A ↪→ R,

i1([z]) = z|Zk−1(X), i2(ω) = ω|Zk−1(X), δ1( f ) = ω f and δ2( f ) = [c],

where [c] ∈ Hk(X; A) is the unique cohomology class satisfying r[c] = [ω f ]. In the
literature δ1( f ) is called the curvature of f , and δ2( f ) is called the characteristic class
of f .

The basic setup of differential characteristic classes is the following. Let Ik(G) be
the ring of invariant polynomials of degree k on G, and w : Ik(G)→ H2k(BG;R) the
Weil homomorphism. Define

K2k(G, A) = {(P, u) ∈ Ik(G) × H2k(BG; A) | w(P) = r(u)}.

Differential characteristic classes can be regarded as the unique natural transformation
S : K2k(G; A)→ Ĥ 2k(X;R/A) which makes the diagram

Ĥ 2k(X;R/A)
(δ1,δ2)

&&
K2k(G;Z) w×cA

//

S
88

R2k(X; A)

commute, where cA : H2k(BG; A)→ H2k(X; A) is induced by a classifying map X →
BG for a principal G-bundle P→ X with connection θ, and

Rk(X; A) := {(ω, u) ∈ Ωk
A(X) × Hk(X; A) | r(u) = [w]}.
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Let f ∈ Ĥk(X;R/A). If c ∈ S k(X) is a thin chain, then

f (∂c) =

∫
c
ω = 0 mod A.

This property of differential characters is referred to as thin invariance [1, Remark 5.2].
Note that the results in [1] hold if Z is replaced by A.

3. Main results

3.1. Differential characteristic classes. First of all we prove the uniqueness of
differential characteristic classes.

Proposition 3.1. Let (P, u) ∈ K2k(G, A), where k ≥ 1. For each principal G-bundle
π : E → X with a connection θ, if there exists S P,u(E, θ) ∈ Ĥ 2k(X; R/A) such that
S P,u(E, θ) is natural and δ1(S P,u(E, θ)) = P(Ω), where Ω is the curvature of θ, then
S P,u(E, θ) is unique.

Proof. Let z ∈ Z2k−1(X). By (2.2) we have [ζ(z)]∂S 2k = [z − ∂a(z)]∂S 2k . Then

S P,u(E, θ)(z) = S P,u(E, θ)([ζ(z)]∂S 2k ) + S P,u(E, θ)(∂a(z)). (3.1)

By the definition of differential character and the assumption δ1(S P,u(E, θ)) = P(Ω),

S P,u(E, θ)(∂a(z)) =

∫
a(z)

δ1(S P,u(E, θ)) mod A

=

∫
a(z)

P(Ω) mod A.

Write ζ(z) = [g : M → X] ∈ L2k−1(X). Since S P,u(E, θ) is assumed to be natural, it
follows from (2.1) that

S P,u(E, θ)([ζ(z)]∂S 2k ) = S P,u(E, θ)([g : M → X])
= S P,u(E, θ)(g∗(c))
= g∗S P,u(E, θ)(c)
= S P,u(g∗E, g∗θ)(c),

where c ∈ Z2k−1(M) is a cycle representing the fundamental class of M. It follows from
these two observations that (3.1) becomes

S P,u(E, θ)(z) = S P,u(g∗E, g∗θ)(c) +

∫
a(z)

P(Ω) mod A. (3.2)

Since dim(M) = 2k − 1, it follows that δ2(S P,u(g∗E, g∗θ)) = 0. Thus there exists
α ∈ (Ω2k−1(M))/(Ω2k−1

Z (M)) such that S P,u(g∗E, g∗θ) = i2(α). Thus (3.2) becomes

S P,u(E, θ)(z) =

∫
M
α +

∫
a(z)

P(Ω) mod A. (3.3)

Thus S P,u(E, θ)(z) is uniquely determined by (3.3). �
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We take (3.3) as the definition of S P,u(E, θ).
The following proposition shows that (3.3) is independent of the choices made in

the proof of Proposition 3.1, and it defines a differential character.

Proposition 3.2. Let (P, u) ∈ K2k(G, A), where k ≥ 1. For each principal G-bundle
π : E → X with a connection θ, the differential characteristic class S P,u(E, θ) defined
in (3.3) is independent of the choices made in Proposition 3.1, that is, for z ∈ Z2k−1(X),
if ζ′(z) = [g′ : M → X] ∈ L2k−1(X) and a′(z) ∈ C2k(X) are such that [ζ′(z)]∂S 2k = [z −
∂a′(z)]∂S 2k , and α′ ∈ Ω2k−1(M′) is such that (g′)∗S P,u(E, θ) = i2(α′), then

S P,u(E, θ)(z) =

∫
M′
α′ +

∫
a′(z)

P(Ω) mod A.

Moreover, S P,u(E, θ) given by (3.3) defines a differential character in Ĥ 2k(X;R/A).

The proof is virtually the same as [1, Lemma 5.13].

Proof. Note that [z] = [ζ(z)]∂S 2k = [ζ′(z)]∂S 2k , and therefore ζ′(z) − ζ(z) = ∂β(z) for
some β(z) ∈ C2k(X). Thus

[∂a(z) − ∂a′(z)]∂S 2k = [ζ(z) − ζ′(z)]∂S 2k

= [∂β(z)]∂S 2k

= ∂[β(z)]S 2k

⇒ 0 = ∂[a(z) − a′(z) − β(z)]∂S 2k .

Thus there exists w(z) ∈ Z2k(X) such that

[a(z) − a′(z) − w(z)]S 2k = [ β(z)]S 2k . (3.4)

Write β(z) = [G : N → X], where, by definition, N is a 2k-dimensional compact
oriented p-stratifold with boundary ∂N = M′ t M̄ with g = G|M and g′ = G|M′ . Since
H2k(N; A) = 0 and G∗S P,u(E, θ) ∈ Ĥ 2k(N;R/A), it follows that δ2(G∗S P,u(E, θ)) = 0.
Thus there exists χ ∈ (Ω2k−1(N))/(Ω2k−1

A (N)) such that G∗S P,u(E, θ) = i2( χ). Note that

i2(α′) − i2(α) = (g′)∗S P,u(E, θ) − g∗S P,u(E, θ)

= (G|∂N)∗S P,u(E, θ)

= (G∗S P,u(E, θ))|∂N

= i2(χ)|∂N

⇒ α′ − α = χ|∂N + η (3.5)
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for some η ∈ Ω2k−1
A (∂N). Thus( ∫

M′
α′ +

∫
a′(z)

P(Ω)
)
− S P,u(E, θ)(z) mod A

=

∫
M′
α′ +

∫
a′(z)

P(Ω) −
∫

M
α −

∫
a(z)

P(Ω) mod A

=

∫
∂N

(α′ − α) +

∫
a′(z)−a(z)

P(Ω) mod A

=

∫
∂N

( χ + η) +

∫
−w(z)

P(Ω) +

∫
−[β(z)]S 2k

P(Ω) mod A

by (3.4) and (3.5). Since η ∈ Ω2k−1
A (∂N) and P(Ω) ∈ Ω2k

A (X),(∫
M′
α′ +

∫
a′(z)

P(Ω)
)
− S P,u(E, θ)(z) =

∫
∂N
χ +

∫
−[β(z)]S 2k

P(Ω) mod A

=

∫
N

dχ +

∫
−[β(z)]S 2k

P(Ω) mod A

=

∫
N

G∗P(Ω) +

∫
−[β(z)]S 2k

P(Ω) mod A

=

∫
G∗[N]S 2k−[β(z)]S 2k

P(Ω) mod A

= 0

since [ β(z)] = G∗[N]S 2k , and the third equality follows from the commutativity of the
lower triangle of (2.3).

Since ζ and a in (3.3) are homomorphisms by Lemma 2.1, it follows that S P,u(E, θ) :
Z2k−1(X)→ R/A is a homomorphism.

To prove that S P,u(E, θ) is a differential character, we need to show that for z = ∂c,
where c ∈ C2k(X),

S P,u(E, θ)(∂c) =

∫
c

P(Ω) mod A. (3.6)

The proof of (3.6) is essentially the same as (a) in the proof of [1, Theorem 5.14]. Thus
S P,u(E, θ) ∈ Ĥ 2k(X;R/A). �

The following proposition shows the expected properties of differential
characteristic classes.

Theorem 3.3. Let (P, u) ∈ K2k(G, A), where k ≥ 1. For each principal G-bundle
π : E → X with a connection θ, we have:

(1) δ1(S P,u(E, θ)) = P(Ω);
(2) δ2(S P,u(E, θ)) = u(E); and
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(3) if f : Y → X is any smooth map, then

S P,u( f ∗E, f ∗θ) = f ∗S P,u(E, θ).

Proof. (1) This follows directly from (3.6).
(2) Recall that a cocycle uk ∈ Z2k(X; A) representing δ2(S P,u(E, θ)) ∈ H2k(X; A) is

defined by

uk(c) =

∫
c

P(Ω) − T (∂c),

where T ∈ Hom(Z2k−1(X),R) is a lift of S P,u(E, θ), that is, S P,u(E, θ)(z) = T (z) mod A
for all z ∈ Z2k−1(X). A priori uk is a real cocycle. Since

uk(c) =

∫
c

P(Ω) − T (∂c) mod A

= S P,u(E, θ)(∂c) − S P,u(E, θ)(∂c) mod A
= 0 mod A,

uk is indeed an A-cocycle. Note that uk depends on the lift T , but its cohomology class
does not. Since uk(z) =

∫
z P(Ω) for all z ∈ Z2k(X), it follows from the uniqueness of the

de Rham theorem that uk represents u(E).
(3) The proof is similar to (c) in [1, Theorem 5.14]. Let z ∈ Z2k−1(X). By (2.2)

we have [ζ(z)]∂S 2k = [z − ∂a(z)]∂S 2k , where ζ(z) ∈ L2k−1(X) and a(z) ∈ C2k(X). Write
ζ(z) = [g : M → X]. By (3.3),

S P,u( f ∗E, f ∗θ)(z) =

∫
M
α +

∫
a(z)

P( f ∗Ω) mod A, (3.7)

where α ∈ (Ω2k−1(M))/(Ω2k−1
A (M)) is the unique closed form such that

i2(α) = S P,u(g∗ f ∗E, g∗ f ∗θ) = S P,u(( f ◦ g)∗E, ( f ◦ g)∗θ). (3.8)

Since f ∗S P,u(E, θ)(z) = S P,u(E, θ)( f∗z), we compute f∗z. Define ζ( f∗z) := f∗ζ(z) =

[ f ◦ g : M → Y] and a( f∗z) := f∗a(z). Then

[ f∗z − ∂a( f∗z)]∂S 2k = f∗[z − ∂a(z)]∂S 2k

= f∗[ζ(z)]∂S 2k

= [ f∗ζ(z)]∂S 2k .

It follows that

f ∗S P,u(E, θ)(z) = S P,u(E, θ)( f∗z)
= S P,u(E, θ)([ f∗ζ(z)]∂S 2k ) + S P,u(E, θ)(∂a( f∗(z)))

= S P,u(E, θ)( f∗[ζ(z)]∂S 2k ) +

∫
f∗a(z)

P(Ω) mod A

= S P,u(E, θ)( f∗(g∗(c))) +

∫
a(z)

f ∗P(Ω) mod A.
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Thus
f ∗S P,u(E, θ) = ( f ◦ g)∗S P,u(E, θ)(c) +

∫
a(z)

P( f ∗Ω) mod A. (3.9)

Since ( f ◦ g)∗S P,u(E, θ) ∈ Ĥ 2k(M; R/A) and dim(M) = 2k − 1, it follows from
one of the exact sequences of (2.3) that there exists a unique closed form
β ∈ (Ω2k−1(M))/(Ω2k−1

A (M)) such that

i2( β) = S P,u(( f ◦ g)∗E, ( f ◦ g)∗θ).

It follows from (3.8) that β − α ∈ Ω2k−1
A (M). Thus (3.9) becomes

f ∗S P,u(E, θ)(z) =

∫
M
α +

∫
a(z)

P( f ∗Ω) mod A

= S P,u( f ∗E, f ∗θ)(z). �

Remark 3.4. Since the S P,u(E, θ) given by (3.3) satisfies Theorem 3.3, it follows from
Proposition 3.1 that S P,u(E, θ) is indeed the unique such differential character. In
particular, this gives a proof of [7, Theorem 2.2] without using universal bundles and
universal connections.

The following lemma gives an ‘absolute’ interpretation of the form α in (3.3).

Corollary 3.5. Let (P, u) ∈ K2k(G, A), where k ≥ 1. For each principal G-bundle
π : E → X with a connection θ, if

(π∗S P,u(E, θ))(z) =

∫
M
α +

∫
a(z)

P(π∗Ω) mod Z,

for z ∈ Z2k−1(E), then

α = g∗ TP(θ) ∈
Ω2k−1(M)
Ω2k−1
Z (M)

,

where [g : M → E] = ζ(z), and TP(θ) ∈ Ω2k−1(E) is the transgression form defined in
[8, Section 3].

Proof. By the naturality of S P,u,

π∗S P,u(E, θ)(z) = S P,u(π∗E, π∗θ)(z)

=

∫
M
α +

∫
a(z)

P(π∗Ω) mod Z, (3.10)

where α ∈ Ω2k−1(M) is unique up to a closed (2k − 1)-form with periods in Z, such that
i2(α) = g∗S P,u(π∗E, π∗θ). Note that∫

z
TP(θ) =

∫
g∗c

TP(θ) +

∫
a(z)

d TP(θ)

=

∫
M

g∗ TP(θ) +

∫
a(z)

π∗P(Ω)

=

∫
M

g∗ TP(θ) +

∫
a(z)

P(π∗Ω), (3.11)
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where c ∈ Z2k−1(M) represents the fundamental class of M. Here the second equality
follows from [8, Proposition 3.2] and the third equality follows from the fact that
P(Ω) ∈ Ω(π∗E) is horizontal. Since

π∗(S P,u(E, θ)) = i2(TP(θ))

by [7, Proposition 2.8], by (3.10) and (3.11) we have

α = g∗ TP(θ) ∈
Ω2k−1(M)
Ω2k−1
Z (M)

. �

One can apply a similar procedure to that in Proposition 3.1 to construct differential
Chern classes, differential Pontryagin classes and the differential Euler class. For a
Hermitian bundle E→ X with a unitary connection ∇E , the kth differential Chern class
ĉk(E,∇) ∈ Ĥ 2k(X;R/Z), where k ≥ 1, is given by

ĉk(E,∇)(z) =

∫
M
α +

∫
a(z)

ck(∇) mod Z. (3.12)

The total differential Chern class ĉ (E,∇) is defined to be

ĉ (E,∇) := 1 + ĉ1(E,∇) + · · · . (3.13)

For a Euclidean vector bundle E → X with a metric connection ∇E , the kth differential
Pontryagin class p̂k(E,∇) ∈ Ĥ4k(X;R/Z) is given by

p̂k(E,∇)(z) =

∫
M
α +

∫
a(z)

pk(∇) mod Z, (3.14)

and the differential Euler class χ̂(E,∇) ∈ Ĥ2n(X;R/Z) with n = rank(E) is given by

χ̂(E,∇)(z) =

∫
M
α +

∫
a(z)

χ(∇) mod Z. (3.15)

In particular, statements analogous to Theorem 3.3 hold for these differential
characteristic classes, and therefore its uniqueness. One can compare (3.12), (3.14)
and (3.15) with [7, (4.4)], [7, (3.3)] and [7, (5.1)].

Example 3.6. Let ε→ X be a trivial complex vector bundle with a metric and a unitary
flat connection d. For k ≥ 1, since ĉk(ε,d) is natural and its curvature and characteristic
class are zero respectively, it follows from the uniqueness (see Remark 3.4) that
ĉk(ε, d) = 0.

3.2. Differential Chern classes on K̂SS. In this subsection we show that the
differential Chern class given by (3.12) is the unique natural transformation from
Simons–Sullivan differential K-theory to differential characters. For the details of K̂SS
we refer to [19].

First of all we give a ‘relative’ interpretation of the form α in (3.12).
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Lemma 3.7. Let E → X be a Hermitian bundle with X compact. If ∇0 and ∇1 are two
unitary connections on E → X and, for i = 0, 1,

ĉk(E,∇i)(z) =

∫
M
αi +

∫
a(z)

ck(∇i) mod Z

as given in (3.12), then

α1 − α0 = g∗Tck(∇1,∇0) ∈
Ω2k−1(M)
Ω2k−1
Z (M)

(3.16)

where Tck(∇1,∇0) is the transgression form between the kth Chern forms of ∇1 and
∇0, and ζ(z) = [g : M → X].

Proof. For z ∈ Z2k−1(X), we have [ζ(z)]∂S 2k = [z − ∂a(z)]∂S 2k by (2.2). Note that

i2(Tck(∇1,∇0))(z) =

∫
z
Tck(∇1,∇0) mod Z

=

∫
[ζ(z)]∂S 2k

Tck(∇1,∇0) +

∫
a(z)

dTck(∇1,∇0) mod Z

=

∫
M

g∗Tck(∇1,∇0) +

∫
a(z)

(ck(∇1) − ck(∇0)) mod Z (3.17)

and

ĉk(E,∇1)(z) − ĉk(E,∇0)(z) =

∫
M

(α1 − α0) +

∫
a(z)

(ck(∇1) − ck(∇0)) mod Z. (3.18)

By the analogue of [7, Proposition 2.9] for vector bundles,

ĉk(E,∇1) − ĉk(E,∇0) = i2(Tck(∇1,∇0)).

Thus (3.16) follows from (3.17) and (3.18). �

The following proposition shows that the differential Chern class is a well-defined
map from Simons–Sullivan differential K-theory to differential characters.

Proposition 3.8. Let X be compact. For each k ≥ 1, the kth differential Chern class
ĉk : K̂SS(X)→ Ĥ 2k(X;R/Z), defined on a generator E of K̂SS(X) by

ĉk(E) := ĉk(E,∇), (3.19)

is a well-defined map.

Proof. A priori ĉk(E) is not well defined on the level of generators as the right-hand
side of (3.19) depends on the choice of ∇ ∈ [∇]. Take another connection ∇′ ∈ [∇].
By the definition of K̂SS(X), we have CS(∇′,∇) = 0 ∈ (Ωodd(X))/(dΩeven(X)). Thus
ch(∇′) = ch(∇), which implies that ck(∇′) = ck(∇) for all k ≥ 1. If we write

ĉk(E,∇′)(z) =

∫
M
α′ +

∫
a(z)

ck(∇′) mod Z
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for z ∈ Z2k−1(X), it follows from Lemma 3.7 that

α′ − α = g∗Tck(∇′,∇) = 0 ∈
Ω2k−1(M)
Ω2k−1
Z (M)

.

Thus ĉk(E) is independent of the choice of representative of the connection.
We now show that ĉk is a well-defined map. Let E = F ∈ K̂SS(X). We prove that

ĉk(E) = ĉk(F ) (3.20)

for all k ≥ 1. By the definition of K̂SS(X), there exists a structured bundle G such that

E ⊕ G � F ⊕ G.

By [18, Corollary 3] there exists a structured inverseH to G (which is proved without
using universal bundles and universal connections), that is, H ⊕ G = [n] for some
n ∈ N. Thus

E ⊕ G ⊕H � F ⊕ G ⊕H

⇒ E − [n] � F − [n]
⇒ ĉ (E − [n]) = ĉ (F − [n]).

By Example 3.6,

ĉ (E − [n]) :=
ĉ (E)

ĉ ([n])
= ĉ (E),

and similarly we have ĉ (F − [n]) = ĉ (F ). Thus (3.20) holds. �

Denote by sk(x1, . . . , xn) the kth elementary symmetric function and Pk(x1, . . . , xn)
the kth Newton function of n variables x1, . . . , xn, that is,

sk(x1, . . . , xn) =
∑

i1<···<ik

xi1 · · · xik , Pk(x1, . . . , xn) =

n∑
j=1

xk
j.

For any k ≤ n, we have [17]

Pk +

k−1∑
j=1

Pk− js j + (−1)k sk = 0.

It follows from the above identity that we can express each sk in terms of the P j and
vice versa.

Let k ≥ 1. Define a map sk : Ωeven(X) → Ω2k(X) as follows. Write ω =∑
j=0(1/ j!)ω[2 j] ∈ Ωeven(X), where (1/ j!)ω[2 j] ∈ Ω2 j(X) is the degree 2 j component of

ω. Write ω[2 j] = (1/ j!)ω′[2 j], where ω′[2 j] := j!ω[2 j]. Define

sk(ω) = sk

( 1
2!
ω′[2], . . . ,

1
j!
ω′[2 j], . . .

)
,

to be the kth elementary symmetric function of theω[2 j]. Note that for each k ≥ 1, sk(ω)
can be given in terms of the Newton functions P`(ω′[2], . . . , ω

′
[2 j], . . .). For example,

sk(ch(∇)) = ck(∇), the kth Chern form of ∇.
Let Ω•BU(X) = {ω ∈ Ω•d=0 | [ω] ∈ Im(ch• : K−(• mod 2)(X) → H•(X; Q))}, where

• ∈ {even, odd}.
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Lemma 3.9. sk(Ωeven
BU (X)) ⊆ Ω2k

Z (X).

Proof. Let ω ∈ Ωeven
BU (X). Then ω = ch(∇) + dα, where ∇ is a unitary connection on a

Hermitian bundle over X and α ∈ Ωodd(X). Write ch(∇) =
∑n

j=0 ch j(∇), where ch j(∇)
is the degree 2 j component of ch(∇). Thus for each j ≥ 1, ω[2 j] = ch j(∇) + d(α[2 j−1]).
Note that

sk(α) = sk

( 1
2!
ω′[2], . . . ,

1
j!
ω′[2 j], . . .

)
= ck(∇) + Qk

( 1
2!
ω′[2], . . . ,

1
j!
ω′[2 j], . . .

)
.

Here Qk((1/2!)ω′[2], . . . , (1/ j!)ω′[ j], . . .) is a sum of rational multiples of ch j(∇)m ∧

(dα[2i−1])q for some m ≥ 0 and q ≥ 1. Since each ch j(∇)m ∧ (dα[2i−1])q is exact, it
has period 0. Together with the fact that ck(∇) ∈ Ω2k

Z (X), we have sk(ω) ∈ Ω2k
Z (X). �

By Proposition 3.8, we can reformulate Theorem 3.3 as follows.

Corollary 3.10. For each k ≥ 0, there exists a unique natural transformation ĉk :
K̂SS(∗)→ Ĥ 2k(∗;R/Z) such that it is compatible with curvature and characteristic
class, that is, for each compact X, the following diagrams commute:

K̂SS(X)

chK̂SS

��

ĉk // Ĥ 2k(X;R/Z)

δ1

��
Ωeven

BU (X) sk
// Ω2k
Z (X)

K̂SS(X)

δ

��

ĉk // Ĥ 2k(X;R/Z)

δ2

��
K(X) ck

// H2k(X;Z)

where chK̂SS
(E) = ch(∇) and δ(E) = [E].

We now prove the product formula of the total differential Chern class.

Proposition 3.11. Let X be compact. The following diagram commutes:

K̂SS(X) × K̂SS(X)

ĉĉ
��

⊕ // K̂SS(X)

ĉ
��

Ĥeven(X;R/Z) × Ĥeven(X;R/Z)
∗
// Ĥeven(X;R/Z)

(3.21)

where ∗ is the product of differential characters [7].
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Proof. For a pair (E,F ) ∈ K̂SS(X) × K̂SS(X), Remark 3.4, the uniqueness of the ring
structure of Ĥeven(X;R/Z), and (3) of [7, Theorem 1.11] imply that ĉ (E) ∗ ĉ (F ) is
the unique natural differential character whose curvature and characteristic class are
given by

δ1( ĉ (E) ∗ ĉ (F )) = c(∇E) ∧ c(∇F) and δ2( ĉ (E) ∗ ĉ (F )) = c(E) ∪ c(F). (3.22)

On the other hand, for a pair (E,F ) ∈ K̂SS(X) × K̂SS(X), ĉ (E ⊕ F ) is also the unique
natural differential character whose curvature and characteristic class are given by
(3.22). Thus (3.21) holds. �

3.3. Differential Chern classes on K̂FL. In this subsection we give the explicit
formula for the differential Chern class on Freed–Lott differential K-theory. We refer
to [10] for the details of Freed–Lott differential K-theory.

Defining differential Chern classes on Freed–Lott differential K-theory K̂FL involves
one more issue: since generators of K̂FL are of the form (E, h, ∇, φ), where φ ∈
(Ωodd(X))/(dΩeven(X)), we have to consider φ when defining ĉk on generators of
K̂FL(X). A natural choice for the form part in the definition of ĉk(E, h,∇, φ) would be
i2(φ[2k−1]), where φ[2k−1] is the degree (2k − 1) component of φ, as the differential Chern
character ĉhFL : K̂FL(X)→ Ĥeven(X;R/Q) is defined in this way [10, Section 8.13].
However, as we will see below, this definition is not correct.

On the other hand, Simons–Sullivan differential K-theory is isomorphic to Freed–
Lott differential K-theory via unique ring isomorphisms f : K̂SS(X)→ K̂FL(X) and
g : K̂FL(X)→ K̂SS(X) (see [12, Theorem 1] for the definitions of f and g). We might
define differential Chern classes on K̂FL, denoted by ĉ FL

k : K̂FL(X)→ Ĥ 2k(X;R/Z), by

ĉ FL
k (E, hE ,∇E , φ) := ( ĉk ◦ g)(E, hE ,∇E , φ).

Since the formula for g is complicated, we refrain from doing so. Instead, we define
differential Chern classes on K̂FL directly, as follows.

Proposition 3.12. Let X be compact. The map ĉ FL
k : K̂FL(X)→ Ĥ 2k(X;R/Z) defined

by

ĉ FL
k (E, hE ,∇E , φE)(z) =

∫
M
α +

∫
a(z)

sk(ch(∇E) + dφE) mod Z, (3.23)

where z ∈ Z2k−1(X), M, α and a(z) are chosen as in the proof of Proposition 3.1, is well
defined.

Proof. One can prove the theorem along the lines of S P,u. Namely, we first assume
the existence of ĉ FL

k (E, hE ,∇E , φE) as a differential character with its naturality and the
compatibility with curvature to prove its uniqueness as in Proposition 3.1. We then get
the explicit formula (3.23). Then we prove that (3.23) is independent of the choices as
in Proposition 3.2, and it defines a differential character. Then we prove the naturality
and the compatibility with curvature and with characteristic class of ĉ FL

k (E, h,∇, φ).
This will imply the uniqueness of ĉ FL

k (E, hE ,∇E , φE) by Remark 3.4.

https://doi.org/10.1017/S1446788714000627 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000627


44 M.-H. Ho [15]

To prove that the map ĉ FL
k : K̂FL(X)→ Ĥ 2k(X;R/Z) is well defined, let E be a

generator of K̂SS(X). By (3.12) and (3.23), we have

ĉk(E) = ( ĉ FL
k ◦ f )(E),

where f is given by [12, Theorem 1]. Since f and ĉk are well defined, it follows that
ĉ FL

k is well defined. �

In particular, statements analogous to Corollary 3.10 hold for ĉ FL
k . From (3.23)

we have δ1( ĉ FL
k (E)) = sk(ch(∇E) + dφE). The reason for choosing this term is as

follows. Recall that there are ring homomorphisms, given by chK̂SS
(E, h, [∇]) = ch(∇)

and chK̂FL
(E, h,∇, φ) = ch(∇) + dφ, such that the following diagram commutes:

K̂SS(X)
f //

chK̂SS %%

K̂FL(X)

chK̂FL

��
Ωeven

BU (X)

where f is the ring isomorphism given in [12, Theorem 1]. Since

δ1( ĉk(E, h, [∇])) = ck(∇) = sk(ch(∇)) = sk(chK̂SS
(X)),

it follows that we must define ĉ FL
k so that its curvature is given by

sk(chK̂FL
(E, h,∇, φ)) = sk(ch(∇) + dφ),

which implies the compatibility between differential Chern classes on the Simons–
Sullivan and Freed–Lott models of differential K-theory. Thus (3.23) gives the correct
formula for differential Chern classes on the differential K-group defined by vector
bundles with connections and odd forms.

3.4. Odd differential Chern classes. One can define odd differential Chern classes
in a model-independent way as in [4, Theorem 1.2], which we recall here. The
(2k + 1)th odd differential Chern class ĉ odd

2k+1 : K̂−1(X)→ Ĥ2k+1(X;R/Z) is defined to
be the composition in the diagram

K̂−1(X)
ĉ odd

2k+1 //

S
��

Ĥ2k+1(X;R/Z)

K̂(S1 × X)
ĉk+1

// Ĥ2k+2(S1 × X;R/Z)

∫ Ĥ
S1

OO

(3.24)

that is, ĉ odd
2k+1 :=

∫ Ĥ
S1 ◦̂ck+1 ◦ S , where S : K̂−1(X)→ K̂(S1 × X) is the suspension map

and
∫ Ĥ
S1 is the integration along the fibers of S1 × X → X in Ĥ. The odd differential
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Chern classes so defined satisfy the commutative diagram [4, Theorem 1.2]

K̂−1(X)
ĉ odd

2k+1 // Ĥ2k+1(X;R/Z)

K̂(S1 × X)

∫ K̂
S1

OO

ĉk+1

// Ĥ2k+2(S1 × X;R/Z)

∫ Ĥ
S1

OO

(3.25)

where
∫ K̂
S1 : K̂(S1 × X)→ K̂−1(X) is the integration along the fibers of S1 × X → X in

K̂. The proof of (3.25) follows immediately from the definition of the integration map
(see [6, Proposition 4.2] and also Appendix A). As in the proof of [2, Theorem 1.2],

ĉ odd
2k+1 is unique as

∫ K̂
S1 is surjective.

There are various models of odd differential K-theory [5, 10, 11, 20]. For example,
if we use the odd differential K-group defined in [20], which is the odd counterpart
of Simons–Sullivan differential K-theory, then the odd differential Chern class defined
by (3.24) is well defined by Proposition 3.8. Denote by codd

2k+1([g]) the (2k + 1)th odd

Chern class. Note that δ2( ĉ odd
2k+1([g])) = codd

2k+1([g]) by the compatibility between
∫ Ĥ
S1

with δ2 [6, Proposition 4.2] and the definition of codd
2k+1([g]).
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Appendix A. A proof of (3.25)

For the convenience of the reader we include a proof of (3.25). Note that for any
x ∈ K̂−1(X), S (x) ∈ K̂(S1 × X) is equal to multiplying x by a certain element in K̂−1(S1),
for which we denote it by e.

Denote by Ê the differential extension of a generalized cohomology theory E which
is multiplicative. Let i : X → S1 × X be the inclusion map and p : S1 × X → X the
projection map. Since p ◦ i = idX , it follows that

Ê(S1 × X) = Im(p∗) ⊕ ker(i∗).

As in [6, Proposition 4.2], every x ∈ ker(i∗) can be uniquely written as x = e × y + a(ρ),
where y ∈ Ê−1(X) and ρ ∈ (Ωodd(S1 × X))/(Im(d)). Thus every u ∈ Ê(S1 × X) can be
written as

u = p∗z ⊕ x = p∗z ⊕ (e × y + a(ρ)).

The map
∫ Ê
S1 : Ê(S1 × X)→ Ê−1(X) is defined to be the composition

Ê(S1 × X) // ker(i∗) // Ê−1(X)
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where the first map is the projection map. Obviously the integration map satisfies∫ Ê
S1 ◦p∗ = 0, and is defined by ∫ Ê

S1
u = y + a

( ∫
S1
ρ
)
.

Note that ∫ Ĥ

S1
ĉk+1(u) =

∫ Ĥ

S1
ĉk+1(p∗z ⊕ (e × y + a(ρ)))

=

∫ Ĥ

S1
p∗ ĉk+1(z) +

∫ Ĥ

S1
ĉk+1(e × y + a(ρ))

=

∫ Ĥ

S1
ĉk+1(e × y + a(ρ)),

and by (3.24),

ĉ odd
2k+1

( ∫ K̂

S1
u
)

= ĉ odd
2k+1

(
y + a

( ∫
S1
ρ
))

=

∫ Ĥ

S1
ĉk+1

(
S
(
y + a

( ∫
S1
ρ
)))

=

∫ Ĥ

S1
ĉk+1(e × y + a(ρ)).

Thus (3.25) holds.
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