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SOME INTEGRALS INVOLVING LEGENDRE POLYNOMIALS
PROVIDING COMBINATORIAL IDENTITIES
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Abstract

An integral involving a combination of Legendre polynomials, exponential and al-
gebraic terms is solved using the generating function. Special cases of this result are
compared with known expansions, and the previously known results are shown to
be extendible to a particularly pleasing result as a limiting case. Comparisons pro-
vide some new combinatorial identities involving binomials. Finally, an effective
numerical procedure is described which evaluates the integral to machine accuracy.

1. Introduction

In the following, we obtain analytic solutions to the definite integral

(1)

where X is a non-negative parameter, and Pn is the Legendre polynomial of
order n . Because of the nature of the Legendre polynomials of even order,
this integral is well defined for all non-negative integer m , and in particular

vow = o.
By solving in two entirely different ways, we obtain a number of identities

involving gamma functions and binomial coefficients.
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2. The generating-function approach

THEOREM 1. For non-negative real k,

(-2k-lJ2) (2)

where y{a, x) is one of the incomplete gamma functions described in Abram-
owitz and Stegun [1]. In particular, it is defined by

(a,x)= fXe-'ta-ldt,
Jo

for D\a > 0, and the extension y*(a, x) = x ay(a, x)/F(a) is a single-valued
analytic function of a and x.

PROOF. Consider the straight-forward extension of the right-hand side of (1):

- ^ r / i i , .2 . -1 /2 , , , 2 . - 1 / 2 , , ,
? [(l-2xt + t) ' -(l+t) ']/xdx,

n=0

obtained by using the generating function for the Legendre polynomials. This
can be expressed as the double integral

-1 fX
I te x(l—2yt + t) /xdydx.

/o Jo

Swapping order gives

I I te~Xx(l-2yt + t2)~V2/xdxdy.
Jo Jy

From the definition of the exponential integral, [1, page 288],

we have

—hxn dy > (3)

which we can treat as a generating function for the integrals Vn(X).
Expanding on an integral from Gradsteyn and Ryzhik, [2, page 641], we

can write

j {dy^-^y{n,X), f o r / i > l .
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Thus, expanding the denominator in (3) in a binomial expansion in powers
of y, and using this last formula, we can write

E W = E y^ywrfv+<2r*"1/2].
n=0 k=\ K.A.

Making the final binomial expansion, exchanging the order of the two sums,
and equating coefficients of even powers of t we obtain the result required.

Since the generating function produces all integer orders of the Legendre
polynomials, we can also equate coefficients of odd powers of t.

COROLLARY 1.

/"' e~kx
 D , w v - (4fc-3)!! ,_. , , , / -21fc+l /2 \

o x 2""lV ; f-[(2fc-l)!A2fc-lA ; V n - k J

3. Expansion approach

In the right-hand side of (1) we can expand the exponential, to give

n=0

where

J{2m,n)=fx"-l[P2Jx)-P2m(O)]dx, (5)
Jo

this integral being well defined for at least n > 0 .
Now Gradsteyn and Ryzhik, [2, page 822], state the following identity:

-l
v* P ( Y\ si Y~ —f

Jo
/o 2m

as applying for all real a > -1. This is true, but one should note the care
required in the right-hand side when a is an even integer no larger than 2m .
In fact, since the integrand on the left-hand side is then even, that integral
can be written as one half the integral from — 1 to 1, and this integral is
identically zero.

It follows, then, that for all real a > 0,

)m{2m-l -a)(2m-3-a)-(\-a)
/(2m, a) =

(2m + a){2m - 2 + a) • • • (2 + a)(a)

(6)
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where the second term comes from the explicit expression for ^ ^ ( 0 ) , and
the first term vanishes for a odd and < 2m - 1. The only outstanding
required result is the value of J(2m, 0) .

THEOREM 2.

z l - (7)
PROOF. Let us write

defining each of the functions / , g and h by direct comparison with (6).
Expand the leading expression on the right of (8) in partial fractions

&m\a) a

where A is a constant, and is given explicitly by

Thus A/a = -hm(a), and these terms cancel in (8).
All we now require to complete the proof is an expression for pm (0), since

gm(a) is well defined in the limit a —> 0. From (9) we have,

apm(a) = fja) - Agja).

Thus Pm{a) is a polynomial in a . Differentiating, we have

Pm(a) = dUda ~AdSjda -adpjda.

So
Pj°) = dfm(0)/da - Adgm(0)/da. (10)

Now

^ H = (_i)m+1(2/w - 1 ) ! ! ^ I/(2k - 1),
aa k=\

and

k=\

Combining these in (10), with the previously obtained value of A , and then
using gm{0) = 2mm\, we obtain the required result.

It should be pointed out that (6) and (7) are very well behaved and enable
the integral (5) to be evaluated to machine accuracy for all values of m and
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n . Asymptotically in n , J(2m, n) goes as 1/H , and so (4) is well suited
for evaluation of integral (1) for X < 1, and, with care, for values a little
larger.

In this context, (2) is suitable for near machine accuracy evaluation of the
integral for any value of X, since

1 C
and this can always be evaluated to machine accuracy for any k and X.
Accuracy loss occurs for increasing m , since (2) is a sum of terms of similar
orders of magnitude but of alternating sign.

4. Direct comparisons between solutions

The right-hand sides of (2) and (4) are of course equal. A more explicit
comparison can be made by expanding the incomplete gamma function in
powers of X as per

sfer
Substituting in (2) and reordering the sums, we find

-2k-l/2
m-k

A 1 (4k\(-2k-\/2
^^k'n + 2k)Vk)\ m-k
k=\

and a number of other rearrangements of terms. In the particular case n = 0,
we have the very pleasing relationship,

2m\ ^ 1 ^ (-1 )*+1 (2m + 2k\ (m + k\
Ik ) •

( (
2k \ m + k ^ 2k

For completeness, it should be pointed out that the generating function ap-
proach can be applied directly to the integral J(2m, 0) to provide yet an-
other finite sum expression for this integral. The generating function for this
case is

t(l-t +
(/!, 0)*".

n=0
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The left-hand side can be expanded in powers of t to give the required
expressions—again having distinct character for n even and odd. The for-
mulae are rather long and so are not presented here.

5. Alternate computational procedure

Yet another expansion for the right-hand side of (1) was suggested by a
referee. By differentiating both sides with respect to X we obtain

By direct substitution from an integral in Gradshtein and Ryzhik [2, page
92], we obtain

where P^ ' is the k th derivative of that Legendre polynomial.
Integrating both sides over the interval A to oo, since f^(oo) = 0, and

using the extended definition of the exponential integrals [1, page 228],

T7

we obtain the finite sum
"(z) = z J2 T~ '

The terms in this expression can be readily evaluated, the exponential in-
tegrals using the relevant IMSL routine, and the derivatives from the formula
relating the derivatives of the Legendre polynomial with the Jacobi polyno-
mials (see e.g., [1, page 779]). Unfortunately the expression is similar to
(2), in that it involves sums of terms of similar orders of magnitude but of
alternating sign, and so loses accuracy with increasing m .

An alternate approach, that turns out to be suitable for numerical eval-
uation of J^mW o v e r ^ e entire range of values of X and m, is based
upon the well-known recurrence relation for Legendre polynomials. With
this it is possible to express the integral (1) in terms of a pair of non-
homogeneous recurrence relations. If we define Km(X) - (4m +
and LJX) = X /„' e~XxPJx) dx - PJO), then

_ (4m + 5)(4m + 3) (4m + 5)(2m+l)
m+1 (2 + 2)A 2m+1 {4m+\){2m + 2) m
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and
(2/w+l) (2m + 1)

An excellent technique which evaluates the functions of the second re-
currence relation to machine accuracy is Olver's method [3]. This rewrites
the recurrence relation as a triple of recurrence relations, two of which are
evaluated forwards to an index greater than the desired m, the number of
additional steps required for a given accuracy being determined as part of the
procedure. The third relation is then evaluated by backward recurrence. The
functions of the recurrence relation for Km can then be simply evaluated by
forward recurrence.

The integrals are evaluated by this method to machine accuracy. The
choice of the power series method for small k is because of its faster speed
in this regime.
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