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Abstract
For the moduli spaces of Abelian differentials, the Euler characteristic is one of the most intrinsic topological
invariants. We give a formula for the Euler characteristic that relies on intersection theory on the smooth compacti-
fication by multi-scale differentials. It is a consequence of a formula for the full Chern polynomial of the cotangent
bundle of the compactification.

The main new technical tools are an Euler sequence for the cotangent bundle of the moduli space of multi-scale
differentials and computational tools in the Chow ring, such as a description of normal bundles to boundary divisors.
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1. Introduction

The moduli space of Abelian differentials PΩM𝑔,𝑛 (𝜇) parametrises Riemann surfaces together with
meromorphic one-forms whose zeros and poles are of a fixed type 𝜇 = (𝑚1, . . . , 𝑚𝑛). Interest in these
moduli spaces stems from the dynamics of billiards and flat surfaces. This surface dynamics is related
to the SL2(R)-action on moduli spaces of Abelian differentials. The understanding of this dynamics has
advanced rapidly; see [EM18], [EMM15], [Fil16], [EFW18], [EMMW20], to mention just the tip of the
iceberg. Recent interest in the moduli space of Abelian differentials also stems from viewing them as a
twisted version of the double ramification cycle ([HS21], [BHPSS20]).
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In contrast to the dynamics, only a very few aspects of the topology of the moduli spaces of
holomorphic or meromorphic Abelian differentials PΩM𝑔,𝑛 (𝜇) are currently known, such as the
connected components ([KZ03], [Boi15]) and partial information about (quotients of) the fundamental
group ([CS20]).

This paper provides several insights into the topology and geometry of PΩM𝑔,𝑛 (𝜇). We give an
expression for the Chern classes of the cotangent bundle of the compactified moduli spaces of Abelian
differentials and a formula to compute the Euler characteristic of these moduli spaces.

The moduli spaces of Abelian differentials can be thought of as relatives of the moduli space of
curves M𝑔,𝑛, for which the Euler characteristic was computed in [HZ86] using a cellular decomposition
(given by the arc complex) and counting of cells. Our strategy here is quite different. While the
Euler characteristic is an intrinsic quantity associated to PΩM𝑔,𝑛 (𝜇), our strategy heavily uses the
compactification PΞM𝑔,𝑛 (𝜇) constructed in [BCGGM3] and all its properties that make it quite similar
to the Deligne-Mumford compactification M𝑔,𝑛 of M𝑔,𝑛. Moreover, our strategy is not available
to compute the Euler characteristic M𝑔,𝑛, as it rather mimics the case of the projective space P𝑑:
the unprojectivised moduli spaces ΩM𝑔,𝑛 (𝜇) are linear manifolds, and thus the cotangent bundle of
PΩM𝑔,𝑛 (𝜇) is governed by the Euler sequence, as in the case of P𝑑 .

Using this strategy, we obtain the complete information about the Chern classes of the (logarithmic)
canonical bundle of the compactified moduli spaces of Abelian differentials and thus, for example, the
𝜒𝑦-genus. A special case, the formula for the canonical class, is particularly easy to state. We recall that
the boundary divisors in PΞM𝑔,𝑛 (𝜇) are the divisor 𝐷h of multi-scale differentials whose level graph
has one horizontal node and the divisors 𝐷Γ parametrised by level graphs Γ ∈ LG1(PΞM𝑔,𝑛 (𝜇)) that
have one level below the zero level and no horizontal edges (joining vertices of the same level). Similar
to the moduli space of curves, the boundary divisors are nearly (in a sense that we elucidate further
down) a product of two lower-dimensional moduli spaces corresponding to the top and bottom level.
Those boundary divisors 𝐷Γ come with the integer ℓΓ, the least common multiple of the prongs 𝜅𝑒
along the edges; see Section 3.3 for a review of these notions. We let 𝜉 = 𝑐1(O(−1)) be the first Chern
class of the tautological bundle on PΞM𝑔,𝑛 (𝜇) (see Section 3.1).

Theorem 1.1. The first Chern class of the logarithmic cotangent bundle of the projectivised compactified
moduli space 𝐵 = PΞM𝑔,𝑛 (𝜇) is

c1 (Ω
1
𝐵
(log 𝐷)) = 𝑁 · 𝜉 +

∑
Γ∈LG1 (B)

(𝑁 − 𝑁�
Γ )ℓΓ [𝐷Γ] ∈ CH1 (𝐵) , (1)

where 𝑁 := dim(ΞM𝑔,𝑛 (𝜇)) and where 𝑁�
Γ := dim(𝐵�

Γ ) is the dimension of the unprojectivised top
level stratum in 𝐷Γ.

To compute the Euler characteristic, we need to understand the top Chern class, as we recall in
Section 2, along with standard terminology from intersection theory. To state a formula for the full
Chern character, we need to recall a procedure that also determines adjacency of boundary strata. It is
given by undegeneration maps 𝛿𝑖 that contract all the edges except those that cross from level −𝑖 + 1 to
level −𝑖; see Section 3.3 and Figure 5 in Section 10. This construction can obviously be generalised so
that a larger subset of levels remains: for example, the complement of i, denoted by the undegeneration
map 𝛿�𝑖 . We can now define for any graph Γ ∈ LG𝐿 (𝐵) with L levels below zero and without horizontal
edges the quantity ℓΓ =

∏𝐿
𝑖=1 ℓ𝛿𝑖 (Γ) . In the following theorem, we define 𝑁�

𝛿0 (Γ)
= 0 so that the term

𝐿 = 0 is well-defined.

Theorem 1.2. The Chern character of the logarithmic cotangent bundle is

ch(Ω1
𝐵
(log 𝐷)) = 𝑒 𝜉 ·

𝑁−1∑
𝐿=0

∑
Γ∈LG𝐿 (𝐵)

ℓΓ

(
𝑁 − 𝑁�

𝛿𝐿 (Γ)

)
𝔦Γ∗

( 𝐿∏
𝑖=1

td
(
N⊗−ℓ𝛿𝑖 (Γ)

Γ/𝛿�𝑖 (Γ)

)−1)
,

https://doi.org/10.1017/fmp.2022.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.10


Forum of Mathematics, Pi 3

Table 1. Euler characteristics of some holomorphic strata..

𝜇 (0) (2) (1, 1) (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)
𝜒 (𝐵) − 1

12 − 1
40

1
30 − 55

504
16
63

15
56 − 6

7
11
3

𝜇 (6) (5, 1) (4, 2) (3, 3) (4, 1, 1) (3, 2, 1) (2, 2, 2) (8)
𝜒 (𝐵) − 1169

720
27
5

76
15

188
45 − 200

9 − 96
5 − 187

10 − 4671
88

where N
Γ/𝛿�𝑖 (Γ)

denotes the normal bundle of 𝐷Γ in 𝐷
𝛿�𝑖 (Γ)

, td is the Todd class and 𝔦Γ : 𝐷Γ ↩→ 𝐵 is
the inclusion map.

We also give closed expressions for the Chern polynomial in Theorem 9.10, both fully factored and
as a sum over level graphs.

To compute the Euler characteristics, we can simplify this expression significantly. Moduli spaces of
Abelian differentials are not homogeneous spaces, and we should not expect a proportionality between
the top Chern class and the Masur-Veech volume form ([Mas82], [Vee82]). For comparison, however,
we note that Masur-Veech volumes of holomorphic minimal strata (where 𝜇 = (2𝑔 − 2)) in each genus
are essentially given by the top 𝜉-power ([Sau18]). For nonminimal holomorphic strata (that is, if all
𝑚𝑖 ≥ 0), this top 𝜉-power is zero and the Masur-Veech volume is computed by a product of 𝜉2𝑔−1 and
𝜓-classes ([CMSZ20]). The top 𝜉-powers of all levels of all strata – and only these – are combined
to give the Euler characteristic of PΩM𝑔,𝑛 (𝜇). One thus needs to consider the top 𝜉-powers for the
strata of meromorphic differentials, even if one might be only interested in the holomorphic case. Let
𝐾Γ =

∏
𝑒 𝜅𝑒 be the product of the prongs over all edges of Γ.

Theorem 1.3. The orbifold Euler characteristic of the moduli space PΩM𝑔,𝑛 (𝜇) is the dimension-
weighted sum over all level graphs Γ ∈ LG𝐿 (𝐵) without horizontal nodes

𝜒(PΩM𝑔,𝑛 (𝜇)) = (−1)𝑑
𝑑∑
𝐿=0

∑
Γ∈LG𝐿 (𝐵)

𝐾Γ · 𝑁�
Γ

|Aut(Γ) |
·

−𝐿∏
𝑖=0

∫
𝐵

[𝑖 ]
Γ

𝜉
𝑑 [𝑖 ]
Γ

𝐵
[𝑖 ]
Γ

(2)

of the product of the top power of the first Chern class 𝜉
𝐵

[𝑖 ]
Γ

of the tautological bundle at each level,

where 𝑑 [𝑖 ]
Γ = dim(𝐵 [𝑖 ]

Γ ) and 𝑑 = dim(𝐵) = 𝑁 − 1.

The stratum 𝐵 [𝑖 ]
Γ at the level i of a graph Γ is defined in Section 4.1.

Table 1 gives the Euler characteristics of some strata of holomorphic differentials. A table of values
of top 𝜉-powers and more examples are provided in Section 10. The evaluation of these formulas is
performed by a sage package diffstrata that builds on the package admcycles for computation in the
moduli space of curves ([DSZ21]). Specifically, the evaluation of tautological classes below is performed
using the formula for fundamental classes of strata conjectured in [FP18] and [Sch18] and proven recently
in [BHPSS20] based on results from [HS21]. The algorithms in this package are explained in [CMZ20].

The Euler sequence.

Next, we outline the ingredients needed to prove these theorems. Recall that for projective space the
Euler sequence is the exact sequence

0 −→ Ω1
P(𝑉 ) −→ OP(𝑉 ) (−1)⊕ dim(𝑉 ) ev

−→ OP(𝑉 ) −→ 0 . (3)

Over the moduli space 𝐵 = PΞM𝑔,𝑛 (𝜇), this admits the following generalisation that combines
Theorem 6.1 and Theorem 9.2. It states roughly that using the local projective structure induced by
period coordinates, in the interior of the stratum, we indeed have a Euler sequence if we replace the
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direct sum in the middle of the sequence with a local system. This local system naturally extends across
the boundary, but the Euler sequence needs a correction term that we determine explicitly via a local
computation using perturbed period coordinates.

Theorem 1.4. The logarithmic cotangent bundle sits in an exact sequence

0 −→ Ω1
𝐵
(log 𝐷)

(
−

∑
Γ∈LG1 (B)

ℓΓ𝐷Γ

)
→ K → C −→ 0 , (4)

where C is an explicitly computable sheaf (see Lemma 9.4) supported on the boundary and the vector
bundle K on 𝐵 fits into the Euler exact sequence

0 −→ K −→ (H1
rel)

∨ ⊗ O𝐵 (−1) ev
−→ O𝐵 −→ 0 . (5)

Here H1
rel is the Deligne extension of the local system of relative cohomology.

This theorem directly implies Theorem 1.1. To deduce the other two theorems, we need to exploit
further information on the Chow ring of the compactification.

The tautological rings.

In Section 8, we define a notion of a system of tautological rings 𝑅•(ΞM𝑔,𝑛 (𝜇)) inside the Chow rings
of the compactifications PΞM𝑔,𝑛 (𝜇) of the projectivised strata PΩM𝑔,𝑛 (𝜇) that have been constructed
in [BCGGM3]. This is the smallest system of Q-subalgebras 𝑅•(PΞM𝑔,𝑛 (𝜇)) ⊂ CH•(PΞM𝑔,𝑛 (𝜇))
that

• contains the 𝜓-classes attached to the marked points,
• is closed under the pushfoward of the map forgetting a regular marked point (a zero of order zero) and
• is closed under the clutching homomorphisms 𝜁Γ,∗𝑝 [𝑖 ],∗, defined in Section 4.

For the moduli space of curves M𝑔, the clutching homomorphisms build a boundary divisor from a
product of two smaller moduli spaces or from just one for the irreducible boundary divisor that plays the
role of our 𝐷h. For multi-scale differentials, the situation is more involved. First, to relate 𝐷Γ to a product
of moduli spaces, we need to allow spaces of disconnected curves and imposing residue conditions since
the levels of Γ have that property. We define such generalised strata and their modular compactification
in Section 4. Second, the boundary divisors 𝐷Γ do not admit maps to such generalised strata since the
levels are tied to one another by a datum of the multi-scale differential, the prong-matchings. We need
to construct a covering space 𝑐Γ : 𝐷𝑠

Γ → 𝐷Γ that removes the stacky structure of 𝐷Γ, which has two
properties. First, there are projection maps 𝑝 [𝑖 ] from 𝐷𝑠

Γ to generalised strata; and second, there are
clutching maps 𝜁Γ : 𝐷𝑠

Γ → PΞM𝑔,𝑛 (𝜇) that factor as 𝜁Γ = 𝔦Γ ◦ 𝑐Γ into the finite map 𝑐Γ and a closed
embedding 𝔦Γ. (The upper index of 𝐷𝑠

Γ refers to the use of the simple twist group as in [BCGGM3] in
the construction of this covering.) We present the basic structure of the tautological ring to make the
striking parallels to M𝑔,𝑛 (as in [GP03] or [ACG11]) apparent.

Theorem 1.5. For each 𝜇, a finite set of additive generators of 𝑅•(PΞM𝑔,𝑛 (𝜇)) is given by the classes

𝜁Γ∗

( −𝐿∏
𝑖=0

𝑝 [𝑖 ],∗𝛼𝑖

)
, (6)

where Γ runs over all level graphs for all boundary strata of PΞM𝑔,𝑛 (𝜇) including the trivial graph
and where 𝛼𝑖 is a monomial in the 𝜓-classes supported on level i of the graph Γ.
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The tautological ring contains the 𝜅-classes and all level-wise tautological line bundle classes
𝜁Γ∗ 𝑝

[𝑖 ],∗𝜉
𝐵

[𝑖 ]
Γ

of all level graphs Γ.

An algorithm to perform the multiplication of these generators is given along with the proof of
Theorem 1.5 in Section 8. An important technical tool in the proof is the excess intersection formula
(see Proposition 8.1), which, like the above formulation of the tautological ring, has large structural
similarities with the case of the Deligne-Mumford compactification. This is useful only if the normal
bundles to the boundary divisors are known. Contrary to the Deligne-Mumford compactification, the
boundary divisors defined by two-level graphs do not self-intersect in the space of multi-scale differ-
entials (see Section 5). This allows us to control the combinatorics of intersections of nonhorizontal
boundary components (using the notion of ‘profile’) and to compute their normal bundles as closed
substacks instead of needing to compute the normal bundles of the clutching morphisms, which are for-
mally more intricate to define than for the moduli space of curves. Along with the clutching morphisms,
we define in Section 4.3 the tautological bundles on the top and bottom level strata of divisors and their
first Chern classes 𝜉� and 𝜉⊥. In Section 7, we show:

Theorem 1.6. The normal bundle NΓ of a divisor 𝐷Γ ∈ LG1(𝐵) has first Chern class

𝑐1 (NΓ) =
1
ℓΓ

(
− 𝜉�Γ − 𝑐1 (L�

Γ ) + 𝜉
⊥
Γ

)
in CH1(𝐷Γ) , (7)

where L�
Γ defined in equation (49) is a line bundle supported on the boundary of 𝐷Γ, where the top-level

stratum degenerates further.

We define tautological rings 𝑅•(𝐷Γ) of strata using the analogues of the additive generators
equation (6), and as a consequence of the preceding theorem, the normal bundle of each 𝐷Γ belongs to
the tautological ring 𝑅•(𝐷Γ).

Organization and strategy of proof.

After recalling some background on intersection theory in Section 2, we provide the necessary details
on the compactification PΞM𝑔,𝑛 (𝜇) in Section 3. Each level of a level graph gives rise to the notion
of generalised strata, defined in Section 4. There we also introduce the covering of boundary strata
that allows a decomposition into a product of levels. Section 5 provides a dimension count argument
that implies the smoothness of all nonhorizontal boundary strata and is at the heart of a formula for
exponentials of sums of over boundary graphs. This formula allows, together with Theorem 1.6, the
passage from Theorem 1.4 to Theorem 1.3. Section 6 proves the restriction of Theorem 1.4 to the
interior of PΞM𝑔,𝑛 (𝜇), and Section 7 proves Theorem 1.6. In Section 8, we prove the properties of
the tautological ring announced above. In Section 9, a local calculation at the boundary completes the
proof of Theorem 1.4, and computations in the tautological ring allow the passage from Theorem 1.2
to Theorem 1.3.

The strategy used here applies to other linear manifolds for which a compactification similar to that
in [BCGGM3] has been constructed. It is already available for meromorphic k-differentials for 𝑘 > 0
(see [CMZ19]) and expected to work for any affine invariant manifold. The proof of the main theorems
should carry over with very few adaptations. We hope to address these cases in a sequel.

2. Euler characteristics via logarithmic differential forms

This section connects Euler characteristic to integrals of characteristic classes of the sheaf of logarithmic
differential forms. The following proposition is certainly well known but not easy to locate in the
literature. We use the occasion to give a self-contained proof; see also [Fio17] and recall some standard
exact sequences.
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Proposition 2.1. Let 𝐵 be a compact smooth k-dimensional manifold, let D be a normal crossing divisor,
and 𝐵 = 𝐵 \ 𝐷. Then the Euler characteristic of B can be computed as an integral

𝜒(𝐵) = (−1)𝑘
∫
𝐵
𝑐𝑘 (Ω

1
𝐵 (log 𝐷)) (8)

over the top Chern class of the logarithmic cotangent bundle.

In all our applications, 𝐵 will be a compact orbifold or proper smooth Deligne-Mumford stack.
We work throughout with orbifold Euler characteristics, and since then both sides of equation (8) are
multiplicative in the degree of a covering, we can apply Proposition 2.1 verbatim.

2.1. The compact case and the Riemann-Roch theorem

We start with the proof of the special case of the main theorem.

Proposition 2.2. If 𝐵 = 𝐵 is smooth, compact and k-dimensional, then

𝜒(𝐵) =
∫
𝐵
𝑐𝑘 (𝑇𝐵) . (9)

We start by recalling some intersection theory. Let E be a holomorphic vector bundle on B. Denote
by 𝑐𝑖 � 𝑐𝑖 (E) ∈ CH𝑖 (𝐵) the ith Chern class of E. Recall that 𝑐0 = 1 and 𝑐𝑖 = 0 for 𝑖 > rk 𝐸 � 𝑟 .
The total Chern class of E is the formal sum c(E) = 1 + 𝑐1 + · · · + 𝑐𝑟 in CH(𝐵). Splitting formally
c(E) = ∏𝑟

𝑖=1(1 + 𝛼𝑖) into the Chern roots, the Chern character is defined as the formal power series

ch(𝐸) =
𝑟∑
𝑖=1

exp(𝛼𝑖) =
∑
𝑠≥0

1
𝑠!

𝑟∑
𝑖=1

𝛼𝑠𝑖 = rk(𝐸) + 𝑐1 +
1
2
(𝑐2

1 − 2𝑐2) + · · · .

Furthermore, the Todd class is defined as

td(𝐸) =
𝑟∏
𝑖=1

𝛼𝑖
1 − exp(−𝛼𝑖)

= 1 +
1
2
𝑐1 +

1
12

(𝑐2
1 + 𝑐2) +

1
24

𝑐1𝑐2 + · · · .

The Grothendieck-Riemann-Roch theorem in the case of a map 𝑓 : 𝑋 → 𝑌 , and for the special case
that the higher direct images 𝑅𝑖 𝑓∗E vanish, states that

ch( 𝑓∗E) · td(𝑇𝑌 ) = 𝑓∗(ch(E) · td(𝑇𝑋 )) . (10)

Proof of Proposition 2.2. For a topological proof, see, for example, [BT82, Proposition 11.24]. Using
the notations already set up, we give a quick proof if moreover B is Kähler. From the Borel-Serre identity
([Ful98, Example 3.2.5]) on a k-dimensional manifold,

𝑐𝑘 (𝑇𝐵) = ch
( 𝑘∑
𝑗=1

(−1) 𝑗Ω 𝑗
𝐵

)
· td(𝑇𝐵)

and the application ∫
𝐵

ch((−1) 𝑗Ω 𝑗
𝐵) · td(𝑇𝐵) =

∑
ℓ≥0

(−1)ℓ+ 𝑗ℎℓ (𝐵,Ω 𝑗
𝐵)
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of the Grothendieck-Riemann-Roch theorem for the map from B to a point, we get∫
𝐵
𝑐𝑘 (𝑇𝐵) =

∑
ℓ, 𝑗≥0

(−1)ℓ+ 𝑗ℎℓ (𝐵,Ω 𝑗
𝐵) = 𝜒(𝐵)

by the Hodge decomposition. �

2.2. The noncompact case and log differential forms

We suppose throughout that 𝐷 = ∪𝑠
𝑗=1𝐷 𝑗 is a reduced normal crossing divisor: that is, with distinct

irreducible components 𝐷𝑖 intersecting each other transversally. In this situation, Ω1
𝐵
(log 𝐷) is defined

to be the vector bundle of rank n with the following local generators. In a neighbourhood U of a point
where (say) the first 𝑟 ≤ 𝑠 divisors meet and 𝑥1, . . . , 𝑥𝑘 is a local coordinate system with 𝐷 𝑗 = {𝑥 𝑗 = 0},
then the logarithmic cotangent bundle is defined by

Ω1
𝐵
(log 𝐷) (𝑈) =

〈 𝑑𝑥1
𝑥1

, . . . ,
𝑑𝑥𝑟
𝑥𝑟

, 𝑑𝑥𝑟+1, . . . , 𝑑𝑥𝑘

〉
(11)

as an O𝐵 (𝑈)-module. There is a fundamental exact sequence for log differential forms, namely

0 → Ω1
𝐵
→ Ω1

𝐵
(log 𝐷) → ⊕𝑠

𝑗=1 (𝔦 𝑗 )∗O𝐷 𝑗 → 0 , (12)

where 𝔦 𝑗 : 𝐷 𝑗 → 𝐵 is the inclusion map. More details can be found, for example, in [EV92, Proposition
2.3].

Proof of Proposition 2.1. We first reduce to the case that D has simple normal crossings: that is, to the
case that the 𝐷 𝑗 are all smooth. This can always be achieved by an étale covering. Since both sides of
equation (8) are multiplied by the degree under such a covering, we can assume simple normal crossings.
Our goal is to prove∫

𝐵
𝑐𝑘

(
Ω1
𝐵

(
log

∑
𝑖≥2

𝐷𝑖

))
=
∫
𝐵
𝑐𝑘

(
Ω1
𝐵
(log 𝐷)

)
−

∫
𝐷1

𝑐𝑘−1

(
Ω1
𝐷1

(
log

(∑
𝑖≥2

𝐷𝑖 ∩ 𝐷1

)))
.

The claim follows then from the additivity 𝜒(𝐵) + 𝜒(𝐷) = 𝜒(𝐵) of the Euler characteristic, Proposi-
tion 2.2 and an application of the preceding identity to 𝐵 𝑗 = 𝐵 \ ∪𝑠

𝑖= 𝑗𝐷 𝑗 .
We consider the inclusion of the boundary divisor 𝐷1 and deduce from the ideal sheaf sequence

that 𝑐((𝔦1)∗O𝐷1 ) = (1 − [𝐷1])
−1 and that 𝑐(N𝐷1) = 1 + 𝔦∗1 [𝐷1]. Moreover the normal bundle sequence

0 → T𝐷1 → 𝔦∗1T𝐵 → N𝐷1 → 0 implies

𝑐(Ω1
𝐷1
) = 𝔦∗1

(
𝑐(Ω1

𝐵
) ·

1
1 − [𝐷1]

)
. (13)

On the other hand, the sequence in equation (12) gives

𝑐(Ω1
𝐵
(log 𝐷)) = 𝑐(Ω1

𝐵
) ·

1
1 − [𝐷1]

·

𝑠∏
𝑗=2

1
1 − [𝐷 𝑗 ]

(14)

and also

𝑐
(
Ω1
𝐷1

(
log

(∑
𝑖≥2

𝐷𝑖 ∩ 𝐷1

)))
= 𝑐(Ω1

𝐷1
) ·

𝑠∏
𝑗=2

1
1 − [𝐷1 ∩ 𝐷 𝑗 ]

. (15)
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Hence, comparing with equation (13), we get

𝑐
(
Ω1
𝐷1

(
log

(∑
𝑖≥2

𝐷𝑖 ∩ 𝐷1

)))
= 𝔦∗1𝑐

(
Ω1
𝐵
(log 𝐷)

)
. (16)

Finally, from equation (14) and the appropriate version of the sequence in equation (12), we also get

𝑐(Ω1
𝐵
(log 𝐷)) =

1
1 − [𝐷1]

𝑐
(
Ω1
𝐵

(
log

∑
𝑖≥2

𝐷𝑖

))
. (17)

The claim now follows by multiplying this last expression with 1 − [𝐷1], integrating and taking the kth
coefficient, using that

∫
𝐵
[𝐷1] · 𝑐𝑘−1(Ω1

𝐵
(log 𝐷)) =

∫
𝐷1

𝔦∗1𝑐𝑘−1(Ω1
𝐵
(log 𝐷)). �

3. The moduli space of multi-scale differentials

We recall here from [BCGGM3] basic properties of the moduli space of multi-scale differentials
ΞM𝑔,𝑛 (𝜇) and its projectivisation PΞM𝑔,𝑛 (𝜇) that compactifies the moduli space PΩM𝑔,𝑛 (𝜇) of
projectivised meromorphic differentials. Throughout, we suppose that 𝜇 = (𝑚1, . . . , 𝑚𝑛) ∈ Z𝑛 is
the type of a differential: that is,

∑𝑛
𝑗=1 𝑚 𝑗 = 2𝑔 − 2. We usually abbreviate 𝐵 = PΩM𝑔,𝑛 (𝜇) and

𝐵 = PΞM𝑔,𝑛 (𝜇).

3.1. Enhanced level graphs

To define strata and the ambient space in the meromorphic case, we assume that there are r positive m’s,
s zeroes and l negative m’s, with 𝑟 + 𝑠 + 𝑙 = 𝑛: that is, we have 𝑚1 ≥ · · · ≥ 𝑚𝑟 > 𝑚𝑟+1 = · · · = 𝑚𝑟+𝑠 =
0 > 𝑚𝑟+𝑠+1 ≥ · · · ≥ 𝑚𝑛. Note that 𝑚 𝑗 = 0 is allowed, representing an ordinary marked point. A pointed
flat surface is usually denoted by (𝑋, 𝜔, z), where z = (𝑧1, . . . , 𝑧𝑛) are the marked points corresponding
to the zeros, ordinary marked points and poles of 𝜔. The sections over ΩM𝑔,𝑛 (𝜇) corresponding to
those marked points are denoted by Z𝑖 . We denote the polar part of 𝜇 by �̃� = (𝑚𝑟+𝑠+1, . . . , 𝑚𝑛). The
strata of meromorphic differentials are then naturally defined inside the twisted Hodge bundle

𝐾M𝑔,𝑛 ( �̃�) = 𝑓∗

(
𝜔X/M𝑔,𝑛

(
−

𝑛∑
𝑗=𝑟+𝑠+1

𝑚 𝑗Z 𝑗

))
.

The strata are smooth complex substacks ΩM𝑔,𝑛 (𝜇) of dimension 𝑁 = 2𝑔 − 1 + 𝑛 in the holomorphic
case 𝑙 = 0 and 𝑁 = 2𝑔 − 2 + 𝑛 in the meromorphic case.

To each boundary point in 𝐷 = ΞM𝑔,𝑛 (𝜇) \ΩM𝑔,𝑛 (𝜇), there is an associated enhanced level graph,
and D is stratified by the type of this associated graph. Here a level graph is defined to be a stable graph
Γ = (𝑉, 𝐸, 𝐻), with half-edges in H that are either paired to form edges E or correspond to the n marked
points, together with a total order on the vertices (with equality permitted). The graph Γ is supposed to
be connected here; from Section 8 on its components are in bijection with the components of the flat
surfaces the generalised stratum parametrises. For convenience, we usually define the total order using
a level function ℓ : 𝑉 (Γ) → Z, usually normalized to take values in {0,−1, . . . ,−𝐿}. We usually write
𝐻𝑚 = 𝐻 \ 𝐸 for the half-edges corresponding to the marked points. Moreover, an enhancement (in
[FP18] or [CMSZ20], this number is called a twist) is an assignment of a number 𝜅𝑒 ≥ 0 to each edge e,
so that 𝜅𝑒 = 0 if and only if the edge is horizontal. The triple (Γ, ℓ, {𝜅𝑒}𝑒∈𝐸 (Γ) ) is called an enhanced
level graph. We denote the closure of the boundary stratum parametrising multi-scaled differentials (as
defined below) compatible with (Γ, ℓ, {𝜅𝑒}) by 𝐷 (Γ,ℓ, {𝜅𝑒 }) or usually simply by 𝐷Γ.

Theorem 3.1 ([BCGGM3]). There is a proper smooth Deligne-Mumford stack PΞM𝑔,𝑛 (𝜇) that con-
tains the projectivised stratum PΩM𝑔,𝑛 (𝜇) as an open dense substack with the following properties.
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(i) The boundary PΞM𝑔,𝑛 (𝜇) \ PΩM𝑔,𝑛 (𝜇) is a normal crossing divisor.
(ii) The codimension of a boundary stratum 𝐷Γ in PΞM𝑔,𝑛 (𝜇) is equal to the number of horizontal

edges plus the number L of levels below zero.

In particular, the boundary divisors consist of the divisor 𝐷h parametrising level graphs on just
one level and with just one horizontal edge and the (‘vertical’) boundary divisors indexed by two-
level graphs without horizontal edges. (For holomorphic types 𝜇, the divisor 𝐷h is irreducible and
parametrises graphs with a nonseparating edge; but for general 𝜇, this divisor is reducible.) We give
local coordinates near the boundary divisors in Section 6.2.

Note that the boundary strata 𝐷Γ may be empty for some enhanced level graphs. Deciding nonempti-
ness is the same as the realisability question that was addressed in [MUW21] purely in terms of graphs.
The general version, taking into account the residue conditions, is stated in the algorithmic part of
[CMZ20]. Note that these boundary strata may also be disconnected; see the discussion of prong-
matching equivalence classes below.

Recall that the construction of PΞM𝑔,𝑛 (𝜇) in [BCGGM3] gives a morphism PΞM𝑔,𝑛 (𝜇) = 𝐵 →

P

(
𝑓∗𝜔X/M𝑔,𝑛

(−
∑𝑛

𝑗=𝑟+𝑠+1 𝑚 𝑗Z 𝑗 )
)

to the projectivised twisted Hodge bundle over the Deligne-Mumford
compactification. The line bundle O𝐵 (−1) is the pullback of the tautological bundle from there.

3.2. Twisted differentials and multi-scale differentials

The space ΞM𝑔,𝑛 (𝜇) is a moduli stack for families of a certain collection of differentials, called multi-
scale differentials, and this modular interpretation will be used, for example, in Section 4 to define
clutching maps and projection maps at the boundary. However, we will refer to ΞM𝑔,𝑛 (𝜇) as a moduli
space to stick to the commonly used terminology. We recall the definition of a single multi-scale
differentials, referring for full details of the definition for families to [BCGGM3]. We will recall further
details where needed.

When referring to prongs, we fix a direction in 𝑆1 throughout, say the horizontal direction. Suppose
that a differential 𝜔 has a zero of order 𝑚 ≥ 0 at 𝑞 ∈ 𝑋 . The differential 𝜔 selects inside the real
projectivised tangent space 𝑃𝑞 = 𝑇𝑝𝑋/R>0 a collection of 𝜅 = 𝑚 + 1 horizontal (outgoing) prongs at q,
the tangent vectors R>0 · 𝜁

𝑖
𝜅𝜕/𝜕𝑧 in a chart where 𝜔 = 𝑧𝑚𝑑𝑧 is in standard form and 𝜁𝜅 is a primitive

𝜅th root of unity. We denote them by 𝑃out
𝑞 ⊂ 𝑃𝑞 . The prongs are equivalently the tangent vectors to the

outgoing horizontal rays. Dually, if 𝜔 has a pole of order 𝑚 ≤ −2, then 𝜔 has 𝜅 = −𝑚 − 1 horizontal
(incoming) prongs at q, denoted by 𝑃in

𝑞 ⊂ 𝑃𝑞 , the tangent vectors R>0 · −𝜁 𝑖𝜅𝜕/𝜕𝑧 in a chart where
𝜔 = 𝑧𝑚𝑑𝑧.

We start with an auxiliary notion of differentials from [BCGGM1]. Given a pointed stable curve
(𝑋, z), a twisted differential is a collection of differentials 𝜂𝑣 on each component 𝑋𝑣 of X: that is,
compatible with a level structure on the dual graph Γ of X – it vanishes as prescribed by 𝜇 at the
marked points z and satisfies the matching order condition at vertical nodes, the matching residue
condition at horizontal nodes and the global residue condition of [BCGGM1]. We usually group the
differentials on the components of level i of X to form the collection 𝜂 (𝑖) and refer to a twisted differential
by 𝜼 = (𝜂 (𝑖) ).

A multi-scale differential of type 𝜇 on a stable curve X consists of an enhanced level structure
(Γ, ℓ, {𝜅𝑒}) on the dual graph Γ of X, a twisted differential of type 𝜇 compatible with the enhanced
level structure and a prong-matching for each node of X joining components of nonequal levels. Here
the compatibility with the enhanced level structure requires that at each of the two points 𝑞± glued
to form the node corresponding to the edge 𝑒 ∈ 𝐸 (Γ) the number of prongs of the differential 𝜼 is
equal to 𝜅𝑒. Moreover, a prong-matching is an order-reversing isometry 𝜎𝑞 : 𝑃𝑞− → 𝑃𝑞+ that induces a
cyclic order-reversing bijection 𝜎𝑞 : 𝑃in

𝑞− → 𝑃out
𝑞+ between the incoming prongs at 𝑞− and the outgoing

prongs at 𝑞+.
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Finally, we state the equivalence relation on multi-scale differentials used to construct ΞM𝑔,𝑛 (𝜇).
Multi-scale differentials only retain the information on the lower levels up to projectivisation. This
rescaling of the lower levels is roughly given by a multiplicative torus 𝑇𝐿 (Γ) . More precisely, the group
(C∗)𝐿 (Γ) acts by rescaling plainly the differentials on each level. The universal cover C𝐿 (Γ) → (C∗)𝐿 (Γ)

acts by rescaling the differentials on each level and simultaneously by fractional Dehn twists on the
prong-matching. In fact, a subgroup acts trivially: the twist group TwΓ that we describe in detail in
Section 3.4. So the action factors through the action of the quotient 𝑇Γ = C𝐿 (Γ) /TwΓ called the level
rotation torus, and two multi-scale differentials are defined to be equivalent if they differ by the action
of 𝑇Γ.

The projectivised space PΞM𝑔,𝑛 (𝜇) parametrises projectivised multi-scale differentials, where
C∗ acts by simultaneously rescaling the differentials on all levels and leaving the prong-matchings
untouched.

3.3. Divisors, degeneration, undegeneration

We let LG𝐿 (𝐵) be the set of all enhanced (𝐿 + 1)-level graphs without horizontal edges. Recall that
boundary divisors of 𝐵 are 𝐷h and 𝐷Γ for Γ ∈ LG1 (B). For later use, we define

𝐷 = 𝐷h +
∑

Γ∈LG1 (B)
𝐷Γ (18)

to be the total boundary divisor. The structure of the normal crossing boundary of PΞM𝑔,𝑛 (𝜇) is
encoded by undegenerations. Given a nonhorizontal level graph Γ with 𝐿 + 1 levels, the associated
boundary stratum 𝐷Γ is contained in the intersection of L boundary divisors 𝐷Γ𝑖 for 𝑖 = 1, . . . , 𝐿, and
we can describe this inclusion as follows. View the ith level passage as a horizontal line just above level
−𝑖. Contract in Γ all edges that do not cross this horizontal line to obtain a contraction map 𝛿𝑖 : Γ → Γ𝑖
of enhanced level graphs, where Γ𝑖 obtains a two-level structure with the top level corresponding to the
components above the horizontal line and the bottom level those below that line. We call this the ith
undegeneration of Γ. This can be generalised for any subset 𝐼 = {𝑖1, . . . , 𝑖𝑛} ⊆ {1, . . . , 𝐿} and results
in the undegeneration map

𝛿𝑖1 ,...,𝑖𝑛 : LG𝐿 (𝐵) → LG𝑛 (𝐵) ,

which contracts all the passage levels of a nonhorizontal level graph 𝐷Γ except for the passages between
levels −𝑖𝑘 + 1 and −𝑖𝑘 , for those 𝑖𝑘 ∈ 𝐼. For notational convenience, we define 𝛿�𝐼 = 𝛿𝐼� .

A degeneration of level graphs is simply the inverse of an undegeneration. It is convenient to have a
symbol to express this dual process, and we write

Γ�Δ̂ or Γ
[𝑖 ]
� Δ̂ (19)

for a general undegeneration, respectively, specifically for an undegeneration where the ith level is split
into two levels.

Remark 3.2. With the convention used here and in all of the rest, the levels of a level graph with 𝐿 + 1
levels are indexed by negative integers {0,−1, . . . ,−𝐿}, while the level passages are indexed by positive
integers {1, . . . , 𝐿}. This implies for example that Γ

[𝑖 ]
� Δ̂ is equivalent to Γ = 𝛿�

(−𝑖+1) (Δ̂).

Note that the map of graphs 𝛿𝐼 is only well-defined up to post-composition by automorphisms of
the enhanced level graph 𝛿𝐼 (Γ). Taking this into account will be important for intersection theory; see
Section 8.1 and [CMZ20, Section 7].

https://doi.org/10.1017/fmp.2022.10 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.10


Forum of Mathematics, Pi 11

3.4. Prong-matchings and their equivalence classes

In this section, we illustrate the amount of combinatorial information encoded in the notion of prong-
matching, given that we also have to take into account the action of the level rotation torus. We start
with a recurrent example.

Case of a level graph Γ ∈ LG1 (B): that is, a divisor 𝐷Γ different from 𝐷h. Such an enhanced level
graph has |𝐸 (Γ) | edges, each of which carries the information of the prongs; consequently there are
𝐾Γ =

∏
𝑒∈𝐸 (Γ) 𝜅𝑒 prong-matchings. However, this does not imply that locally 𝐷Γ is a degree 𝐾Γ-cover

of the product of the moduli spaces corresponding to the upper and lower levels. Instead, the effect of
projectivisation of the lower level on prong-matchings must be considered. This effect is given by the
action of the level rotation group 𝑅Γ � Z ⊂ C in the universal cover of the level rotation torus. This
group 𝑅Γ acts diagonally, turning the prong-matching at each edge by one (in a fixed direction). The
stabiliser of a prong-matching is the twist group TwΓ referred to above. It is isomorphic to ℓΓZ as a
subgroup of 𝑅Γ, where

ℓΓ = lcm(𝜅𝑒 : 𝑒 ∈ 𝐸 (Γ)) . (20)

Orbits of 𝑅Γ are also called equivalence classes of prong-matchings. For two-level graphs, there are
𝑔Γ := 𝐾Γ/ℓΓ such equivalence classes.

For a general level graph Δ the situation is more complicated and the compactification PΞM𝑔,𝑛 (𝜇)
acquires a nontrivial quotient stack structure that can be computed as follows. As above, there are
𝐾Δ =

∏
𝑒∈𝐸 (Δ) 𝜅𝑒 prong-matchings. Now the level rotation group is 𝑅Δ � Z𝐿 , where the ith factor

twists by one all prong-matchings that cross the horizontal line above level −𝑖. The stabiliser of a prong-
matching is still called the twist group TwΔ . However, this group is no longer a product of the level-wise
factors. In fact, for each 𝑖 ∈ N, the twist group of the level-undegeneration 𝐷 𝛿𝑖 (Δ) is a subgroup of TwΔ ,
and we call the sum of these subgroups the simple Twist group Tw𝑠

Δ . The generic stack structure of 𝐷Δ

is given by the product of the action of the group Aut(Δ) of enhanced level graphs automorphisms and
a cyclic group of order

𝑒Δ = [TwΔ : Tw𝑠
Δ ] .

The number of prong-matching equivalence classes is

𝑔Δ := |𝑅Δ − orbits on the set 𝐾Δ | = 𝐾Δ/[𝑅Δ : TwΔ ] . (21)

These indices can easily be computed using the elementary divisor theorem.
We discuss a simple case below where TwΔ ≠ Tw𝑠

Δ in preparation for the examples in Section 10.
Finally, we generalise for later use the lcm defined above. We define ℓΔ =

∏𝐿
𝑖=1 ℓΔ ,𝑖 and we use from

now on the notation

ℓΔ ,𝑖 = lcm
(
𝜅𝑒 : 𝑒 ∈ 𝐸 (Γ)>−𝑖≤−𝑖

)
= ℓ𝛿𝑖 (Δ) (22)

as an abbreviation of the one defined in the introduction, where 𝐸 (Γ)>−𝑖≤−𝑖 are the edges starting at level
−𝑖 + 1 or above and ending at level −𝑖 or below.

Example 3.3. In the graph Δ in Figure 1 (left), there are three edges 𝑒1,𝑒2 and 𝑒3 with enhancements a,
b and c. The group 𝑅Δ � Z2 acts on Z/𝑎 ⊕ Z/𝑏 ⊕ Z/𝑐 by mapping

(1, 0) ↦→ (1, 1, 0) and (0, 1) ↦→ (0, 1, 1) .

Consequently, there are gcd(𝑎, 𝑏, 𝑐) orbits: that is, that many equivalence classes of prong-matchings
near such a boundary point. The index of the twist group TwΔ in 𝑅Δ is thus 𝑎𝑏𝑐/gcd(𝑎, 𝑏, 𝑐). On the
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𝑋(0)

𝑋(−1)

𝑋(−2)

𝑎𝑒1

𝑏 𝑒2

𝑐

𝑒3

𝑌(0)

𝑏 𝑎

𝑌(−1)

𝑏 𝑐

𝑌(−2)

Figure 1. The triangle level graph and a graph with the same undegenerations.

other hand, as a consequence of the discussion in the divisor case, the index of the simple twist group
Tw𝑠

Δ in 𝑅Δ is 𝑎𝑏/gcd(𝑎, 𝑏) · 𝑏𝑐/gcd(𝑏, 𝑐). Since Δ has no level graphs automorphisms – that is, Aut(Δ)
is trivial – we conclude that in this case 𝐷Δ is a quotient stack by a group of order

𝑒Δ =
gcd(𝑎, 𝑏, 𝑐) lcm(𝑎, 𝑏) lcm(𝑏, 𝑐)

𝑎𝑏𝑐
. (23)

4. Clutching and projection to generalised strata

In this section, we define generalised strata, where we allow disconnected surfaces and residues con-
strained to a residue space ℜ. This is similar to a discussion in [Sau19]. More precisely, we show in
Section 4.1 how the construction of [BCGGM3] carries over to this generalised context to give a com-
pactification PΞMℜ

g,n (𝝁) of generalised strata.
The reason for dealing with generalised strata is to be able to work with objects (like line bundles and

Chow rings) on the individual levels of a boundary stratum, and those might be disconnected and have
residue conditions imposed by the GRC. We construct in Section 4.2 for each boundary stratum 𝐷Γ a
finite covering 𝐷𝑠

Γ → 𝐷Γ that admits projections 𝑝 [𝑖 ]
Γ : 𝐷𝑠

Γ → 𝐵 [𝑖 ]
Γ , where 𝐵 [𝑖 ]

Γ are the generalised
strata at level i of 𝐷Γ.

4.1. The compactification of generalised strata

We start with the definition of strata in the generality that we need. First, we allow for disconnected
surfaces. Throughout, 𝜇𝑖 = (𝑚𝑖,1, . . . , 𝑚𝑖,𝑛𝑖 ) ∈ Z

𝑛𝑖 is the type of a differential: that is, we require that∑𝑛𝑖
𝑗=1 𝑚𝑖, 𝑗 = 2𝑔𝑖 − 2 for some 𝑔𝑖 ∈ Z for 𝑖 = 1, . . . , 𝑘 . For a tuple g = (𝑔1, . . . , 𝑔𝑘 ) of genera and a tuple

n = (𝑛1, . . . , 𝑛𝑘 ) together with 𝝁 = (𝜇1, . . . , 𝜇𝑘 ), we define the disconnected stratum

ΩMg,n (𝝁) =
𝑘∏
𝑖=1

ΩM𝑔𝑖 ,𝑛𝑖 (𝜇𝑖) . (24)

The projectivised stratum PΩMg,n (𝝁) is the quotient by the diagonal action of C∗, not the quotient by
the action of (C∗)𝑘 .

Next, we prepare for global residue conditions. Let 𝐻𝑝 ⊆ ∪𝑘
𝑖=1{(𝑖, 1), · · · (𝑖, 𝑛𝑖)} be the set of marked

points such that 𝑚𝑖, 𝑗 < −1. Now consider vector spaces ℜ of the following special shape, modeled on
the global residue condition from [BCGGM1]. Let 𝜆 be a partition of 𝐻𝑝 with parts denoted by 𝜆 (𝑘)

and a subset 𝜆ℜ of the parts of 𝜆 such that

ℜ �
{
𝑟 = (𝑟𝑖, 𝑗 )(𝑖, 𝑗) ∈𝐻𝑝 ∈ C𝐻𝑝 and

∑
(𝑖, 𝑗) ∈𝜆(𝑘)

𝑟𝑖, 𝑗 = 0 for all 𝜆 (𝑘) ∈ 𝜆ℜ

}
.
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The subspace of surfaces with residues in ℜ will be denoted by ΩMℜ
g,n (𝝁), and we will refer to them

as generalised strata, too.
To compute dimensions, for example, it is convenient to define the residue subspace

𝑅 =
𝑘∏
𝑖=1

𝑅𝑖 ⊆

𝑘∏
𝑖=1
C𝑙𝑖 (25)

of differentials of the generalised stratum ΩMg,n (𝝁), where 𝑙𝑖 is the number of negative entries in 𝜇𝑖 .
Here 𝑅𝑖 is the vector subspace cut out by the residue theorem in the ith component in the space generated
by the vectors 𝑟𝑖, 𝑗 for each (𝑖, 𝑗) with 𝑚𝑖, 𝑗 ≤ −1. When writing ℜ ∩ 𝑅, we consider the intersection
inside

∏𝑘
𝑖=1 C

𝑙𝑖 .

Remark 4.1. The dimension of the generalised stratum ΩMℜ
g,n (𝝁) is

dim(ΩMℜ
g,n (𝝁)) =

(
𝑘∑
𝑖=1

2𝑔𝑖 + 𝑛𝑖 − 1

)
− (𝑙 − dim(ℜ ∩ 𝑅)) , (26)

where 𝑙 =
∑
𝑙𝑖 is the total number of poles: that is, marked points with 𝑚𝑖, 𝑗 < 0.

We claim that the construction in [BCGGM3] can be carried out for disconnected surfaces and
surfaces with an assigned residue subspace. We only have to replace in the definition of the twisted
differentials (𝑋 = (𝑋𝑣 )𝑣 ∈𝑉 (𝐺) , 𝜂 = (𝜂𝑣 )𝑣 ∈𝑉 (𝐺) ) compatible with an enhanced level graph Γ the global
residue condition by the following condition. We construct a new auxiliary level graph Γ̃ by adding a
new vertex 𝑣𝜆(𝑘) to Γ at level ∞ for each element 𝜆 (𝑘) ∈ 𝜆ℜ and converting a tuple (𝑖, 𝑗) ∈ 𝜆 (𝑘) into an
edge from the marked point (𝑖, 𝑗) to the vertex 𝑣𝜆(𝑘) .

• ℜ-global residue condition (ℜ-GRC). The tuple of residues at the poles in 𝐻𝑝 belongs to ℜ, and
for every level 𝐿 < ∞ of Γ̃ and every connected component Y of the subgraph Γ̃>𝐿 , one of the
following conditions holds:

i) The component Y contains a marked point with a prescribed pole that is not in 𝜆ℜ.
ii) The component Y contains a marked point with a prescribed pole (𝑖, 𝑗) ∈ 𝐻𝑝 , and there is an

𝑟 ∈ ℜ with 𝑟 (𝑖, 𝑗) ≠ 0.
iii) Let 𝑞1, . . . , 𝑞𝑏 denote the set of edges where Y intersects Γ̃=𝐿 . Then

𝑏∑
𝑗=1

Res𝑞−𝑗 𝜂𝑣− (𝑞 𝑗 ) = 0 ,

where 𝑣−(𝑞 𝑗 ) ∈ Γ̃=𝐿 .

This differs from the global residue condition in [BCGGM1] only in the subdivision of cases in i)
and ii). As for the normal GRC (see [MUW21]), the ℜ-GRC also has an algorithmic graph theoretic
description; see [CMZ20].

Proposition 4.2. There is a proper smooth Deligne-Mumford stackPΞMℜ
g,n (𝝁) containingPΩMℜ

g,n (𝝁)
as an open dense substack with the following properties:

(i) The boundary PΞMℜ
g,n (𝝁) \ PΩMℜ

g,n (𝝁) is a normal crossing divisor.

(ii) A multi-scale differential defines a point in PΞMℜ
g,n (𝝁) if and only if it is compatible with an

enhanced level graph Γ that satisfies the ℜ-GRC.
(iii) The codimension of a boundary stratum 𝐷Γ in PΞMℜ

g,n (𝝁) is equal to the number of horizontal
edges plus the number L of levels below zero.
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2

1 1 2

1 1

Figure 2. Auxiliary level graphs Γ̃1 (left) and Γ̃2 (right) for the boundary strata Γ1 and Γ2 (in the
dashed boxes).

Proof. The residue spaces matter only for the existence of modification differentials needed for glueing.
In [BCGGM1, Lemma 4.6], their existence for each component Y as in the global residue condition was
shown in case iii). This lemma also covers case i) since we can impose a residue at that marked point to
ensure that the total sum equals zero. Since ℜ is a vector space, this can still be done in case ii).

The smoothness and the normal crossing divisor properties follow from the same reasoning as in
[BCGGM3]. We leave the straightforward verification of those many hidden claims of the proposition
to the reader. �

Again, as in the usual situation, the divisors 𝐷Γ of generalised strata may also be disconnected or
empty.

Example 4.3. To illustrate the ℜ-global residue condition, we consider the generalised stratum 𝐵 =
P
(
ΩM0,3 (−2,−2, 2) ×ΩM0,4(−2,−2, 1, 1)

)ℜ, where the special legs are given by the first two marked
points of the first component and the first two marked points of the second components,

𝐻𝑝 = {(1, 1), (2, 1), (1, 2), (2, 2)},

and the residue space is given by the partition

𝜆ℜ = {{(1, 1), (1, 2)}, {(2, 1), (2, 2)}}.

This means

ℜ = {𝑟 (1,1) + 𝑟 (2,1) = 0, 𝑟 (1,2) + 𝑟 (2,2) = 0} ⊂ C4,

and R is the subspace defined by the residue theorem on each of the two components, namely

𝑅 = {𝑟 (1,1) + 𝑟 (1,2) = 0, 𝑟 (2,1) + 𝑟 (2,2) = 0}.

By Remark 4.1, the above generalised stratum has dimension 1. We want to show that theℜ-GRC implies
that there is only one 2-level boundary divisor in the compactification defined in Proposition 4.2. This
divisor is given by the 2-level graph with the 4-marked component on level 0 and the other component
on level −1.

The only two possible level graphs that could occur are the 2-level graph Γ1 described above and the
2-level graph Γ2, where the two components are inverted. Consider the auxiliary level graphs Γ̃1 and Γ̃2
needed to check the ℜ-GRC given in Figure 2. It is easy to see that condition (iii) of the ℜ-GRC implies
that the graph Γ1 is illegal since both residues on the genus 0 component with the single zero of order 2
on the top level are zero, and this cannot happen.
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4.2. Level projections and clutching

Consider a boundary stratum 𝐷Γ given by an enhanced level graph Γ. It parametrises multi-scale
differentials, a differential on each level together with a prong-matching. However, there are no well-
defined projection morphisms to the generalised strata on each level. For example, 𝐷Γ might have
generically trivial quotient stack structure, and the generalised strata on its levels might have everywhere
trivial stack structure, and yet special points of 𝐷Γ have nontrivial quotient structure. A graph Γ with
two edges and two levels degenerating to a triangle (Figure 1, left) provides an example. This is due to
the fact that the equivalence relation in the notion of multi-scale differentials involves the twist group,
which in the presence of edges across multiple levels intertwines what happens at the levels. Our goal
here is to define a cover of 𝐷Γ that has such projection maps.

To define the generalised strata at the levels of 𝐷Γ, we let (g[𝑖 ] , n[𝑖 ] , 𝝁 [𝑖 ] ) for 𝑖 = 0, . . . ,−𝐿 be the
discrete parameters genus, number of points and type at level i, and we let ℜ [𝑖 ] be the residue condition
imposed at level i. These residue conditions are constructed via the ℜ-GRC described before. Our
goal is:

Proposition 4.4. There exists a stack 𝐷𝑠
Γ, called the simple boundary stratum of type Γ that admits a

finite map 𝑐Γ : 𝐷𝑠
Γ → 𝐷Γ and finite forgetful maps

𝑝 [𝑖 ]
Γ : 𝐷𝑠

Γ → 𝐵 [𝑖 ]
Γ := PΞMℜ [𝑖 ]

g[𝑖 ] ,n[𝑖 ] (𝝁 [𝑖 ] ) (27)

for each 𝑖 = 0, . . . ,−𝐿.

We denote by 𝑝Γ =
∏−𝐿

𝑖=0 𝑝
[𝑖 ]
Γ the product of all level projections. In the case that 𝐷Γ is a divisor, we

will also denote the two projections by

𝑝�Γ : 𝐷𝑠
Γ → 𝐵�

Γ = PΞMℜ�

g� ,n� (𝝁�) and 𝑝⊥Γ : 𝐷𝑠
Γ → 𝐵⊥

Γ = PΞMℜ⊥

g⊥ ,n⊥ (𝝁⊥) .

With the help of the finite coverings 𝑐Γ and the inclusion of the boundary strata 𝔦Γ : 𝐷Γ → 𝐵, we
have now the clutching maps 𝜁Γ = 𝔦Γ ◦ 𝑐Γ at our disposal to define the generators of the tautological
ring appearing in Theorem 1.5.

The strategy of the proof of the proposition is to construct 𝐷𝑠
Γ as a cover dominating the local covers of

neighbourhoods of more degenerate boundary strata, following the strategy already used in [Mum83].
We do not attempt to analyse whether 𝐷𝑠

Γ is smooth, but the covering we construct is branched at
worst over the boundary divisors (hence locally over the coordinate axis, since the boundary is normal
crossing); so 𝐷𝑠

Γ has at worst Cohen-Macaulay singularities (Proposition 2.2 in [Mum83]), which allows
us to perform intersection theory as in [Mum83]. The objects of the construction are summarised in the
following diagram that we now explain.

𝑈Δ 𝐷𝑠
Γ

𝑈𝑠
Δ

𝐵Γ =
∏

𝑖 𝐵
[𝑖 ]
Γ 𝐵Γ,Δ 𝑈int

Δ 𝐷
gs
Γ

𝑈Δ 𝐷Γ

⊂

𝑞Δ

𝑝Γ

𝑐Γ

𝑝ΔΓ

𝑐ΔΓ

⊃

⊂

⊂
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For any level graph Δ that is a degeneration of Γ, we let 𝑈Δ ⊂ 𝐷Γ be the open subset parametrising
multi-scale differentials compatible with an undegeneration of Δ . In particular, 𝑈Γ ⊂ 𝐷Γ is the com-
plement of all boundary strata where Γ degenerates further. These 𝑈Δ are covered by open subsets of
the projectivised Dehn space [BCGGM3, Section 12], which is given as a set by

PΞDΔ =
( ∐
Γ�Π�Δ

(
𝔚pm (Π)/𝑇 𝑠Π

)
/TwΔ

)
/C∗ , (28)

where 𝔚pm (Π) is the space of prong-matched twisted differentials compatible with a Tw𝑠
Π-marking

[BCGGM3, Sections 5 and 8], where the (simple) twist groups are defined in Section 3.4 and 𝑇 𝑠Π =
C𝐿 (Π) /Tw𝑠

Π is the simple level rotation torus, a finite cover of the level rotation torus defined there. The
complex structure of this Dehn space is provided in [BCGGM3, Sections 5 and 8], which at the same
time exhibits this space as the quotient stack of the projectivised simple Dehn space

PΞD𝑠
Δ =

( ∐
Γ�Π�Δ

(
𝔚pm (Π)/𝑇 𝑠Π

)
/Tw𝑠

Δ

)
/C∗. (29)

We define 𝑈𝑠
Δ → 𝑈Δ to be the cover induced locally by the covering PΞD𝑠

Δ → PΞDΔ and moreover by
labelling the edges of the ‘ambient’ graph Γ, killing automorphisms that permute these. The first step
is well-defined since we work on strata undegenerating Δ , and the passage to the simple twist group
defines a cover independently of the chosen auxiliary Teichmüller marking.

Since the edges of Γ are labelled for points in𝑈𝑠
Δ , and since the equivalence relation in equation (29)

is defined level by level, we may decompose the differentials parametrised by𝑈𝑠
Δ according to the levels

of Γ. In this way, we obtain maps 𝑝Δ , [𝑖 ]Γ : 𝑈𝑠
Δ → 𝐵 [𝑖 ]

Γ such that the product map 𝑝ΔΓ =
∏

𝑖 𝑝
Δ , [𝑖 ]
Γ is a

finite cover of an open subset 𝐵Γ,Δ of the product of level strata 𝐵Γ =
∏

𝑖 𝐵
[𝑖 ]
Γ .

The last step is to define a covering dominating all the 𝑐ΔΓ . For technical reasons, we first define the
‘generically simple’ intermediate space 𝐷

gs
Γ that removes the stack structure over the open subset 𝑈Γ

(if there is) just as above, by passage to the simple covering and marking edges. The maps 𝑈𝑠
Δ → 𝐷Γ

factor through this 𝐷gs
Γ , defining an ‘intermediate’ open substack 𝑈int

Δ . Finally, we take 𝐷𝑠
Γ to be the

normalization of𝐷gs
Γ in a Galois field extension of the function field of𝐷gs

Γ that contains all the extensions
defined by 𝑈𝑠

Δ → 𝐷
gs
Γ . (If 𝐷Γ happens to be reducible, we perform the construction on each connected

component. Actually, the 𝑈𝑠
Δ still have a stack structure due to automorphisms of the underlying stable

curves. The details for how to construct the covering with this caveat are in [Mum83, Section 2b].) This
space comes with a forgetful map 𝑐Γ : 𝐷𝑠

Γ → 𝐷Γ that factors as 𝑐Γ = 𝑐ΔΓ ◦ 𝑞Δ : 𝑈Δ → 𝑈Δ over the
preimages of𝑈Δ . We may now define 𝑝 [𝑖 ]

Γ = 𝑝Δ , [𝑖 ]Γ ◦ 𝑞Δ , since the𝑈Δ for all degenerations Γ�Δ cover
𝐷𝑠

Γ. This completes the proof of Proposition 4.4.

4.3. Push-pull comparison

Let Γ ∈ LG𝐿 (𝐵) be a level graph. Several recursive computations in the sequel are performed on the
level strata 𝐵 [𝑖 ]

Γ , and we want to transfer the result via 𝑝 [𝑖 ]-pullback and 𝑐Γ-pushforward to 𝐷Γ. This
section provides the basic relations in this push-pull procedure. The degree of 𝑐Γ seems difficult to
compute. In applications, we only need the following relative statement.

Lemma 4.5. The ratio of the degrees of the projections in Proposition 4.4 is

deg(𝑝Γ)
deg(𝑐Γ)

=
𝐾Γ

|Aut(Γ) | ℓΓ
. (30)

Proof. The degrees can be computed at the generic point, where both maps factor through 𝑞Γ. Using the
notation introduced in Section 3.4, we find that the degree of 𝑝Γ is the number of equivalence classes of
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prong-matchings, which is𝐾Γ/[𝑅Γ : TwΓ] by (21). The degree of 𝑐Γ is the index [TwΓ : Tw𝑠
Γ] · |Aut(Γ) |.

The claimed equality

deg(𝑝Γ)
deg(𝑐Γ)

=
1

|Aut(Γ)
𝐾Γ

[𝑅Γ : Tw𝑠
Γ]

=
𝐾Γ

|Aut(Γ) | ℓΓ
(31)

follows from the definition of the simple twist group. �

Next we compare codimension 1 boundary classes on the strata 𝐷Γ ∈ LG𝐿 (𝐵) and on their level strata
𝐵 [𝑖 ]
Γ to pull back tautological relations. We use the symbol [𝐷Γ] to denote the fundamental class of the

substack of 𝐵 parametrising multi-scale differentials compatible with a degeneration of Γ. Let 𝑖 ∈ Z≤0.
Consider a graph Δ ∈ LG1 (𝐵

[𝑖 ]
Γ ) defining a divisor in 𝐵 [𝑖 ]

Γ . We aim to compute its pullback to 𝐷𝑠
Γ

and the push forward to 𝐷Γ and to 𝐵. Recall that in 𝐷𝑠
Γ the edges of Γ have been labeled once and for

all (we write Γ† for this labeled graph) and that the level strata 𝐵 [𝑖 ]
Γ inherit these labels. Consequently,

there is a unique graph Δ̂† that is a degeneration of Γ† and such that extracting the levels i and 𝑖 − 1 of
Δ̂† equals Δ . The resulting unlabeled graph will simply be denoted by Δ̂ . (Recall from Remark 3.2 that
𝛿�
(−𝑖+1) (Δ̂) = Γ.) On the other hand, the procedure of glueing in and forgetting labels is not injective.

For a fixed labeled graph Γ†, we denote by 𝐽 (Γ†, Δ̂) the set of Δ ∈ LG1 (𝐵
[𝑖 ]
Γ ) such that Δ̂ is the result

of that procedure. Obviously the graphs in 𝐽 (Γ†, Δ̂) differ only by the labeling of their half-edges.

Lemma 4.6. The cardinality of 𝐽 (Γ†, Δ̂) is determined by

|𝐽 (Γ†, Δ̂) | · |Aut(Δ̂) | = |Aut(Δ) | · |Aut(Γ) | .

Proof. Consider the map 𝜑 : Aut(Δ̂) → Aut(Γ) induced by the undegeneration 𝛿�
(−𝑖+1) of the (−𝑖 +1)th

level passage of Δ̂ . For an element in the kernel, the graph Γ is fixed, so we may as well label it. Thanks
to these labels, extraction of the levels i and 𝑖−1 now defines a graph Δ ∈ LG1(𝐵

[𝑖 ]
Γ ), and the restriction

map Ker(𝜑) → Aut(Δ) is an isomorphism. To determine the cokernel of 𝜑, we use the labels given by
Γ† and a degeneration Δ̂† labeled except for the edges interior to that pair of levels. After restriction to
the levels i and 𝑖 − 1, the elements in the image of 𝜑 act trivially. The resulting bijection of Coker(𝜑)
and 𝐽 (Γ†, Δ̂) proves the result. �

We now determine the multiplicities of the push-pull procedure. Recall from equation (22) the
definition of ℓΓ, 𝑗 for 𝑗 ∈ Z≥1.

Proposition 4.7. For a fixed Δ ∈ LG1(𝐵
[𝑖 ]
Γ ), the divisor classes of 𝐷Δ̂ and the clutching of 𝐷Δ are

related by

|Aut(Δ̂) |
|Aut(Δ) | |Aut(Γ) |

· 𝑐∗Γ [𝐷Δ̂ ] =
ℓΔ

ℓΔ̂ ,−𝑖+1
· 𝑝 [𝑖 ],∗

Γ [𝐷Δ ] (32)

in CH1(𝐷𝑠
Γ) and consequently by

|Aut(Δ̂) |
|Aut(Γ) |

· ℓΔ̂ ,−𝑖+1 · [𝐷Δ̂ ] =
|Aut(Δ) |
deg(𝑐Γ)

· ℓΔ · 𝑐Γ,∗
(
𝑝 [𝑖 ],∗
Γ [𝐷Δ ]

)
(33)

in CH1(𝐷Γ).

Proof. If suffices to show the first equation, and then the second follows by taking 𝑐Γ,∗. Since the two
sides are supported on the same set, it suffices to verify the multiplicities. Since near the divisors under
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consideration both sides are pullbacks via 𝑞Δ̂ , this can be done by computing the ramification orders of
the finite maps 𝑐Δ̂Γ and 𝑝Δ̂Γ over the divisor 𝐷Δ̂ and over �̃�Δ = 𝐷Δ ×

∏
𝑗≠𝑖 𝐵

[ 𝑗 ]
Γ , respectively.

We start with 𝑐Δ̂Γ . There, passing to the equivalence relation by the torus 𝑇 𝑠Γ gives a covering of
degree [TwΓ : Tw𝑠

Γ], both at a generic point and over 𝐷Δ̂ . Adding the markings on the edges of Γ gives
|Aut(Γ) | additional choices at a generic point. Over 𝐷Δ̂ , only the automorphism in the image of the map
𝜑 (as in the proof of Lemma 4.6) can be rigidified by adding the marking. This image has cardinality
|Aut(Δ̂) |/|Aut(Γ) |, and thus the ramification order is the reciprocal of the factor on the left-hand side
of equation (32).

Next we consider the map 𝑝Δ̂Γ . Since in
∏

𝑗 𝐵
[ 𝑗 ]
Γ and thus also on �̃�Δ the half-edges that form the

edges of Γ are labelled, graph automorphisms do not contribute to branching. However, after adding the
prong-matching for Γ, the orbits of the (−𝑖 + 1)st component of the integer subgroup Z𝐿+1 ⊂ C𝐿+1 of
the level rotation torus change. In �̃�Δ (and in 𝐷Δ ), the orbit has size ℓΔ , while in 𝐷𝑠

Γ, the orbit has size
ℓΔ̂ ,−𝑖+1 since the prongs of edges of Δ̂ are acted on, too. Since this component of the level rotation torus
is not present at a generic point and since all other components have the same effect at a generic point
and over �̃�Δ , we conclude that the ramification order is the reciprocal of the factor on the right-hand
side of equation (32). �

Next we compare various versions of the 𝜉-class on boundary strata. A first definition is by a local
description. Consider a level 𝑖 ∈ {0, . . . ,−𝐿} of a boundary stratum 𝐷Γ, and recall that it is a moduli
space of multi-scale differentials compatible with a degeneration of Γ. We define the line bundle
O[𝑖 ]

Γ (−1) on 𝐷Γ as follows. On open sets where Γ does not degenerate further, it is generated by the ith
component 𝜂 (𝑖) of the multi-scale differential. If Γ degenerates to Γ1, the level i splits up into an interval
i to 𝑖 − 𝑘 of levels, and then the local generator of O[𝑖 ]

Γ (−1) is the multi-scale component 𝜂 (𝑖) for the
top of these levels. We let 𝜉 [𝑖 ]Γ = 𝑐1 (O[𝑖 ]

Γ (−1)) and write 𝜉�Γ for the top-level contribution.

Remark 4.8. Since stable differentials on a boundary stratum are zero on all levels apart from the top
one, we have 𝜉�Γ = 𝜉 |𝐷Γ .

Proposition 4.9. The first Chern classes of the tautological bundles on the levels of a boundary divisor
are related by

𝑐∗Γ 𝜉
[𝑖 ]
Γ = 𝑝 [𝑖 ],∗

Γ 𝜉
𝐵

[𝑖 ]
Γ

in CH1(𝐷𝑠
Γ) . (34)

Proof. Comparing local generators, we obtain a collection of isomorphisms

𝑐Δ ,∗Γ O
𝐵 [𝑖 ]
Γ (−1) � (𝑝Δ , [𝑖 ]Γ )∗ O[𝑖 ]

Γ (−1)

compatible with restrictions to undegenerations. The 𝑞Δ -pullback of this collection of maps gives the
isomorphism on 𝐷𝑠

Γ, and then we take the first Chern class. �

We will continue the study of the tautological ring in Sections 7 and 8, using local descriptions near
the boundary introduced along with Section 6.

5. The structure of the boundary

In this section, we show that the nonhorizontal boundary divisors 𝐷Γ are smooth (as stacks). More
generally, we show that if a collection of nonhorizontal divisors intersects, then there is a unique order
on this collection such that the ith divisor appear as the ith 2-level undegeneration of an intersection
point.

In the sequel, it will be convenient to assume that the 2-level graphs have been numbered once and
for all, say as LG1 (B) = {Γ1, . . . , Γ𝑀 }. Note that the intersection of two divisors, say 𝐷Γ1 and 𝐷Γ2 ,
consists a priori of the sublocus 𝐷12 of unions of 𝐷Λ, for Λ ∈ LG2(𝐵) with 𝛿1 (Λ) = Γ1 and 𝛿2 (Λ) = Γ2,
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and the sublocus 𝐷21, which is the union of 𝐷Λ for Λ ∈ LG2(𝐵) with 𝛿1 (Λ) = Γ2 and 𝛿2 (Λ) = Γ1. The
notation generalises to any number of levels. We define the suborbifold

𝐷𝑖1 ,...,𝑖𝐿 ⊆

𝐿⋂
𝑗=1

𝐷Γ𝑖 𝑗
(35)

consisting of all 𝐷Λ, with Λ ∈ LG𝐿 (𝐵) such that 𝛿 𝑗 (Λ) = Γ𝑖 𝑗 for all 𝑗 = 1, . . . , 𝐿, and we refer to this
by the ordered set [𝑖1, . . . , 𝑖𝐿], called the profile of the boundary stratum. We denote by 𝒫 = 𝒫(𝐵) the
set of profiles of B and by 𝒫𝐿 those of length L. The language of profiles is used mainly in this section
and then again in Theorem 9.10, while elsewhere we usually work with the set of level graphs. The sage
package diffstrata makes full use of the notion of profiles and the following proposition.

Proposition 5.1. If ∩𝐿
𝑗=1𝐷Γ𝑖 𝑗

is not empty, there is a unique ordering 𝜎 ∈ Sym𝐿 on the set 𝐼 =
{𝑖1, . . . , 𝑖𝐿} of indices such that

𝐷𝜎 (𝐼 ) =
𝐿⋂
𝑗=1

𝐷Γ𝑖 𝑗
.

Moreover, if 𝑖𝑘 = 𝑖𝑘′ for a pair of indices 𝑘 ≠ 𝑘 ′, then 𝐷𝑖1 ,...,𝑖𝐿 = ∅.

Remark 5.2. In general, the intersection of boundary divisors 𝐷𝜎 (𝐼 ) is not irreducible: that is, it consists
of boundary strata associated to different enhanced level graphs; see for example the 3-level graphs in
Figure 1.

The preceding proposition also gives a useful relation. Suppose two divisors 𝐷Γ1 and 𝐷Γ2 meet in
a boundary stratum 𝐷Δ . Two situations may occur. Either 𝛿1(Δ) = Γ1 and 𝛿2 (Δ) = Γ2 or vice versa.
In the first situation, Δ arises from degenerating the lower level of Γ1. We phrase this by saying that Γ2
goes under Γ1 and write Γ2 ≺ Γ1. A priori, this notion might depend on the enhanced level graph Δ .
But the preceding proposition implies that it does in fact not depend on Δ .

The proof of Proposition 5.1 uses dimension estimates and the following lemma. We define

𝑑 [𝑝]
Λ = dim(𝐵 [𝑝]

Λ ) for all Λ ∈ LG𝐿 (𝐵) ,

where 𝐵 [𝑝]
Λ is the projectivised substratum at level 𝑝 ∈ {0, . . . ,−𝐿} of 𝐷Λ defined in Proposition 4.4.

Note that the sum
∑−𝐿

𝑝=0(𝑑
[𝑝]
Λ +1) = 𝑁 = 1+dim(𝐵) is the unprojectivised dimension of the total stratum.

Lemma 5.3. The dimensions of the levels of a boundary stratum 𝐷Λ and the boundary divisor 𝐷 𝛿𝑘 (Λ)

given by its kth undegeneration are related by

𝑑 [0]
𝛿𝑘 (Λ)

= 𝑘 − 1 +

𝑘−1∑
𝑝=0

𝑑 [−𝑝]
Λ , 𝑑 [−1]

𝛿𝑘 (Λ)
= 𝐿 − 1 − 𝑘 +

𝐿−1∑
𝑝=𝑘

𝑑 [−𝑝]
Λ .

Proof. This follows directly from the description of undegeneration; see [BCGGM3]. �

Proof of Proposition 5.1. Assume that, after reordering, ∩𝐿
𝑖=1𝐷𝑖 is not empty and 𝐷Λ is a component

of 𝐷1,...,𝐿 . Assume furthermore that there is a permutation 𝜎 ∈ 𝑆 𝑗 such that 𝐷𝜎 (1) ,...,𝜎 (𝐿) also is
nonempty, containing a component 𝐷Λ𝜎 . Now, by definition,

𝛿1(Λ
𝜎) = 𝛿𝜎 (1) (Λ) = 𝐷Γ𝜎 (1) .
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By Lemma 5.3, we can then write the dimension of the top component of 𝐷Γ1 and 𝐷Γ𝜎 (1) in two different
ways, namely

𝑑 [0]
Γ1

= 𝑑 [0]
Λ = 𝜎−1(1) − 1 +

𝜎−1 (1)−1∑
𝑝=0

𝑑 [−𝑝]
Λ𝜎

𝑑 [0]
Γ𝜎 (1)

= 𝑑 [0]
Λ𝜎 = 𝜎(1) − 1 +

𝜎 (1)−1∑
𝑝=0

𝑑 [−𝑝]
Λ .

By substituting the first expression into the second one, we obtain

𝑑 [0]
Λ𝜎 = 𝜎(1) − 1 + 𝜎−1(1) − 1 +

𝜎−1 (1)−1∑
𝑝=0

𝑑 [−𝑝]
Λ𝜎 +

𝜎 (1)−1∑
𝑝=1

𝑑 [−𝑝]
Λ ,

which simplifies to

0 = 𝜎(1) − 1 + 𝜎−1(1) − 1 +

𝜎−1 (1)−1∑
𝑝=1

𝑑 [−𝑝]
Λ𝜎 +

𝜎 (1)−1∑
𝑝=1

𝑑 [−𝑝]
Λ .

This implies that 𝜎(1) = 1. By induction, we get that 𝜎 = id.
To prove the second statement, assume by contradiction that the orbifold 𝐷𝑖1 ,...,𝑖𝐿 is nonempty, with

𝑖1 = 𝑖𝑘 for 1 < 𝑘 ≤ 𝐿. Let 𝐷Λ be a component of 𝐷𝑖1 ,...,𝑖𝐿 . Then by Lemma 5.3, we get

𝑑 [0]
𝛿1 (Λ)

= 𝑑 [0]
Λ = 𝑘 − 1 +

𝑘−1∑
𝑝=0

𝑑 [−𝑝]
Λ .

This implies that 𝑘 = 1, which is already a contradiction. �

6. Euler sequence for strata of Abelian differentials

The characteristic classes of the tangent bundle to the projective space P(𝑉) of a vector space V are
conveniently computed using the Euler sequence

0 −→ Ω1
P(𝑉 ) −→ OP(𝑉 ) (−1)⊕ dim(𝑉 ) ev

−→ OP(𝑉 ) −→ 0 . (36)

Our main computational tool uses the affine structure of strata to provide a similar Euler sequence on
the compactified strata 𝐵 = PΞM𝑔,𝑛 (𝜇).

Theorem 6.1. There is a vector bundle K on 𝐵 that fits into an exact sequence

0 −→ K −→ (H1
rel)

∨ ⊗ O𝐵 (−1) ev
−→ O𝐵 −→ 0 , (37)

where H1
rel is the Deligne extension of the relative cohomology such that the restriction of K to the

interior B is the cotangent bundle Ω1
𝐵.

An explicit description of local generators of K is part of the proof in this section. We will set up the
tools to describe K intrinsically in Theorem 9.2.

We will define the evaluation map ev in the course of the construction. The construction happens first
over the open part and then the finite covering charts that exhibit PΞM𝑔,𝑛 (𝜇) locally as a quotient stack.
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6.1. Over the open stratum

Recall that moduli spaces of Abelian differentials have an affine structure given by period coordinates.
Concretely, for a pointed flat surface (𝑋, 𝜔, z), we denote by 𝑍 = {𝑧1, . . . , 𝑧𝑟+𝑠} the zeros and by
𝑃 = {𝑧𝑟+𝑠+1, . . . , 𝑧𝑛} the poles among the marked points, thus including marked ordinary points in Z.
By [HM79] or [Vee86] (see also [BCGGM2]), integration of the one-form along relative homology
classes is a local biholomorphism and thus provides local charts of ΩM𝑔,𝑛 (𝜇) in the vector space

𝑉 = 𝑉(𝑋,𝜔,z) � H1(𝑋 \ 𝑃, 𝑍;C) .

The changes in charts are linear with Z-coefficients. This makes the projectivisation B into a
(PGL𝑁 , P

𝑁−1)-manifold.
We denote by H1

rel the local system on B with fibre the relative cohomology 𝑉 = H1(𝑋 \ 𝑃, 𝑍;C)
and recall that 𝑁 = dim(𝑉) = dim(𝐵) + 1. Recall that the fibre of O𝐵 (−1) at the point (𝑋, 𝜔, z) is the
complex one-dimensional vector space generated by 𝜔. We thus obtain the evaluation map

ev: (H1
rel)

∨ ⊗ O𝐵 (−1) → O𝐵, 𝛾 ⊗ 𝜔 ↦→

∫
𝛾
𝜔

by integrating the one-form.

Proposition 6.2. There is a short exact sequence of vector bundles on B

0 −→ Ω1
𝐵 −→ (H1

rel)
∨ ⊗ O𝐵 (−1) ev

−→ O𝐵 −→ 0

that locally on a chart P𝑉 is given by the standard Euler sequence.

Proof. Let 𝜋 : �̃� → 𝐵 be the universal cover of B. Consider the developing map dev: �̃� −→ P(𝑉),
which is a 𝜋1 (𝐵)-equivariant local isomorphism. We use the sequence on the standard charts of P(𝑉),
and we claim that its dev-pullback descends to an exact sequence B.

To justify this, consider paths {𝛼𝑖}𝑁𝑖=1 that form a local frame of (H1
rel)

∨. Let {𝑎𝑖}𝑁𝑖=1 be the correspond-
ing local coordinates and {d𝑎𝑖} the local frame of Ω1

P(𝑉 )
. On the open subset 𝑈𝑘 = {𝑎𝑘 ≠ 0} ⊆ P(𝑉),

the monomorphism of the Euler sequence in equation (36) is given by

d𝑎𝑖 ↦→
(
𝛼𝑖 −

𝑎𝑖
𝑎𝑘

𝛼𝑘

)
⊗ 𝜔, 𝑖 = 1, . . . , �̂� , . . . , 𝑁 , (38)

where 𝜔 is the representative of the line bundle with
∫
𝛼𝑘
𝜔 = 1. The pullback sequence gives rise to an

isomorphism of short exact sequences

0 dev∗
(
Ω1
P(𝑉 )

)
dev∗(𝑉∨ ⊗ OP(𝑉 ) (−1)) dev∗(OP(𝑉 ) ) 0

0 𝜋∗(Ω1
𝐵) 𝜋∗(H1

rel)
∨ ⊗ 𝜋∗(O𝐵 (−1)) 𝜋∗(O𝐵) 0

�

ev

� �

ev

Each vector bundle appearing is provided with a canonical 𝜋1 (𝐵) action, and the vertical maps are
isomorphisms of 𝜋1 (𝐵)-vector bundles. The first vertical map is an isomorphism since the developing
map is a local isomorphism and 𝜋∗ (Ω𝑖

𝐵) � Ω𝑖
�̃�

for every i. Since the evaluation map is 𝜋1 (𝐵)-equivariant,
so is the kernel. Hence the short exact sequence passes to the quotient by the action of 𝜋1 (𝐵) and yields
the claim. �
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6.2. Coordinates near the boundary

Coordinates near the boundary of the moduli space ΞM𝑔,𝑛 (𝜇) are perturbed period coordinates
([BCGGM3, Section 11] or [CMZ19, Section 3]) that we now illustrate in typical cases that exhibit all
the relevant features. The reader is encouraged to read this subsection in parallel with the subsequent
one, where the Euler sequence is extended step by step to these boundary strata.

Case 1: only horizontal nodes
Suppose that the level graph Γ consists of 𝑘 ≥ 1 horizontal edges only, all of which must necessarily be
nonseparating. At a smooth point near 𝐷Γ, the relative homology can be grouped into

• the vanishing cycles 𝛼𝑖 for 𝑖 = 1, . . . , 𝑘 around the nodes,
• loops 𝛽𝑖 symplectically dual to 𝛼𝑖 , and
• paths 𝛾1, . . . , 𝛾𝑁−2𝑘 completing the above to a basis of relative homology.

Coordinates in a chart of ΞM𝑔,𝑛 (𝜇) near 𝐷Γ are given by the periods 𝑐𝑖 =
∫
𝛾𝑖
𝜔, by 𝑎𝑖 =

∫
𝛼𝑖
𝜔 and

by the exponentiated period ratio 𝑞𝑖 = exp(2𝜋𝑖𝑏𝑖/𝑎𝑖), where 𝑏𝑖 =
∫
𝛽𝑖
𝜔. To provide charts of the

projectivisation 𝐵, we fix 𝑎1 to be identically one.

Case 2: two levels, only vertical nodes
For concreteness, we suppose that in the 2-level graph Γ ∈ LG1 (𝐵) there is only one vertex on each
level and for concreteness, say, with three edges 𝑒1, 𝑒2, 𝑒3 joining the two vertices. Suppose moreover
that there is no marked zero on the lower level. (If there is such a marked point on each level, the loops
𝛽𝑖 below have to be replaced by relative periods across the level, leading to similar constructions.) At a
point close to 𝐷Γ, the relative homology can be grouped into

• loops 𝛽1 through 𝑒1 and 𝑒3 and 𝛽2 through 𝑒2 and 𝑒3,
• loops 𝛼1 and 𝛼2, the vanishing cycles corresponding to 𝑒1 and 𝑒2,
• paths 𝛾 [0]

1 , . . . , 𝛾 [0]
𝑑0

forming a basis of the relative homology on the top level,
• loops 𝛾 [−1]

1 , . . . , 𝛾 [−1]
𝑑1

forming a basis of the homology on the bottom level,

for some 𝑑0, 𝑑1 ∈ Z; see also Figure 3.
On the other hand, the surfaces on the boundary stratum 𝐷Γ have a basis of relative homology that

can be grouped into

• relative periods 𝛽𝑖 joining the marked points at the upper ends of the edge 𝑒𝑖 to the upper end of the
edge 𝑒3 for 𝑖 = 1, 2,

• loops �̃�𝑖 around the poles at the lower ends of 𝑒𝑖 for 𝑖 = 1, 2,

Figure 3. Cycles in Case 2, near the boundary stratum and at the boundary stratum.
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• paths �̃� [0]
1 , . . . , �̃� [0]

𝑑0
forming a basis of the relative homology on the top level,

• loops �̃� [−1]
1 , . . . , �̃� [−1]

𝑑1
forming a basis of the homology on the bottom level.

From this description it is apparent that 𝑑𝑖 is related to the projectivised and unprojectivised dimen-
sions of the level strata previously introduced by 𝑑𝑖 = 𝑁 [𝑖 ]

Γ − 2 = 𝑑 [𝑖 ]
Γ − 1.

The main statement about perturbed period coordinates [BCGGM3, Section 11] is that on the one
hand, coordinates near the boundary are given by the periods on the boundary surfaces and on the
other hand, periods with and without tildes are nearly the same after appropriate rescaling. To make this
statement concrete, let 𝜅𝑖 be the enhancements corresponding to the edges 𝑒𝑖 , and let ℓ = lcm(𝜅1, 𝜅2, 𝜅3).
Near our current boundary divisor 𝐷Γ, the universal family of curves has a (universal) family of
differentials 𝜔 and ℓ is chosen so that rescaling 𝜂 (−1) = 𝑡−ℓ𝜔 (−1) is holomorphic and generically
nonzero for a coordinate with 𝐷Γ = {𝑡 = 0} locally ([BCGGM3, Section 12]). At each point 𝑝 ∈ 𝐷Γ,
we find a nonzero 𝜂-period on the lower level, say the period along �̃� [−1]

1 , and choose t and thus 𝜂 so
that

∫
𝛾 [−1]

1
𝜂 = 1.

A chart of ΞM𝑔,𝑛 (𝜇) near p is then nearly the product of a neighbourhood of the irreducible
components (𝑋0, 𝜔) and (𝑋1, 𝜂) of the fibre over p in their respective strata of meromorphic differentials.
Here, ‘nearly’ refers to the fact that, because of prong-matchings; it is an ℓ-fold cover fully ramified
over 𝑡 = 0, and moreover, because of enhanced level graph automorphisms, it is a quotient stack by the
subgroup G of 𝑆3 that exchanges edges with the same enhancement.

Coordinates on this chart are then given by t and the periods

𝑏𝑖 =
∫
𝛽𝑖

𝜂 (0) (𝑖 = 1, 2), 𝑟𝑖 =
∫
𝛼𝑖

𝜂 (−1) (𝑖 = 1, 2),

𝑐𝑖
[0] =

∫
𝛾 [0]
𝑖

𝜂 (0) (𝑖 = 1, . . . , 𝑑0), 𝑐𝑖
[−1] =

∫
𝛾 [−1]
𝑖

𝜂 (−1) (𝑖 = 2, . . . , 𝑑1) .

To provide charts of the projectivisation 𝐵, we simply fix one of the periods on the top level, say �̃� [0]
1 ,

to be identically one. (If 𝑑0 = 0, we take �̃�1 ≡ 1 instead.)
In each sector near the boundary, the perturbed period coordinates are related to the 𝜔-periods by

𝑏𝑖 :=
∫
𝛽𝑖

𝜔 ∼ 𝑏𝑖 𝑎𝑖 :=
∫
𝛼𝑖

𝜔 = 𝑡ℓ𝑟𝑖

𝑐 [0]𝑖 :=
∫
𝛾
[0]
𝑖

𝜔 ∼ 𝑐𝑖
[0] , 𝑐 [−1]

𝑖 :=
∫
𝛾
[−1]
𝑖

𝜔 = 𝑡ℓ𝑐𝑖
[−1] ,

(39)

where ∼ indicates that the difference is 𝑂 (𝑡ℓ). The difference stems (for 𝑐 [0]𝑖 ) from the fact that the 𝜔
in the universal family is not just the deformation of the twisted differential (𝜂 (0) , 𝜂 (−1) ) in the fibre
over p in its product moduli space, but blurred by some modification differentials. For the 𝑏𝑖 , there is
an additional error term in the same order of magnitude due to a choice of a nearby base point in the
plumbing construction.

Case 3: two levels, additional horizontal nodes
This is a mixture of the previous two cases. To see the effects, we assume that we are in the situation
of Case 2, with one horizontal node and thus additionally a pair of cycles 𝛼 [ 𝑗 ] and 𝛽 [ 𝑗 ] with 𝑗 = 0 or
𝑗 = −1 depending on the level where the horizontal node is attached.We may then uniformly write the
periods 𝑎 [ 𝑗 ] =

∫
𝛼 [ 𝑗 ] 𝜂 ( 𝑗) and 𝑏 [ 𝑗 ] =

∫
𝛽 [ 𝑗 ] 𝜂 ( 𝑗) . The additional coordinates are 𝑎 [ 𝑗 ] and the exponentiated

period ratio 𝑞 [ 𝑗 ] = exp(2𝜋𝑖𝑏 [ 𝑗 ]/𝑎 [ 𝑗 ] ).
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Case 4: three levels, three nodes
This is the generalisation of the triangle case (Figure 1 left), where each edge can possibly be replaced
by multiple edges: say, 𝑘𝑖 edges instead of a single edge 𝑒𝑖 . We include the case 𝑘𝑖 = 0 (e.g., if 𝑒3 is the
long edge in the triangle case, then Figure 1 right represents a situation with 𝑘3 = 0). Let ℓ1 be the lcm
of the enhancements on the edges starting at level 0 and ℓ2 the lcm of the edges ending at level −2, as
defined in equation (22).

A point 𝑝 ∈ 𝐷Γ on the corresponding divisor is given by meromorphic differential forms (𝑋(0) , 𝜂 (0) ),
(𝑋(−1) , 𝜂 (−1) ), (𝑋(−2) , 𝜂 (−2) ) together with prong-matchings. We denote by �̃�

[ 𝑗 ]
𝑖 for 𝑗 = 0,−1,−2 and

𝑖 = 1, . . . , 𝑁 𝑗 paths of the relative homology of the surfaces. (There are no global residue conditions in
this example.) We may suppose that

∫
𝛾

[ 𝑗 ]
1

𝜂 ( 𝑗) = 1 for 𝑗 = 0,−1,−2 to fix the scale of the 𝜂 ( 𝑗) on the
lower level and for 𝑗 = 0 to fix an open subset of the projectivisation.

A chart of ΞM𝑔,𝑛 (𝜇) near p is then nearly the product of a neighbourhood of the irreducible
components (𝑋( 𝑗) , 𝜂 ( 𝑗) ), where 𝑗 = 0,−1,−2 of the fibre over p in their respective strata of meromorphic
differentials. Slightly abusing notation, we also call the universal differentials over these neighbourhoods
𝜂 ( 𝑗) . A coordinate system for the neighbourhood of 𝑝 ∈ 𝐵 is given by functions 𝑡1 and 𝑡2 that correspond
to rescalings of the two levels together with the functions �̃�

[ 𝑗 ]
𝑖 =

∫
𝛾

[ 𝑗 ]
𝑖

𝜂 ( 𝑗) for 𝑗 = 0,−1,−2 and
𝑖 = 2, . . . , 𝑁 𝑗 . In particular, 𝑁0 + 𝑁−1 + 𝑁−2 = 𝑁 .

To give the relation of these coordinates to nearby periods, note that the universal differential 𝜔 over
ΞM𝑔,𝑛 (𝜇) has by construction the property that the periods of 𝜔 on the bottom level agree with those
of 𝑡ℓ1

1 𝑡
ℓ2
2 𝜂 (−2) , the periods on level −1 of 𝜔 differ from those of 𝑡ℓ1

1 𝜂 (−1) by functions that decay like 𝑡ℓ1
1 𝑡

ℓ2
2

and the periods on the top level of 𝜔 differ from those of 𝜂 (0) by functions that decay like 𝑡ℓ1
1 . Here, as

we have illustrated in Case 2, the loops around the nodes corresponding to the 𝑘1 + 𝑘2 + 𝑘3 edges can be
treated as residues and thus as periods on the level at the lower end of the edge, while the loops through
those edges (denoted previously by 𝛽𝑖) can be treated as relative periods on the highest level that the
loop touches.

6.3. The Euler sequence on the Deligne extension

Recall that the Deligne extension of a local system on B is a canonical extension to a vector bundle
on 𝐵 admitting an extension of the Gauss-Manin connection to a connection with regular singular
points ([Del70]). In this section, we want to extend the Euler sequence across the boundary to construct
equation (37). For this purpose, we exhibit local generators of the Deligne extension H1

rel of H1
rel, extend

the map ev and determine its kernel in each of the cases as we discussed perturbed period coordinates
in Section 6.2, adopting notation from there.

Case 1: only horizontal nodes
A basis of (H1

rel)
∨ consists of the cycles 𝛼1, . . . , 𝛼𝑘 and 𝛾1, . . . , 𝛾𝑁−2𝑘 that extend across 𝐷Γ, together

with the linear combinations

𝛽𝑖 = 𝛽𝑖 −
1

2𝜋𝑖
log(𝑞𝑖)𝛼𝑖

designed to be monodromy invariant. Since the family of one-forms 𝜔 extends across 𝐷Γ to a family of
stable differentials, the definition

ev(𝛽𝑖 ⊗ 𝜔) =
∫
𝛽𝑖

𝜔 −
1

2𝜋𝑖
log(𝑞𝑖)

∫
𝛼𝑖

𝜔 = 𝑏𝑖 −
1

2𝜋𝑖
log(𝑞𝑖)𝑎𝑖 = 0
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extends the definition of ev in the interior and gives a well-defined holomorphic function. To check the
surjectivity of ev, we can use any of the periods that extend across 𝐷Γ. We claim that the kernel of ev
is on the chart U with 𝑎1 ≡ 1

K =
〈
𝑑𝑞1/𝑞1, 𝑑𝑎2, 𝑑𝑞2/𝑞2, . . . , 𝑑𝑎𝑘 , 𝑑𝑞𝑘/𝑞𝑘 , 𝑑𝑐1, . . . , 𝑑𝑐𝑁−2𝑘

〉
(40)

as O𝑈 -module. In fact, using the definition in equation (38) in the interior, one checks that

𝑑𝑞𝑖/𝑞𝑖 = 𝑑 log(𝑞𝑖) = 𝑑

(
2𝜋𝑖

𝑏𝑖
𝑎𝑖

)
↦→

2𝜋𝑖
𝑎𝑖

(
𝛽𝑖 −

𝑏𝑖
𝑎𝑖
𝛼𝑖

)
⊗ 𝜔 (41)

is mapped to a local generator of (H1
rel)

∨ ⊗ O𝐵 (−1) since the functions 𝑎𝑖 do not vanish near such a
boundary point. Moreover, 𝑑𝑞𝑖/𝑞𝑖 is mapped to the kernel of ev by the preceding calculation. For the
other elements, these claims follow as in the interior.

Case 2: two levels, only vertical nodes
We first work in the special case near a boundary divisor 𝐷Γ, where Γ has three edges as in the case
discussed in Section 6.2. A basis of (H1

rel)
∨ consists of the cycles 𝛼1, 𝛼2, 𝛾

[0]
1 , . . . , 𝛾 [0]

𝑑0
, 𝛾 [−1]

1 , . . . , 𝛾 [−1]
𝑑1

that extend across 𝐷Γ, together with the linear combinations

𝛽𝑖 = 𝛽𝑖 − log(𝑡) (𝛼𝑖 + (𝛼1 + 𝛼2)) (𝑖 = 1, 2) (42)

that are monodromy invariant since turning once around the divisor acts by simultaneous Dehn-twists
around the core curves of the three plumbing cylinders. Sending cycles that extend across 𝐷Γ to their
𝜔-integrals and letting

ev(𝛽𝑖 ⊗ 𝜔) =
∫
𝛽𝑖

𝜔 − log(𝑡)
(∫

𝛼𝑖

𝜔 +

∫
𝛼1+𝛼2

𝜔
)

(𝑖 = 1, 2)

extends the definition of ev in the interior and is well-defined since the function

log(𝑡)
(
2
∫
𝛼𝑖

𝜔 +

∫
𝛼1+𝛼2

𝜔
)
= 𝑂 (𝑡ℓ log(𝑡))

is bounded near 𝐷Γ and
∫
𝛽𝑖
𝜔 →

∫
𝛽𝑖
𝜔 is bounded as well.

Obviously, on the chart with 𝑐 [0]1 = 1, the kernel of ev is

Ker(ev) =
〈
𝛾 [0]
𝑖 − 𝑐 [0]𝑖 𝛾 [0]

1 (𝑖 = 2, . . . , 𝑑0); 𝛼𝑖 − 𝑎𝑖𝛾
[0]
1 (𝑖 = 1, 2);

𝛾 [−1]
𝑖 − 𝑐 [−1]

𝑖 𝛾 [0]
1 (𝑖 = 1, . . . , 𝑑1); 𝛽𝑖 − �̂�𝑖𝛾

[0]
1 (𝑖 = 1, 2)

〉
,

(43)

where �̂�𝑖 is the integral of 𝛽𝑖 . We claim that via the identification of periods in equation (39), this kernel
is precisely the image of

K =
〈
𝑑�̃� [0]

2 , . . . , 𝑑�̃� [0]
𝑑0

, 𝑑�̃�1, 𝑑�̃�2, 𝑡
ℓ𝑑𝑡/𝑡, 𝑡ℓ𝑑�̃� [−1]

2 , . . . , 𝑡ℓ𝑑�̃� [−1]
𝑑1

, 𝑡ℓ𝑑𝑟1, 𝑡
ℓ𝑑𝑟2,

〉
under the map in equation (38). First, since we used the coordinate �̃� [1]

1 to fix the scaling on the bottom
level, the differential form ℓ𝑡ℓ𝑑𝑡/𝑡 = 𝑑𝑐 [−1]

1 is mapped to 𝛾 [−1]
1 − 𝑐 [−1]

1 𝛾 [0]
1 . Then from equation (39),

we see that 𝑡ℓ𝑑�̃� [−1]
𝑖 is mapped to a linear combination of 𝛾 [−1]

𝑖 − 𝑐 [−1]
𝑖 𝛾 [0]

1 and the previous generator
for any 𝑖 ≥ 2. Similarly, 𝑡ℓ𝑑𝑟𝑖 maps to 𝛼𝑖 − 𝑎𝑖𝛾

[0]
1 and a linear combination of the previous generators.

In the second step, we consider the generators that correspond to top level. The form 𝑑�̃� [0]
𝑖 does not
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quite map to 𝛾 [0]
𝑖 − 𝑐 [0]𝑖 𝛾 [0]

1 because of the presence of modification differentials, but the difference is a
linear combination of the differential of some 𝜂-periods that we have shown already in the first step to
belong to Ker(ev). Similarly, the images of 𝑑𝑏𝑖 and 𝛽𝑖 − �̂�𝑖𝛾

[0]
1 are differentials of periods supported

on the lower level (from equation (39) to compare with 𝑑𝑏𝑖 and from equation (42)).
We now rename and regroup the generators of K in a form that generalises to other level graphs.

Since the 𝛽-periods become relative periods, and since the 𝛼-periods for the edges joining the levels are
simply residues appearing on a lower level, we may name the set of all periods on the top level by �̃� [0]

𝑖 for
1 ≤ 𝑖 ≤ 𝑁0 and those on the bottom level by �̃� [−1]

𝑖 for 1 ≤ 𝑖 ≤ 𝑁1. Then the above argument gives that

K =
〈
𝑑�̃� [0]

2 , . . . , 𝑑�̃� [0]
𝑁0

, 𝑡ℓ𝑑𝑡/𝑡, 𝑡ℓ𝑑�̃� [−1]
2 , . . . , 𝑡ℓ𝑑�̃� [−1]

𝑁1

〉
. (44)

Case 3: two levels, additional horizontal nodes
We mix the conclusion of the two previous cases. If the horizontal node is at the top level, then

K = 〈𝑑�̃� [0]
2 , . . . , 𝑑�̃� [0]

𝑁0
, 𝑑𝑎, 𝑑𝑞/𝑞, 𝑡ℓ𝑑𝑡/𝑡, 𝑡ℓ𝑑�̃� [1]

2 , . . . , 𝑡ℓ𝑑�̃� [1]
𝑁1

〉 , (45)

while in the case of a horizontal node at the bottom level

K = 〈𝑑�̃� [0]
2 , . . . , 𝑑�̃� [0]

𝑁0
, 𝑡ℓ𝑑𝑡/𝑡, 𝑡ℓ𝑑�̃� [−1]

2 , . . . , 𝑡ℓ𝑑�̃� [−1]
𝑁1

, 𝑡ℓ𝑑𝑎, 𝑡ℓ𝑑𝑞/𝑞〉 . (46)

Case 4: three levels, three nodes
Using the same arguments as in Case 2, we can show that the 𝛼 𝑗 -periods corresponding to the edges
joining different levels become residues and that the monodromy-invariant modifications �̂� 𝑗 of the dual
𝛽 𝑗 -periods have ev-images that tend to the 𝛽 𝑗 -integrals. We claim that thus Ker(ev) is the image of

K = 〈𝑑�̃� [0]
2 , . . . , 𝑑�̃� [0]

𝑁0
, 𝑡ℓ1

1 𝑑𝑡1/𝑡1, 𝑡
ℓ1
1 𝑑�̃�

[−1]
2 , . . . , 𝑡ℓ1

1 𝑑�̃�
[−1]
𝑁1

𝑡ℓ1
1 𝑡

ℓ2
2 𝑑𝑡2/𝑡2, 𝑡

ℓ1
1 𝑡

ℓ2
2 𝑑�̃� [−2]

2 , . . . , 𝑡ℓ1
1 𝑡

ℓ2
2 𝑑�̃� [−2]

𝑁2
〉

(47)

under the map in equation (38). We justify this, starting at the bottom level. The differential form

𝑑 (�̃� [−2]
1 ) = 𝑑 (𝑡ℓ1

1 𝑡
ℓ2
2 ) = ℓ2𝑡

ℓ1
1 𝑡

ℓ2
2 𝑑𝑡2/𝑡2 + ℓ1𝑡

ℓ1
1 𝑡

ℓ2
2 𝑑𝑡1/𝑡1 ∈ K ,

since it is mapped to 𝛾 [−2]
1 − 𝑐 [−2]

1 𝛾 [0]
1 , which in analogy with equation (43) belongs to the natural basis

of Ker(ev). Next, the form 𝑑𝑡ℓ1
1 𝑡

ℓ2
2 𝑑�̃�

[−2]
𝑖 map to a linear combination of the elements 𝛾 [−2]

𝑖 − 𝑐 [−2]
𝑖 𝛾 [0]

1
in the natural basis of Ker(ev) and the previous generator.

We next proceed to the middle level. There, the form ℓ1𝑡
ℓ1𝑑𝑡1/𝑡1 is not quite equal to 𝑑 (𝑐 [−1]

1 )

because of the presence of modification differentials. It thus does not quite map to the basis element
𝛾 [−1]
𝑖 − 𝑐 [−1]

𝑖 𝛾 [0]
1 of Ker(ev). But the difference is a combination of elements that we have already

shown to belong to K. As a combination of this form and 𝑑 (�̃� [−2]
1 ), we now have ℓ2𝑡

ℓ1
1 𝑡

ℓ2
2 𝑑𝑡2/𝑡2 ∈ K.

Considering the remaining form 𝑑𝑐 [−1]
𝑖 from periods on the middle level and then all the form 𝑑𝑐 [0]𝑖 for

𝑖 ≥ 2 on the top level identifies the remaining elements listed in K with elements of Ker(ev), up to the
effect of modification differentials, which produce differentials of periods already shown to belong to K.

The notation

𝑡 � 𝑗 � =
𝑗∏

𝑖=1
𝑡ℓ𝑖𝑖 , 𝑗 ∈ N (48)

will be convenient here and in the sequel.
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Proof of Theorem 6.1. Continuing the argument as in the preceding cases, we see that near a point
𝑝 ∈ 𝐷Γ, the elements

• 𝑡 � 𝑗 �𝑑𝑡 𝑗/𝑡 𝑗 , for every level − 𝑗 ,
• the 𝑡 � 𝑗 �-multiples of differential forms associated to periods on level − 𝑗 ,
• 𝑡 � 𝑗 �𝑑𝑞

[− 𝑗 ]
𝑘 /𝑞

[− 𝑗 ]
𝑘 for every horizontal node with parameter 𝑞𝑘 on level − 𝑗

freely generate K. �

7. The normal bundle to boundary strata

In this section, we provide formulas to compute the first Chern class of the normal bundle NΓ = N𝐷Γ

to a boundary divisor 𝐷Γ. We will frequently encounter here and in the sequel the top level correction
line bundle

L�
Γ = O𝐷Γ

( ∑
Δ̂∈LG2 (𝐵)

𝛿2 (Δ̂ )=Γ

ℓΔ̂ ,1𝐷Δ̂

)
(49)

on 𝐷Γ that records all the degenerations of the top level of Γ.

Theorem 7.1. Suppose that 𝐷Γ is a divisor in 𝐵 corresponding to a graph Γ ∈ LG1 (𝐵). Then

𝑐1 (NΓ) =
1
ℓΓ

(
− 𝜉�Γ − 𝑐1(L�

Γ ) + 𝜉
⊥
Γ

)
in CH1(𝐷Γ) . (50)

In case the graph Γ contains an edge e (which is automatic if the ambient stratum parametrises
connected curves but is often not satisfied in the generalisation to higher codimension strata below),
there is an alternative expression for the Chern class of the normal bundle that gives a comparison to
the situation in the moduli space of curves. Let 𝑒± be the half-edges that form the edge e.

Proposition 7.2. The first Chern class of the normal bundle NΓ of a boundary divisor 𝐷Γ is

c1 (NΓ) = −
𝜅𝑒
ℓΓ

(
𝜓𝑒+ + 𝜓𝑒−

)
−

1
ℓΓ

∑
Δ̂∈LGΓ

2,𝑒 (𝐵)

ℓΔ̂ ,𝑎Δ̂ ,Γ
[𝐷Δ̂ ] (51)

as an element of CH1 (𝐷Γ), where LGΓ
2,𝑒 (𝐵) is the set of 3-level graphs in LGΓ

2 (𝐵), where the edge e
goes from level zero to level −2 and 𝑎Δ̂ ,Γ ∈ {1, 2} is the index such that the 𝑎Δ̂ ,Γth undegeneration of Δ̂
is not equal to Γ.

We say that LGΓ
2,𝑒 (𝐵) are the 3-level graphs where the edge e becomes long. We give direct proofs of

both expressions for the normal bundle. The equivalence of the statements follows from an application
of the relation in Proposition 8.2 below.

Proof of Theorem 7.1. We consider over the boundary stratum 𝐷Γ the line bundles L1 = O[0]
Γ (−1) ⊗L�

Γ

and L2 = O[−1]
Γ (−1), where the tautological bundles on the levels have been introduced in Section 4.3.

Roughly, the content of the theorem is that the ratio of local sections of these line bundles is the
function 𝑡ℓΓ1 , which is also the ℓΓth power of a transversal coordinate. For the precise statement, we
compare the cocycles defining the line bundles L−1

1 ⊗ L2 and NℓΓ
Γ .

We start by considering the open subset of 𝐷Γ where Γ does not degenerate further. A local section
of L−1

1 ⊗ L2 is the ratio of two relative differential forms, thus a function on the base, that we may
compute as 𝑢 =

∫
𝛼1
𝜂 (−1) /

∫
𝛼0
𝜂 (0) for some paths 𝛼1 at level −1 and 𝛼0 at level 0. Here 𝛼1 can be taken

as a (usual) relative cycle, and for 𝛼0, we might have to use a path starting and ending at points near
the upper ends of connecting nodes, as in the definition of perturbed period coordinates in [BCGGM3,
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Section 11]. We consider a nearby coordinate patch where now the ratio is �̃� =
∫
�̃�1
𝜂 (−1) /

∫
�̃�0
𝜂 (0) for

some new cycles related to the original ones by a base change 𝛼1 = 𝛼1 + 𝛾1 and 𝛼0 = 𝛼0 + 𝛾0 in the
homology of the upper and lower level subsurfaces, respectively. One computes that

�̃� = 𝑢 ·
1 + 𝑦

1 + 𝑥
, where 𝑥 =

∫
𝛾0

𝜂 (0) /

∫
𝛼0

𝜂 (0) and 𝑦 =
∫
𝛾1

𝜂 (−1) /

∫
𝛼1

𝜂 (−1) .

In particular, these 𝑥, 𝑦 are local functions on the upper- and lower-level strata.
On the other hand, by construction (of the perturbed period coordinates), the ℓΓth power of a

transversal coordinate is given by

𝑡ℓΓ1 = 𝑠 =
∫
𝛼1

𝜂 (−1) /

∫
𝛼0

(𝜂 (0) + 𝜉 (0) ) ,

where 𝜉 (0) is the modification differential at level 0 constructed in [BCGGM3, Section 11] and the 𝛼𝑖
are as above. Again, a nearby coordinate patch is given by �̃� =

∫
�̃�1
𝜂 (−1) /

∫
�̃�0
(𝜂 (0) + 𝜉 (0) ) with cycles as

above. The main point now is that 𝜉0 is divisible by s by construction: its contribution vanishes after
s-derivation and setting 𝑠 = 0, so

𝜕�̃�

𝜕𝑠

���
𝑠=0

=
1 + 𝑦

1 + 𝑥
=
�̃�

𝑢
, (52)

showing that the cocycles from L−1
1 ⊗ L2 and NℓΓ

Γ agree on the subset under consideration.
If the bottom level degenerates, or in the case of horizontal degenerations of Γ, the above claims

remain valid without modification if we take 𝛼1 to be a period that does not go to the lower level. If the
top level degenerates into two levels (without loss of generality, higher codimension degenerations do
not affect the first Chern classes), the above cocycle comparison is valid verbatim if all pairs of level
indices are shifted from (0,−1) to (−1,−2): that is, if we compare the periods of a form on the middle
level with the periods of a form at the bottom level. Since the multi-scale differential on the middle level
is 𝑡

ℓΔ̂ ,1
1 times a multi-scale differential on the top level at the intersection with 𝐷Δ̂ , and since 𝑡

ℓΔ̂ ,1
1 is a

local generating section of L�
Γ , the functions whose ratios we take to get the same cocycle as NℓΓ

Γ are
indeed sections of L1 = O[0]

Γ (−1) ⊗ L�
Γ and L2 as we claimed. �

Sketch of proof of Proposition 7.2. We let 𝑚𝑒 = ℓ(Γ)/𝜅𝑒. In M𝑔,𝑛, consider the divisor 𝐷𝑒 cor-
responding to the single edge e and denote by N𝑒 its normal bundle. With the same symbol, we
denote also the pullback of this normal bundle under the forgetful map 𝐷Γ → 𝐷𝑒. We claim that
(at least outside a subvariety of codimension two) there is a short exact sequence of quasi-coherent
O𝐷Γ -modules

0 −→ N𝑚𝑒

Γ → N𝑒 → QΓ → 0, (53)

where the coherent sheaf QΓ is supported on the set LGΓ
2,𝑒 (𝐵) and this sheaf is given by

QΓ =
⊕

Δ∈LGΓ
2,𝑒 (𝐵)

O𝐷Γ/𝐼
ℓΔ̂ ,𝑎/𝜅𝑒

𝐷Δ̂
, (54)

where 𝑎 = 𝑎Δ̂ ,Γ as above and where 𝐼𝐷Δ̂
is the ideal sheaf of the divisor 𝐷Δ̂ ⊆ 𝐷Γ. This claim obviously

implies the proposition.
To prove it, we use the local description of the universal family over ΞM𝑔,𝑛 (𝜇) given by the

plumbing construction described in Section 12 of [BCGGM3]. At a boundary point that is precisely in
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the intersection of divisors 𝐷Γ𝑖 , we let 𝑚𝑒,𝑖 = ℓΓ𝑖/𝜅𝑒. Then the construction states in particular that the
universal family is constructed using the plumbing fixture

V𝑒 =
{
(𝑢, 𝑣) ∈ Δ2 : 𝑢𝑣 =

𝐿 (𝑒+)∏
𝑖=𝐿 (𝑒−)

𝑡
𝑚𝑒,𝑖

𝑖

}
at the node corresponding to the edge e, where u and v are coordinates on the surfaces at the upper
and lower ends of the edge and 𝐿(𝑒±) denotes the levels at the ends of the edge. A local generator of
N𝑒 is 𝜕/𝜕 𝑓 if 𝑢𝑣 = 𝑓 is a local equation of the node. On the other hand, a local generator of N𝑚𝑒

Γ is
𝜕/𝜕 (𝑡

𝑚𝑒,𝑖

𝑖 ) if Γ is the undegeneration of the ith level at the point under consideration. (In particular,
𝑚𝑒 = 𝑚𝑒,𝑖 in this situation.) This follows from the form of perturbed period coordinates. This implies
that at a generic point of 𝐷Γ (and more generally whenever the edge does not become long), the natural
map N𝑚𝑒

Γ → N𝑒 is an isomorphism. At the remaining points,

𝜕

𝜕 𝑓
=

𝐿 (𝑒+)∏
𝑗=𝐿 (𝑒−)

𝑗≠𝑖

𝑡
𝑚𝑒 𝑗

𝑗

𝜕

𝜕 (𝑡
𝑚𝑒𝑖

𝑖 )
+ · · · ,

where the suppressed tangent vectors vanish when restricted to 𝐷Γ. Since 𝑡 𝑗 are the defining equations
of divisors 𝐷Δ , where the edge becomes long, this implies equation (54). �

Example 7.3. Consider the stratum PΩM0,5(𝑎1, 𝑎2, 𝑎3, 𝑎4,−𝑏) with 𝑎𝑖 ≥ 0 and 𝑏 = 2 +
∑
𝑎𝑖 ≥ 0. We

study the ‘cherry’ divisor Γ (see also [BCGGM3, Section 14.4]) with one vertex on the top level carrying
the unique pole and two vertices on the lower level, each carrying two legs and assuming that the first
two legs are on the same vertex. The vertices on the lower level are each connected to the top level by a
single edge, denoted by 𝑒1 and 𝑒2 respectively, where 𝑒1 is attached to the vertex carrying the first two
legs. The enhancements are given by 𝜅1 = 𝑎1 + 𝑎2 + 1 and 𝜅2 = 𝑎3 + 𝑎4 + 1. Hence ℓΓ = lcm(𝜅1, 𝜅2).

We compute the degree of the normal bundle using either of the two edges. Note that the boundary
divisor 𝐷Γ has two intersection points with other boundary strata, where 𝑒1 and 𝑒2 become long edges.
Neighbourhoods of these points are quotient stacks by a cyclic group of order 𝑚𝑖 = ℓΓ/𝜅𝑖 . To see this,
say where 𝑒1 becomes long, we check that Tw𝑠

Λ = ℓZ ⊕ 𝜅1Z and TwΛ = 〈(0, 𝜅1), (𝜅2,−𝜅2)〉, hence the
index is 𝑚1, as claimed.

In this example, the bundle N𝑒1 has degree zero when pulled back to 𝐷Γ, since 𝐷Γ is contracted
when mapped to M0,5. Applying Proposition 7.2, we get

deg(NΓ) = −
1

𝑚1𝑚2
,

and using 𝑒2, we arrive at the same conclusion.

Our next task is to identify the normal bundle as a sum of two contributions from the top and bottom
levels via push-pull through the level projections and clutching maps. For this purpose, we define

L𝐵�
Γ
= O𝐵�

Γ

( ∑
Δ∈LG1 (𝐵

�
Γ )

ℓΔ𝐷Δ

)
(55)

and we let 𝑝�Γ and 𝑐Γ be the maps defined in Section 4.2.

Lemma 7.4. We have 𝑝�,∗Γ L𝐵�
Γ
= 𝑐∗ΓL

�
Γ .

Proof. We sum the first equation in Proposition 4.7 over all Δ ∈ LG1(𝐵
�
Γ ). Each Δ̂ will appear for all

graphs in 𝐽 (Γ†, Δ̂), as discussed at the beginning of Section 4.3. However, thanks to Lemma 4.6, this
factor cancels with all the automorphism factors in that proposition to give the statement we claim. �
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The lemma obviously implies

c1 (L�
Γ ) =

1
deg(𝑐Γ)

· 𝑐Γ,∗ 𝑝
�∗
Γ 𝑐1 (L𝐵�

Γ
) .

Since the tautological bundles on the top and bottom levels have a pullback description by
Proposition 4.9, we have shown that there exist 𝜈� ∈ CH1(𝐵�

Γ ) and 𝜈⊥ ∈ CH1(𝐵⊥
Γ ) such that

𝜈Γ := c1 (NΓ) = cΓ,∗ (𝑝�)∗𝜈�Γ + 𝑐Γ,∗ (𝑝
⊥)∗𝜈⊥Γ . (56)

The normal bundle computation has a generalisation to an inclusion 𝔧Γ,Π : 𝐷Γ ↩→ 𝐷Π between non-
horizontal boundary strata of relative codimension one, say defined by the L-level graph Π and one of
its (𝐿 + 1)-level graph degenerations Γ. This generalisation is needed in Section 8 for recursive evalua-
tions. Such an inclusion is obtained by splitting one of the levels of Π, say the level 𝑖 ∈ {0,−1, . . . ,−𝐿}.
We define

L[𝑖 ]
Γ = O𝐷Γ

(∑
Γ
[𝑖 ]
�Δ̂

ℓΔ̂ ,−𝑖+1𝐷Δ̂

)
for any 𝑖 ∈ {0,−1, . . . ,−𝐿} , (57)

where the sum is over all graphs Δ̂ ∈ LG𝐿+2 (𝐵) that yield divisors in 𝐷Γ by splitting the ith level,
which in terms of undegenerations means 𝛿�

−𝑖+1(Δ̂) = Γ. With the same proof as above, simply shifting
attention to level i of Π, we obtain:

Proposition 7.5. For Π
[𝑖 ]
� Γ (or equivalently 𝛿�

−𝑖+1(Γ) = Π), the Chern class of the normal bundle
NΓ,Π = N𝐷Γ/𝐷Π is given by

𝑐1 (NΓ,Π) =
1

ℓΓ, (−𝑖+1)

(
− 𝜉 [𝑖 ]Γ − 𝑐1 (L[𝑖 ]

Γ ) + 𝜉 [𝑖−1]
Γ

)
in CH1 (𝐷Γ) . (58)

With the same proof as in Lemma 7.4, we obtain

𝑝 [𝑖 ]∗
Γ L

𝐵 [𝑖 ]
Γ

= 𝑐∗ΓL
[𝑖 ]
Γ where L

𝐵 [𝑖 ]
Γ

= O
𝐵 [𝑖 ]
Γ

( ∑
Δ∈LG1 (𝐵

[𝑖 ]
Γ )

ℓΔ𝐷Δ

)
. (59)

We can thus write the normal bundle as a sum of bundles that are 𝑐Γ-pushforwards of pullbacks from
𝐵 [𝑖 ]
Γ and 𝐵 [𝑖−1]

Γ . We express this by saying that the normal bundle is supported on the levels i and 𝑖 − 1
(for 𝑖 ∈ Z≤0).

We need some compatibility statements for pullbacks of normal bundles to more degenerate graphs.
We start with auxiliary bundles, whose pullback we need, too.

Lemma 7.6. Let Γ ∈ LG𝐿 (𝐵), and let Γ
[𝑖 ]
� Δ̂ be a codimension one degeneration of Γ obtained by

splitting the level 𝑖 ∈ {0, . . . ,−𝐿}. Then for every 𝑗 ∈ {0, . . . ,−𝐿},

𝔧∗
Δ̂ ,Γ

(𝜉
[ 𝑗 ]
Γ ) =

{
𝜉
[ 𝑗 ]

Δ̂
, if 𝑗 ≥ 𝑖

𝜉
[ 𝑗−1]
Δ̂

if 𝑗 < 𝑖

and

𝔧∗
Δ̂ ,Γ

(
𝑐1

(
L[ 𝑗 ]
Γ

))
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑐1

(
L[ 𝑗 ]

Δ̂

)
, if 𝑗 > 𝑖

𝑐1

(
L[ 𝑗−1]
Δ̂

)
if 𝑗 < 𝑖

𝑐1

(
L[ 𝑗−1]
Δ̂

)
+ 𝜉

[ 𝑗−1]
Δ̂

− 𝜉
[ 𝑗 ]

Δ̂
if 𝑗 = 𝑖.
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Proof. For the cases 𝑗 ≠ 𝑖, the claims are obvious since level j is untouched in the degeneration from Γ
to Δ̂ . If 𝑖 = 𝑗 , then the second claim follows from

𝔧∗
Δ̂ ,Γ

(
𝑐1

(
L[𝑖 ]
Γ

))
= 𝔧∗

Δ̂ ,Γ

( ∑
Γ
[𝑖 ]
�Λ, Λ≠Δ̂

ℓΛ,−𝑖+1 [𝐷Λ] + ℓΔ̂ ,−𝑖+1 [𝐷Δ̂ ]

)
= 𝑐1

(
L[𝑖 ]

Δ̂

)
+ 𝑐1

(
L[𝑖−1]
Δ̂

)
+ ℓΔ̂ ,−𝑖+1c1(N𝐷Δ̂/𝐷Γ )

= 𝑐1

(
L[𝑖 ]

Δ̂

)
+ 𝑐1

(
L[𝑖−1]
Δ̂

)
+
(
−𝜉 [𝑖 ]

Δ̂
+ 𝜉 [𝑖+1]

Δ̂
− 𝑐1

(
L[𝑖 ]

Δ̂

))
= 𝑐1

(
L[𝑖−1]
Δ̂

)
+ 𝜉 [𝑖−1]

Δ̂
− 𝜉 [𝑖 ]

Δ̂
.

The case 𝑗 = 𝑖 for the first claim about pulling back 𝜉 [𝑖 ]Γ follows directly from the definition of O[𝑖 ]
Γ (−1)

by local generators. Alternatively, one can compute it by applying the relation in equation (62) shown
in the next section. More specifically, if the chosen marked point is supported on the ith level of Δ̂ ,
the calculation is straightforward. If the marked point h is supported on the (𝑖 − 1)st level of Δ̂ , then
Δ̂ appears among the boundary terms of equation (62). Pulling back makes the normal bundle appear,
and thus 𝜉 [𝑖 ]Δ in the formula from Theorem 7.1. The remaining boundary terms of equation (62) can be
grouped into those where h ends up at level 𝑖 − 1 or 𝑖 − 2 after pulling back to Δ̂ . These groups cancel
with the remaining two terms of the normal bundle. �

As a consequence of the preceding lemma and Theorem 7.1, we obtain:

Corollary 7.7. Let Γ ∈ LG𝐿 (𝐵), and let Δ̂ be a codimension one degeneration of the (−𝑖 + 1)-level
of Γ: that is, such that Γ = 𝛿�𝑖 (Δ̂), for some 𝑖 ∈ {1, . . . , 𝐿 + 1}. Then

𝔧∗
Δ̂ ,Γ

(
ℓΓ, 𝑗c1

(
N

Γ/𝛿�𝑗 (Γ)

) )
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℓΔ̂ , 𝑗 c1

(
N

Δ̂/𝛿�𝑗 (Δ̂)

)
, for 𝑗 < 𝑖

ℓΔ̂ , 𝑗+1c1

(
N

Δ̂/𝛿�
( 𝑗+1) (Δ̂)

)
otherwise.

8. The tautological ring

In this section, we give the precise definition of the tautological ring and prove Theorem 1.5. We define the
tautological rings of strata as the smallest set ofQ-subalgebras 𝑅•(PΞM𝑔,𝑛 (𝜇)) ⊂ CH•(PΞM𝑔,𝑛 (𝜇))
that

• contains the 𝜓-classes attached to the marked points,
• is closed under the pushfoward of the map forgetting a regular marked point (a zero of order zero), and
• is closed under the maps 𝜁Γ,∗𝑝 [𝑖 ],∗ defined in Proposition 4.4 for all level graphs Γ.

Our goal is to provide additive generators of this ring and show that the main players, normal bundles
and logarithmic cotangent bundle have Chern classes in this ring. The main tool is the excess intersection
formula that allows computing the intersection product of boundary strata, possibly decorated with 𝜓-
classes.

There are two definitions of other (refined) tautological rings. One option is the refined ring
𝑅•

ref (PΞM𝑔,𝑛 (𝜇)) that is closed under all the clutching morphisms 𝜁 ref
∗ 𝑝 [𝑖 ],∗ that distinguish the

components of boundary strata that are reducible due to inequivalent prong-matchings. Obviously,
𝑅•(PΞM𝑔,𝑛 (𝜇)) ⊆ 𝑅•

ref (PΞM𝑔,𝑛 (𝜇)) ⊂ CH•(PΞM𝑔,𝑛 (𝜇)). There is an analogue of Theorem 1.5,
replacing in the additive generators the inclusion maps 𝔦Γ of reducible boundary strata with the inclusion
maps of irreducible components. The proofs below can be adapted to that setting.
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The second option is to include 𝐷h or equivalently clutching morphism for horizontal nodes into the
definition of the tautological ring 𝑅•

h (PΞM𝑔,𝑛 (𝜇)) (and not distinguish inequivalent prong-matchings,
although one could obviously do both). Obviously 𝑅•(PΞM𝑔,𝑛 (𝜇)) ⊆ 𝑅•

h (PΞM𝑔,𝑛 (𝜇)). For our
purposes, working in the smaller ring is enough, since the main result Theorem 1.2 shows that the Chern
character of the logarithmic cotangent bundle belongs to the smaller ring. Moreover, working in the
smaller tautological ring is computationally advantageous as the number of boundary strata is smaller,
and they can be efficiently encoded using the notion of profiles (see [CMZ20]).

To express 𝑐1 (Ω𝐵), we need 𝐷h, so we need to work in 𝑅•
h (PΞM𝑔,𝑛 (𝜇)). However, one of the main

points of this section is that the Chern polynomial of the logarithmic cotangent bundle belongs to the
smallest of the natural candidates for a tautological ring. It seems interesting to decide which of the two
inclusions of tautological rings defined above are strict.

8.1. Excess intersection formula

Suppose we are given two level graphs Λ1 and Λ2 without horizontal nodes and the corresponding
inclusion maps 𝔦Λ 𝑗 : 𝐷Λ 𝑗 → PΞM𝑔,𝑛 (𝜇) into a compactified stratum. For a class 𝛼 ∈ CH•(𝐷Λ2 ),
we want to compute 𝔦∗Λ1

𝔦Λ2 ,∗𝛼 as the pushforward from the maximal-dimensional boundary strata in
the support of 𝐷Λ1 ∩ 𝐷Λ2 in terms of an 𝛼-pullback and normal bundle classes encoding the excess
intersection of 𝐷Λ1 and 𝐷Λ2 . We say that a level graph Π is a (Λ1,Λ2)-graph if there are undegeneration
morphisms 𝜌𝑖 : Π → Λ𝑖: that is, edge contraction morphisms with the property that there are subsets
𝐼Λ1 and 𝐼Λ2 of level passages of Π such that 𝛿𝐼Λ1

(Π) = Λ1 and 𝛿𝐼Λ2
(Π) = Λ2. (Automorphisms of Λ𝑖 –

that is, the stack structure of 𝐷Λ𝑖 – stemming from permuting the edges require the distinction between
𝛿’s and the 𝜌𝑖’s.) We call Π a generic (Λ1,Λ2)-graph if 𝐼�Λ1

∩ 𝐼�Λ2
= ∅. The intersection formula will use

the inclusion maps as indicated in the diagram:

𝐷Π 𝐷Λ2

𝐷Λ1 PΞM𝑔,𝑛 (𝜇).

𝔧Π,Λ2

𝔧Π,Λ1
𝔦Λ2

𝔦Λ1

Proposition 8.1. For any 𝛼 ∈ CH•(𝐷Λ2 ), we can express its pushforward pulled back to Λ1 as

𝔦∗Λ1
𝔦Λ2 ,∗𝛼 =

∑
Π

𝔧Π,Λ1 ,∗

(
𝜈ΠΛ1∩Λ2

· 𝔧∗Π,Λ2
𝛼
)
, (60)

where the sum is over all generic (Λ1,Λ2)-graphs Π. In this expression,

𝜈ΠΛ1∩Λ2
=

∏
𝑘∈𝐼Λ1∩𝐼Λ2

𝔧∗Π, 𝛿𝑘 (Π)

(
𝜈𝛿𝑘 (Π)

)
is the product of the pullback to 𝐷Π of the first Chern classes of the normal bundles of the divisors
containing both 𝐷Λ1 and 𝐷Λ2 .

Proof. By the excess intersection formula ([Ful98, Proposition 17.4.1]), we have to show that the fibre
product FΛ1 ,Λ2 = 𝐷Λ1 ×PΞM𝑔,𝑛 (𝜇)

𝐷Λ2 is the coproduct D =
∐

𝐷Π over all generic (Λ1,Λ2)-graphs Π
and identify the excess normal bundle.

First we define a map 𝜑 : D → FΛ1 ,Λ2 via the universal properties of the coproduct and
the fibre product. It is the map induced by the inclusions 𝔧Π,𝜆𝑖 : 𝐷Π → 𝐷Λ𝑖 for each generic
(Λ1,Λ2)-graph Π.
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𝐷Γ =

2

1

1

4

Λ1 =

1

1

1

1 1

4

Λ2 = 1

1

1

1 3

4

Π1 =

1

1

1 1

1 3

4

Π2 =

1

1

1

1

1

3

4

Figure 4. An example for excess intersection computations.

To give a converse natural transformation on objects, we take a family parametrised by FΛ1 ,Λ2 : that
is, a pair of a family (X1, 𝜼1) of multi-scale differentials compatible with an undegeneration of Λ1 and a
family (X2, 𝜼2) compatible with an undegeneration of Λ2. If we forget the differentials, we can construct
a family of pointed stable curves (X, z) over some stable graph Π, which is generic as a (Λ1,Λ2)-stable
graph (see [GP03] or [SZ20]). We make Π into a level graph by declaring a vertex 𝑣1 to be on top of
𝑣2 if this holds for either of their images in Λ1 or in Λ2. Compatibility of the fibre product ensures that
this definition is consistent. Moreover, this definition ensures that Π is (Λ1,Λ2)-generic in our sense of
enhanced level graphs. The construction of X exhibits a bijection of its f -relative components (relative
to the structure morphism f to the base) with the f -relative components of X1 (and also those of X2).
We can thus pull back the differential 𝜂1 on each of those components of X (or we could pull back 𝜂2)
to a collection of differentials 𝜼 on X. To see that this indeed defines a twisted differential compatible
with Π, only the global residue condition requires a nontrivial verification. By definition of (Λ1,Λ2)-
genericity and because of the unique ordering of profiles shown in Proposition 5.1, for each level −𝑖
of Π there is an index 𝑗 ∈ {1, 2} and a level −𝑖′ of Λ 𝑗 such that the connected components of the
subgraph of Π above level −𝑖 are in natural bijection with the connected components of the subgraph
of Λ 𝑗 above level −𝑖′. This implies the global residue condition. The enhancements of the edges Π
are given by the identification of the edges with those of Λ1 and Λ2 in the first step of the converse
construction. In the same way, we provide (X, z, 𝜼) with a collection of prong-matchings and pull back
the rescaling ensembles as in [BCGGM3, Section 7] to complete the construction of a family of multi-
scale differentials compatible with an undegeneration of Π. The converse natural transformation on
morphisms is simply the map constructed for families of pointed stable curves.

The excess normal bundle is in general given by 𝐸 = 𝔧∗Π,Λ1
NΛ1/NΠ,Λ2 , where the normal sheaves

appearing are the normal sheaves of the morphisms 𝔦Λ1 and 𝔧Π,Λ2 . Since by Proposition 5.1 the nonhor-
izontal boundary strata are smooth and simple normal crossing, the previous normal sheaves are vector
bundles, and they are given as the direct sum of the pullback of the normal bundles of appropriate di-
visors. More specifically, NΛ1 = ⊕

𝐿 (Λ1)
𝑖=1 N𝛿𝑖 (Λ1) and NΠ,Λ2 = ⊕

𝑖∈𝐼�Λ2
N𝛿𝑖 (Π) . This implies that E is the

direct sum of the normal bundles of the levels common to both Λ1 and Λ2 (pulled back to 𝐷Π), and thus
its top Chern class is as claimed in the proposition. �

An example of the excess intersection formula that illustrates both the appearance of a nontrivial
normal bundle and of a sum over more than one graph Π is given in Figure 4. In this example, Π1 and
Π2 are the only generic (Λ1,Λ2)-graphs. Since Γ = 𝛿1(Λ1) = 𝛿1(Λ2) and 𝐷Γ is the only boundary
divisor containing both 𝐷Λ1 and 𝐷Λ2 , we can compute 𝔦∗Λ1

𝔦Λ2 ,∗ [1𝐷Λ2
] =

∑2
𝑖=1 𝔧Π𝑖 ,Λ1 ,∗

(
𝔧∗Π𝑖 ,𝐷Γ

(
N𝐷Γ

) )
.

At the expense of introducing more notation, the excess intersection formula can be generalised in
two ways. First, the ambient space might be a boundary stratum associated to a codimension L-level
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graph Γ, as summarised in the diagram

𝐷Π 𝐷Λ2

𝐷Λ1 𝐷Γ

𝔧Π,Λ2

𝔧Π,Λ1 𝔧Λ2 ,Γ
𝔧Λ1 ,Γ

of inclusions. In this situation, we define 𝜈Π
(Λ1∩Λ2)/Γ

to be the product of the pullback to Π of the
Chern classes of the normal bundles NΓ′/Γ, where Γ′ ranges over all codimension 1 nonhorizontal
degenerations Γ′ of Γ that are common to Λ1 and Λ2. As above, we denote appropriate pullbacks of this
product by the same letter. The excess intersection formula then reads

𝔧∗Λ1 ,Γ
𝔧Λ2 ,Γ∗𝛼 =

∑
Π

𝔧Π,Λ1 ,∗

(
𝜈Π(Λ1∩Λ2)/Γ

· 𝔧∗Π,Λ2
𝛼
)
, (61)

where the sum ranges over all (Λ1,Λ2)-graphs Π.
In the more general case that the level graphs Λ𝑖 also have horizontal nodes, there is an obvious

generalisation of this proposition. A general undegeneration of boundary graphs is given by a pair
𝛿 = (𝛿ver, 𝛿hor) consisting of a level undegeneration 𝛿ver as in Section 3.3 and an undegeneration of
horizontal nodes 𝛿hor. One defines Π to be a (Λ1,Λ2)-graph if there are undegenerations 𝛿𝑖 such that
𝛿𝑖 (Π) = Λ𝑖 , for 𝑖 = 1, 2. Such a graph is generic if the vertical undegenerations are generic as above and,
moreover, if the horizontal contractions are generic in the usual sense of M𝑔 (see [GP03] or [ACG11,
Chapter XVII]). We leave it to the reader to adapt the previous proposition and the subsequent argument
to the general context.

8.2. Relations in the tautological ring and the proof of Theorem 1.5

Before concluding the proof of Theorem 1.5, we need some relations in the tautological ring. These
relations are essentially known, but we restate them here for convenience and to justify a version for
the spaces PΞMℜ

g,n (𝝁): that is, possibly disconnected, with residue conditions, and for multi-scale
differentials rather than on the incidence variety compactification. Recall the notation of Section 4.1
for generalised strata, where the (𝑖, 𝑗)th marked point is the jth marked point of the ith surface and has
order 𝑚𝑖, 𝑗 ∈ Z.

Proposition 8.2 ([Sau19, Theorem 6(1)].). The class 𝜉 on 𝐵 = PΞMℜ
g,n (𝝁) can be expressed using the

𝜓-class at the (𝑖, 𝑗)th marked point as

𝜉 = (𝑚𝑖, 𝑗 + 1)𝜓 (𝑖, 𝑗) −
∑

Γ∈ LG
(𝑖, 𝑗) 1 (𝐵)

ℓΓ [𝐷Γ] , (62)

where LG
(𝑖, 𝑗) 1 (𝐵) are two-level graphs with the leg (𝑖, 𝑗) on the lower level.

The fact that our 𝐷Γ records prong-matching equivalence classes makes up for the difference between
our formula and the one appearing in [Sau19]. Indeed, the original formula of [Sau19] can be retrieved
using the substitution ℓΓ [𝐷Γ] =

𝐾Γ
|Aut(Γ) | 𝑐Γ,∗𝑝

∗
Γ

[
𝐵�
Γ × 𝐵⊥

Γ

]
, which follows from Lemma 4.5.

Proof. We expand the argument given in [Che19, Proposition 2.1] including the boundary terms. Let
𝜋 : X → 𝐵 be the universal family and 𝑆𝑖 be the image of the section given by the ith marked point. The
evaluation map gives an isomorphism of 𝜋∗O(−1) and𝜔X/𝐵 outside the locus 𝑆𝑖 and the lower level com-
ponents of the boundary divisors. Consider the construction of the universal differential over ΞM𝑔,𝑛 (𝜇)
in [BCGGM3, Section 12], in particular in the plumbing fixture (12.6) of [BCGGM3, Section 12]. The
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difference of t-powers at the two branches is just ℓΓ in our notation, and all this is unchanged in the
presence of a GRC ℜ. We deduce that

𝜋∗𝜉 = 𝑐1 (𝜔X/𝐵) −

𝑛∑
𝑖=1

𝑚𝑖𝑆𝑖 −
∑

Γ∈LG1 (B)
ℓΓ [X⊥

Γ ] , (63)

where X⊥
Γ is the lower-level component in the universal family over the divisor 𝐷Γ. We intersect both

sides with 𝑆𝑖 and apply 𝜋∗. Using 𝜋∗(𝑆
2
𝑖 ) = −𝜓𝑖 and 𝜋∗(𝜔X/𝐵 · 𝑆𝑖) = 𝜓𝑖 , this gives the claim. �

We need a similar generalisation of another relation of Sauvaget to our framework that will be
needed for the final evaluation of top degree classes (see the end of Section 9 and [CMZ20]). Consider a
generalised stratum defined by a residue condition ℜ as defined in Section 4.1. Suppose we remove one
element from the set 𝜆ℜ constraining the residues in the definition of ℜ. We denote this new set by 𝜆ℜ0

and ℜ0 the new set of residue conditions. Two cases might occur. Either PΞMℜ
g,n (𝝁) = PΞM

ℜ0
g,n (𝝁) or

PΞMℜ
g,n (𝝁) � PΞM

ℜ0
g,n (𝝁) is a divisor. We consider the second case here and note that this condition

is equivalent to 𝑆 := 𝑅 ∩ ℜ ⊂ 𝑆0 := 𝑅 ∩ ℜ0 is codimension one (rather than the two being equal),
where R is the space of residues defined in equation (25). Consider now a boundary stratum 𝐷Γ in
PΞMℜ0

g,n (𝝁). For each level i of 𝐷Γ and any GRC ℜ containing ℜ0, we define the residue condition ℜ [𝑖 ]

induced by ℜ to be the residue condition given at level i by the auxiliary level graph Γ̃ℜ as defined in
Section 4.1, created with the help of the auxiliary vertices of ℜ. For the top level, we write ℜ� for the
induced residue condition on the top level. It can be simply computed by discarding from the parts 𝜆ℜ
all indices of edges that go to lower level in 𝐷Γ.

Proposition 8.3 ([Sau19, Proposition 7.6]). The class of the stratum PΞMℜ
g,n (𝝁) with residue condition

ℜ compares inside Chow ring of the generalised stratum 𝐵 = PΞMℜ0
g,n (𝝁) to the class 𝜉 by the formula

[PΞMℜ
g,n (𝝁)] = −𝜉 −

∑
Γ∈LGℜ

1 (𝐵)

ℓΓ [𝐷Γ] −
∑

Γ∈LG1,ℜ (𝐵)

ℓΓ [𝐷Γ] , (64)

where LGℜ
1 (𝐵) are two-level graphs with 𝑅Γ∩ℜ� = 𝑅Γ∩ℜ�

0 – that is, the GRC on the top level induced
by ℜ no longer introduces an extra condition – and LG1,ℜ (𝐵) are two-level graphs where all the legs
involved in the condition forming ℜ \ℜ0 go to lower level.

Proof. Consider that map 𝑠 : O𝐵 (−1) → 𝑆0/𝑆 to the constant rank one vector bundle, mapping a
point (𝑋, 𝜔) to the (equivalence class mod S of the) tuple of residues of 𝜔, which defines a point in 𝑆0.
The vanishing locus in the interior of 𝐵 is by definition PΞMℜ

g,n (𝝁), and in usual period coordinates,
we see that the vanishing order is one there. To understand the boundary contribution, consider first
boundary divisors neither in LGℜ

1 (𝐵) nor in LG1,ℜ (𝐵). For those, being in the vanishing locus of s
is a nontrivial (divisorial) condition, and thus this locus is of codimension two and irrelevant for the
equation. It remains to justify the vanishing statement and the vanishing order for the other divisors. Any
section of O𝐵 (−1) decays like 𝑡ℓΓ1 near lower-level components by construction of the compactification
in [BCGGM3, Section 12], where 𝑡1 is a transversal coordinate. Consequently, any 𝐷Γ ∈ LG1,ℜ (𝐵)
is in the support of the cokernel of the map s, with multiplicity ℓΓ. For 𝐷Γ with Γ ∈ LGℜ

1 (𝐵), the
residues at the poles going to level zero are zero (mod S) all along 𝐷Γ by definition. Transversally, they
become nonzero with the growth of the modification differential (see the construction in [BCGGM3,
Section 11]), since the modification differential must be generically nonzero on 𝐷Γ if ℜ imposes a
nontrivial condition generically on the stratum, but none along 𝐷Γ. Since the modification differential
scales with 𝑡ℓΓ1 , this proves the claim on the multiplicity of 𝐷Γ in this case, too. �
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We are now ready to prove that the tautological ring is finitely generated by the additive generators
displayed in Theorem 1.5.

We let 𝐵(0) = PΞM𝑔,𝑛+1(𝜇, 0), in comparison with the usual 𝐵 = PΞM𝑔,𝑛 (𝜇). There is a forgetful
map 𝜋′ : 𝐵(0) → 𝐵 given by forgetting the marked point and contracting edges to vertices that have
become unstable while preserving the level structure on the remaining vertices. Note that in contrast
to M𝑔,𝑛+1 → M𝑔,𝑛, the map 𝜋′ is not the universal family 𝜋 : X → 𝐵. The difference is apparent at
points where the natural map 𝐵(0) → M𝑔,𝑛+1 has positive dimensional fibres: for example, at the cherry
divisors (see [BCGGM3, Section 14.4]) with one regular marked point. Indeed, there is a P1 ⊂ 𝐵(0)
that parametrises multi-scale differentials on the same underlying curve with cherry-type level graphs
that differ only by the relative scale at lower level, and the image of this P1 in the universal curve M𝑔,𝑛+1
is just a point.

Proof of Theorem 1.5. We let 𝑅•
𝑓 𝑔 (𝐵) be the vector space spanned by the classes 𝜁Γ∗ (

∏−𝐿 (Γ)
𝑖=0 𝑝 [𝑖 ],∗

Γ 𝛼𝑖 ),
where 𝛼𝑖 is a monomial in the 𝜓-classes supported on level i of the graph Γ, where Γ ∈ LG(𝐵) ranges
among all level graphs without horizontal nodes. Obviously this is a finite-dimensional vector space
since for any stratum 𝜇 there are only finitely many level graphs, and for each of them there is a finite
number of monomials that give a nonzero class.

By our definition of the tautological ring of the moduli space of multi-scaled differentials, clearly
𝑅•
𝑓 𝑔 (𝐵) ⊆ 𝑅•(𝐵).
We show now that 𝑅•

𝑓 𝑔 (𝐵) is actually a subring of the tautological ring: that is, it is closed under
the intersection product. We prove this by iteratively applying the projection formula and the excess
intersection formula (61). In the first step, for any two classes 𝛼 𝑗 ∈ CH∗(𝐷Λ 𝑗 ), Proposition 8.1 and the
projection formula (together with the relation 𝔦Π = 𝔦Λ1 ◦ 𝔧Π,Λ1 ) imply

𝔦Λ1 ∗(𝛼1) · 𝔦Λ2 ∗(𝛼2) =
∑
Π

𝔦Λ1 ∗

(
𝛼1 · 𝔧Π,Λ1 ,∗

(
𝜈ΠΛ1∩Λ2

· 𝔧∗Π,Λ2
𝛼2

))
=
∑
Π

𝔦Π,∗
(
𝜈ΠΛ1∩Λ2

· 𝔧∗Π,Λ1
(𝛼1) · 𝔧

∗
Π,Λ2

(𝛼2)
)
,

(65)

where the sums are over all generic (Λ1,Λ2)-graphs Π. The excess intersection class 𝜈ΠΛ1∩Λ2
is given

by pullbacks of normal bundles of divisors. By repeatedly applying Corollary 7.7, we see that the
pullback of the class of the normal bundle of a divisor is given by the class of the normal bundle of 𝐷Π

in a codimension one undegeneration. The shape of such a class was computed in equation (58). By
using the compatibility expressed in equation (4.9) between level-wise tautological line classes and the
tautological line classes on the level strata, together with Proposition 8.2, we see that the classes of these
normal bundles are given by 𝜓-class contributions and boundary contributions given by codimension
one degenerations of Π. If there are no boundary contributions, then we are done since we obtained
an expression in terms of elements of 𝑅•

𝑓 𝑔 (𝐵) supported on Π. If this is not the case, we can apply
the same projection formula and excess intersection formula argument as before to these boundary
contributions. (Now we have to use the more general excess intersection formula in equation (61) with
ambient Π.) This process has to terminate since the dimension of the boundary strata appearing in the
excess intersection factor is decreasing, so at some point the excess class contribution will be trivial.
Hence we have shown that 𝑅•

𝑓 𝑔 (𝐵) is a subring of the tautological ring.
To show that 𝑅•

𝑓 𝑔 (𝐵) is equal to 𝑅•(𝐵), we need to show that 𝑅•
𝑓 𝑔 (𝐵) is closed under pushforward of

clutching morphism and under pushforward of the map that forgets a regular point. The first statement
is clear. We now argue inductively on the dimension of 𝐵, starting with the obvious case dim(𝐵) = 0.
We may assume by induction hypothesis that the 𝜋′-pushforwards of elements in 𝑅•

𝑓 𝑔 (𝐵
′
(0)) are in

𝑅•
𝑓 𝑔 (𝐵

′
) for any stratum 𝐵

′ of dimension less than the dimension of 𝐵.
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We first show that 𝜋′∗ (𝜁Γ,∗𝜓𝑎+1
𝑛+1 ) ∈ 𝑅•

𝑓 𝑔 (𝐵) for any graph Γ with at least two levels. Let i be the level
of Γ that contains the (𝑛+1)st marked point. For 𝜓𝑎+1

𝑛+1 to be nonzero, we need the component containing
the (𝑛+1)st marked point to be positive-dimensional (taking GRC into account). Let Γ′ be the level graph
obtained from Γ by forgetting this point and contracting edges to unstable vertices, preserving the level
structure otherwise. There is thus a well-defined projection map (𝜋′) [𝑖 ] : 𝐵(0) [𝑖 ]Γ → 𝐵 [𝑖 ]

Γ′ of generalised
strata. Recalling that 𝜓𝑛+1 = 𝑝∗Γ𝜓𝑛+1, by our general abuse of notation, we find 𝜋′∗ (𝜁Γ,∗𝜓

𝑎+1
𝑛+1 ) =

𝜁Γ′,∗𝑝
∗
Γ′

(
(𝜋′) [𝑖 ]∗ 𝜓𝑎+1

𝑛+1

)
. By induction, we know that (𝜋′) [𝑖 ]∗ 𝜓𝑎+1

𝑛+1 ∈ 𝑅•
𝑓 𝑔 (𝐵

[𝑖 ]
Γ ); and since the collection

of rings 𝑅•
𝑓 𝑔 (·) is already known to be stable under 𝜁Γ′,∗𝑝∗Γ′ , we conclude that 𝜋′∗ (𝜁Γ,∗𝜓𝑎+1

𝑛+1 ) ∈ 𝑅•
𝑓 𝑔 (𝐵).

Second, to treat the case when Γ is the trivial graph, we consider the commutative diagram

PΞM𝑔,𝑛+1 (𝜇, 0) M𝑔,𝑛+1

PΞM𝑔,𝑛 (𝜇) M𝑔,𝑛

𝑓𝑛+1

𝜋′ 𝜋𝑛+1

𝑓𝑛

where 𝜋′ and 𝜋𝑛+1 are the maps forgetting the last point and 𝑓𝑛+1 and 𝑓𝑛 are the maps forgetting the
twisted differential. Recall that the Arbarello-Cornalba class 𝜅AC

𝑎 , which is defined to be the 𝜋𝑛+1-
pushforward of the (𝑎 + 1)th power of the first Chern class of the relative log-cotangent bundle of 𝜋𝑛+1,
satisfies the dilation equation 𝜅AC

𝑎 = (𝜋𝑛+1)∗(𝜓
𝑎+1
𝑛+1 ). From the above diagram, we then get

𝑓 ∗𝑛 𝜅
AC
𝑎 = 𝑓 ∗𝑛 (𝜋𝑛+1)∗(𝜓

𝑎+1
𝑛+1 ) = 𝜋′∗ ( 𝑓

∗
𝑛+1 (𝜓

𝑎+1
𝑛+1 )).

Recall that we abuse notation and identify 𝜓 and 𝜅-classes in CH∗(𝐵) with their pullback from M𝑔,𝑛.
We have thus shown that the special version of the dilation equation 𝜋′∗ (𝜓

𝑎+1
𝑛+1 ) = 𝜅AC

𝑎 also holds in
CH∗(𝐵). We thus only need to show that 𝜅AC

𝑎 ∈ 𝑅•
𝑓 𝑔 (𝐵). Let now 𝜋 : X → 𝐵 be the universal family

and recall that the (Mumford-Morita-Miller) 𝜅-classes are defined by 𝜅𝑎 = 𝜋∗(c1 (𝜔𝜋)
𝑎+1). Since the

difference between 𝜅𝑎 and 𝜅AC
𝑎 is given by a sum of powers of 𝜓-classes, if we can show that 𝜅𝑎 is in

𝑅•
𝑓 𝑔 (𝐵), then it would follow that 𝜅AC

𝑎 is in the same ring, which is our goal. Recall that [X⊥
Γ ] is the

lower-level component in the universal family over the divisor 𝐷Γ. From equation (63), we deduce that

𝜅𝑎 = 𝜋∗
&'(
(
𝜋∗𝜉 +

𝑛∑
𝑖=1

𝑚𝑖𝑆𝑖 +
∑

Γ∈LG1 (B)
ℓΓ [X⊥

Γ ]
)𝑎+1)*+

is a linear combination of terms of the form 𝜉 𝑝𝜋∗(𝑆
𝑏𝑖
𝑖

∏
[X⊥

Γ ]
𝑐Γ ) with 𝑝 + 𝑏𝑖 +

∑
Γ 𝑐Γ = 𝑎 + 1, since

the sections 𝑆𝑖 are disjoint. The 𝜉-powers are tautological by Proposition 8.2, so we only need to study
the 𝜋∗-term. Let 𝔦 : 𝐷0 :=

⋂
Γ:𝑐Γ>0,𝑖∈Γ⊥ 𝐷Γ → 𝐵 be the inclusion of the intersection of boundary

divisors where the ith marked point is on the bottom level, which is the image under 𝜋 of the support of
𝑆𝑏𝑖𝑖

∏
[X⊥

Γ ]
𝑐Γ . Let �̃� : X0 :=

⋂
Γ:𝑐Γ>0,𝑖∈Γ⊥ X⊥

Γ → X be the corresponding inclusion in the total space of
the family. Let 𝔧0,Γ : 𝐷0 → 𝐷Γ and �̃�0,Γ : X0 → XΓ be the inclusions into codimension one divisors.
Finally, let 𝜎𝑖 be the section of the ith marked point and abusively also its restriction to 𝐷Γ and to 𝐷0.

Suppose that 𝑏𝑖 > 0. Then using 𝜎∗
𝑖 𝑆

𝑘
𝑖 = (−𝜓𝑖)𝜎

∗
𝑖 (𝑆

𝑘−1
𝑖 ), we find

𝜋∗
(
𝑆𝑏𝑖𝑖

∏
Γ

[X⊥
Γ ]

𝑐Γ
)
= 𝜋∗𝜎𝑖,∗𝜎

∗
𝑖

(
𝑆𝑏𝑖−1
𝑖 · �̃�∗

(∏
Γ

�̃�∗0,ΓN
𝑐Γ−1
X⊥

Γ

) )
= (−𝜓𝑖)

𝑏𝑖−1 · 𝜎∗
𝑖

(
�̃�∗
(∏

Γ

�̃�∗0,ΓN
𝑐Γ−1
X⊥

Γ

) )
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= (−𝜓𝑖)
𝑏𝑖−1 · 𝔦∗

(∏
Γ

𝜎∗
𝑖

(̃
𝔧∗0,ΓN

𝑐Γ−1
X⊥

Γ

) )
= (−𝜓𝑖)

𝑏𝑖−1 · 𝔦∗
(∏

Γ

𝔧∗0,ΓN
𝑐Γ−1
Γ

)
,

which is in 𝑅•
𝑓 𝑔 (𝐵) by Theorem 7.1. If 𝑏𝑖 = 0, the expression 𝜋∗(

∏
Γ [X⊥

Γ ]
𝑐Γ ) is the 𝜋∗-pushforward of

a sum of tautological generators supported on nontrivial boundary strata, and we have already shown
that they belong to 𝑅•

𝑓 𝑔 (𝐵).
Since we have shown that 𝑅•

𝑓 𝑔 (𝐵) is a subring of the tautological ring closed under clutching and
𝜋-pushforward, it has to be the same as the tautological ring by minimality.

We finally show the last statement of the theorem, namely that the 𝔦Γ∗ of the level-wise tautological
classes 𝜉 [𝑖 ]Γ and the 𝜅-classes are tautological. For the 𝜉-classes, it is enough to notice that by Proposi-
tion 8.2, the class 𝜉

𝐵
[𝑖 ]
Γ

can be expressed as a linear combination of a 𝜓-class and boundary classes, so it

is tautological on 𝐵 [𝑖 ]
Γ by the main statement of the theorem that we just proved. Since the tautological

rings are closed under clutching morphisms, the class 𝜁Γ∗ 𝑝
[𝑖 ],∗
Γ 𝜉

𝐵
[𝑖 ]
Γ

is also tautological. Notice that this

is, up to constant, the same as 𝔦Γ∗(𝜉 [𝑖 ]Γ ). Finally, the 𝜅-classes are tautological since we have previously
shown that they belong to 𝑅•

𝑓 𝑔 (𝐵), which we have proven to be the same as the tautological ring. �

9. The Chern classes of the logarithmic cotangent bundle

In this section, we relate the logarithmic cotangent bundle to bundles whose Chern classes can be
expressed in standard generators. We will first prove in Theorem 9.2, a restatement of Theorem 1.4. We
will then complete the proofs of the remaining main theorems of the introduction, Theorem 1.2 and
Theorem 1.3.

The first step is a direct consequence of the Euler sequence in equation (37).

Corollary 9.1. The Chern character and the Chern polynomial of the kernel K of the Euler sequence
are given by

ch(K) = 𝑁𝑒 𝜉 − 1 and c(K) =
𝑁−1∑
𝑖=0

(
𝑁

𝑖

)
𝜉𝑖 .

Proof. The result follows from the properties of the Chern character and the Chern polynomial, to-
gether with the fact that all higher Chern classes of the Deligne extension H1

rel vanish. Indeed, the
Chern classes of a logarithmic sheaf are given in terms of symmetric polynomials of residues of the
logarithmic connection (see [EV86, B3]), and the Deligne extension is defined such that all these terms
are zero, since the residues are given by nilpotent matrices. (See also the discussion around [ACG11,
Theorem 17.5.21].) �

The second step relates the kernel of the Euler sequence to the vector bundle we are actually interested
in. We will use the abbreviations

E𝐵 = Ω1
𝐵
(log 𝐷) and L𝐵 = O𝐵

( ∑
Γ∈LG1 (B)

ℓΓ𝐷Γ

)
(66)

throughout in the sequel.

Theorem 9.2. There is a short exact sequence of quasi-coherent O𝐵-modules

0 −→ E𝐵 ⊗ L−1
𝐵 → K → C −→ 0, (67)
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where C =
⊕

Γ∈LG1 (B) CΓ is a coherent sheaf supported on the nonhorizontal boundary divisors, whose
precise form is given in Lemma 9.4 below.

Proof. We start analysing the injection claimed in equation (67). As in Section 6, all local cal-
culations happen on the finite covering charts of PΞM𝑔,𝑛 (𝜇). At a generic point of a divisor
𝐷Γ, the vector bundle E𝐵 ⊗ L−1

𝐵 is generated (using the notation of Case 2 of Section 6.2) by
〈𝑡ℓ𝑑�̃� [0]

2 , . . . , 𝑡ℓ𝑑�̃� [0]
𝑁0

, 𝑡ℓ𝑑𝑡/𝑡, 𝑡ℓ𝑑�̃� [−1]
2 , . . . , 𝑡ℓ𝑑�̃� [−1]

𝑁1
〉. It is hence obviously a subbundle of the ker-

nel K as given in equation (44). Similarly, at the intersection point of L divisors different from 𝐷h, the
vector bundle E𝐵 ⊗L−1

𝐵 is generated by the elements 𝑡 �𝐿�𝑑�̃� [−𝑖 ]
𝑗 and 𝑡 �𝐿�𝑑𝑡𝑖/𝑡𝑖 for 𝑗 = 2, . . . , 𝑁𝑖 and for

𝑖 = 0, · · · , 𝐿, where we recall that 𝑡 �𝐿� =
∏𝐿

𝑖=1 𝑡
ℓ𝑖
𝑖 was introduced in equation (48). This is obviously a

subbundle of K as given in proof of Theorem 6.1. In the presence of a horizontal edge, this argument
still works; see the form of the cokernel in Case 1 and Case 3 above. The precise form of C is isolated
in several lemmas below. �

To start with the computation of C, we will also need an infinitesimal thickening of the boundary
divisor 𝐷Γ, namely we define 𝐷Γ,• to be its ℓΓth thickening, the nonreduced substack of ΞM𝑔,𝑛 (𝜇)

defined by the ideal IℓΓ𝐷Γ
. We will factor the above inclusion using the notation

𝔦Γ = 𝔦Γ,• ◦ 𝑗Γ,• : 𝐷Γ
𝑗Γ,•
↩→ 𝐷Γ,•

𝔦Γ,•
↩→ 𝐵 .

We need three more bundles. First, we recall from equation (49) the definition of the line bundle L�
Γ ,

and we define L�
Γ,• = ( 𝑗Γ,•)∗L�

Γ . Second, we need the analogue of E𝐵, but as a bundle on 𝐷Γ. Since the
projections are defined only on 𝐷𝑠

Γ rather than on 𝐷Γ, we cannot define this bundle as a 𝑝�-pullback,
but we need to define it by local generators. That is, we define E�Γ to be the vector bundle of rank 𝑁�

Γ − 1
on 𝐷Γ with generators 𝑑𝑐 [0]

𝑗 as O𝐷Γ -module at a generic point of Γ with the usual coordinates from
equation (39). At a point where the top level degenerates, into say k levels, it is generated as O𝐷Γ -
module by the differentials 𝑑𝑐 [−𝑖 ]

𝑗 of level-wise periods and by 𝑑𝑡𝑖/𝑡𝑖 for 𝑖 = 0, . . . , 𝑘 − 1. Third, we
define E�Γ,• = ( 𝑗Γ,•)∗(E�Γ ).
Lemma 9.3. There is an equality of Chern characters

ch
(
(𝔦Γ,•)∗(E�Γ,• ⊗ (L�

Γ,•)
−1)

)
= ch

(
(𝔦Γ)∗

( ℓΓ−1⊕
𝑗=0

N⊗− 𝑗
Γ ⊗ E�Γ ⊗ (L�

Γ )
−1) ) .

Proof. If FΓ is a vector bundle on 𝐷Γ and FΓ,• = (𝔦Γ,•)∗(FΓ) is its pushforward to the ℓΓ-thickening,
we consider the exact sequences

0 → I𝑘+1
𝐷Γ

FΓ,• → I𝑘𝐷Γ
FΓ,• → ( 𝑗Γ,•)∗

(
I𝑘𝐷Γ

I𝑘+1
𝐷Γ

⊗O𝐷 FΓ

)
→ 0, 𝑘 = 0, . . . , ℓΓ − 1.

Notice that IℓΓ𝐷Γ
FΓ,• = 0.

We specialise to FΓ = E�Γ ⊗ (L�
Γ )

−1 and compute the Chern character of its pushforward to the
thickening via the previous sequences. The statement then follows from the identification I𝑘𝐷Γ

/I𝑘+1
𝐷Γ

=

N⊗−𝑘
Γ and from the fact that (𝔦Γ,•)∗ is exact, since 𝔦Γ,• is a closed embedding. �

The cokernel of equation (67) can be described using the bundles we just introduced.

Lemma 9.4. The cokernel of equation (67) is given by

C =
⊕

Γ∈LG1 (B)
CΓ where CΓ = (𝔦Γ,•)∗(E�Γ,• ⊗ (L�

Γ,•)
−1) . (68)
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Proof. Recall that local generators of K had been given in the proof of Theorem 6.1. At a generic point
of the boundary divisor 𝐷Γ, there is a map of coherent sheaves K → (𝔦Γ,•)∗(E�Γ,• ⊗ (L�

Γ,•)
−1) given in

terms of the generators in equation (44) by 𝑡ℓ𝑑𝑡/𝑡 ↦→ 0, by 𝑡ℓ𝑑�̃� [−1]
𝑗 ↦→ 0 and by 𝑑�̃� [0]

𝑗 ↦→ 𝑑�̃� [0]
𝑗 mod 𝑡ℓ

for all j. The kernel of this map is obviously E𝐵 ⊗ L−1
𝐵 .

In a neighbourhood U of the intersection of L boundary divisors 𝐷Γ𝑖 , labeled so that Γ𝑖 is the
ith undegeneration, we recall the shorthand notation 𝑡 �𝑠� =

∏𝑠
𝑖=1 𝑡

ℓ𝑖
𝑖 , and we assign for every level

−𝑖 ∈ {0, . . . , 𝐿}

𝑡 �𝑖�𝑑𝑡𝑠/𝑡𝑠 ↦→ 𝑡 �𝑖�𝑑𝑡𝑠/𝑡𝑠 mod 𝑡ℓ𝑖+1
𝑖+1 , ∈ CΓ𝑖+1

𝑡 �𝑖�𝑑�̃�
[−𝑠]
𝑗 ↦→ 𝑡 �𝑖�𝑑�̃�

[−𝑠]
𝑗 mod 𝑡ℓ𝑖+1

𝑖+1 , ∈ CΓ𝑖+1

𝑡 �𝑖�𝑑𝑞
[−𝑠]
𝑘 /𝑞 [−𝑠]

𝑘 ↦→ 𝑡 �𝑖�𝑑𝑞
[−𝑠]
𝑘 /𝑞 [−𝑠]

𝑘 mod 𝑡ℓ𝑖+1
𝑖+1 , ∈ CΓ𝑖+1

(69)

for all 𝑠 = 0, . . . , 𝑖 and all j and k. Again, this map is designed so that the kernel is E𝐵 ⊗ L−1
𝐵 |𝑈 . A local

computation of transition functions shows that these maps glue together. �

The proof of Theorem 9.2. is completed by the two preceding lemmas. �

Proposition 9.5. The Chern character of the twisted logarithmic cotangent bundle E𝐵 ⊗ L−1
𝐵 can be

expressed in terms of the twisted logarithmic cotangent bundles of the top levels of nonhorizontal divisors
as

ch(E𝐵 ⊗ L−1
𝐵 ) = 𝑁𝑒 𝜉 − 1 −

∑
Γ∈LG1 (B)

𝔦Γ∗

(
ch(E�Γ ) · ch(L�

Γ )
−1 ·

(1 − 𝑒−ℓΓc1 (NΓ) )

c1 (NΓ)

)
.

Proof. First, by Corollary 9.1, we have ch(K) = 𝑁𝑒 𝜉 − 1. Second, from the sequence in equation (67),
we get

ch(E𝐵 ⊗ L−1
𝐵 ) = ch(K) − ch(C). (70)

From the additivity of the Chern character, we get ch(C) = ⊕Γ∈LG1 (B)ch(CΓ). We now aim to apply
Lemma 9.3 and the Grothendieck-Riemann-Roch Theorem in equation (10) to the map 𝑓 = 𝔦Γ, a smooth
embedding. The contribution of the Todd classes simplifies, since the normal bundle exact sequence

0 → T𝐷Γ → 𝔦∗ΓT𝐵 → NΓ → 0

implies td(𝑇𝐷Γ ) · td(NΓ) = td(𝔦∗ΓT𝐵) = 𝔦∗Γtd(T𝐵). If FΓ is a vector bundle on 𝐷Γ, we can thus simplify
(10) and get

ch(𝔦Γ,∗FΓ) = 𝔦Γ,∗(ch(FΓ) · td(T𝐷Γ )) · td(T𝐵)
−1 = 𝔦Γ,∗(ch(C) · td(T𝐷Γ ) · 𝔦

∗
Γtd(T𝐵)

−1)

= 𝔦Γ,∗(ch(FΓ) · td(NΓ)
−1) .

Using the previous remark and Lemma 9.3, we get

ch(CΓ) = (𝔦Γ)∗
(ℓΓ−1∑
𝑗=0

ch(E�Γ ) · ch(L�
Γ )

−1 · ch(NΓ)
− 𝑗 td ([NΓ])

−1
)

=
ℓΓ−1∑
𝑗=0

𝔦Γ∗

(
ch(E�Γ ) · ch(L�

Γ )
−1 ·

𝑒− 𝑗c1 (NΓ) (1 − 𝑒−c1 (NΓ) )

c1 (NΓ)

)
.

Cancelling terms in the telescoping sum and substituting back the previous expression in equation (70)
gives the proposition. �

From this proposition, we get some concrete expansions.
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Proof of Theorem 1.1. Since the first Chern character is the same as the first Chern class, by extracting
the first-degree parts from the expression given in Proposition 9.5, we compute the left-hand side to be

ch1(E𝐵 ⊗ L−1
𝐵 ) = c1(E𝐵) + (𝑁 − 1)

∑
Γ∈LG1 (B)

ℓΓ [𝐷Γ]

and the right-hand side to be

𝑁𝜉 −
∑

Γ∈LG1 (B)
ℓΓ𝔦Γ,∗((𝑁

�
Γ − 1) [1𝐷Γ ]) = 𝑁𝜉 −

∑
Γ∈LG1 (B)

ℓΓ (𝑁
�
Γ − 1) [𝐷Γ] .

By comparing the two expressions, we get the claim. �

To translate Proposition 9.5 into a formula that can be recursively evaluated, we compare the bundleE�Γ
to the analogous object

E𝐵�
Γ
= Ω1

𝐵�
Γ
(log 𝐷𝐵�

Γ
)

on the top level of the divisor 𝐷Γ for Γ ∈ LG1 (B), where 𝐷𝐵�
Γ

is the total boundary of the generalised
stratum 𝐵�

Γ , including the horizontal divisor.

Lemma 9.6. We have

𝑝�,∗Γ E𝐵�
Γ
= 𝑐∗Γ E�Γ . (71)

Proof. The statement can be checked on the local generators. Indeed, recall that the generators of E�Γ as
introduced before Lemma 9.3 are 𝑑𝑐 [0]𝑗 at a generic point of 𝐷Γ and 𝑑𝑐 [−𝑖 ]𝑗 and 𝑑𝑡𝑖/𝑡𝑖 for 𝑖 = 0, . . . , 𝑘−1.
Note that even though the map 𝑐Γ is branched at the preimage of {𝑡𝑖 = 0}, say given by {𝑡𝑖 = 0}, the
pullback of the standard generators 𝑑𝑡𝑖/𝑡𝑖 of the log cotangent bundle are proportional to the standard
generators 𝑑𝑡𝑖/𝑡𝑖 . We can apply the same argument for the finite-degree map 𝑝� × 𝑝⊥ and check that
the pullback of the local generators of E𝐵�

Γ
coincide with the previous ones. �

For the inductive proof, we introduce the following shorthand notation. Let

𝑃𝐵 = ch(E𝐵)
∏

Γ∈LG1 (B)
𝑒−ℓΓ [𝐷Γ ] and 𝑃𝐵�

Γ
= ch(E𝐵�

Γ
)

∏
Δ∈LG1 (𝐵

�
Γ )

𝑒−ℓΔ [𝐷Δ ]

be the Chern characters of the logarithmic cotangent bundles twisted by a boundary contribution, and let

𝑃�
Γ = ch(E�Γ ) · ch(L�

Γ )
−1 = ch(E�Γ )

∏
Γ
[0]
�Δ̂

𝑒−ℓΔ ,1 [𝐷Δ ] . (72)

In these terms, Proposition 9.5 reads

𝑃𝐵 = (𝑁𝑒 𝜉 − 1) −
∑

Γ∈LG1 (B)
𝔦Γ∗

(
ℓΓ𝑃

�
Γ td(N⊗ℓΓ

Γ )−1
)
. (73)

We set 𝛿𝐿+1 (Γ) = {·}, the only graph with one level corresponding to the open stratum B, for
Γ ∈ LG𝐿 (𝐵), to make boundary terms well-defined in the sequel. In particular, 𝑁�

𝛿𝐿+1
(Γ) = 𝑁 .
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Proposition 9.7. The twisted Chern character 𝑃𝐵 is given by

𝑃𝐵 =
𝑁−1∑
𝐿=0

∑
Γ∈LG𝐿 (𝐵)

(
𝑁�
𝛿1 (Γ)

𝑒 𝜉𝐵 − 1
)
𝔦Γ∗

(
𝐿∏
𝑖=1

−ℓΓ,𝑖td
(
N⊗ℓΓ,𝑖

Γ/𝛿�𝑖 (Γ)

)−1
)
. (74)

Proof. We prove the formula by induction on N. For one-dimensional strata (𝑁 = 2), the formula is
equation (73) since 𝑃�

Γ is trivial then. We claim that by induction hypothesis

𝑃�
Γ =

𝑁−2∑
𝐿=0

∑
Δ̂∈LG𝐿+1 (𝐵)

𝛿𝐿+1 (Δ̂ )=Γ

(
𝑁�
𝛿1 (Γ)

𝑒 𝜉𝐵 |𝐷Γ − 1
)
𝔧Δ̂ ,Γ∗

(
𝐿∏
𝑖=1

−ℓΔ̂ ,𝑖td
(
N⊗ℓΔ̂ ,𝑖

Δ̂/𝛿�𝑖 (Δ̂)

)−1
)

(75)

holds in CH∗(𝐷Γ). We insert this formula into equation (73). Note that for the degeneration of arbitrary
codimension appearing in equation (75), we have

𝑗∗
Δ̂ ,Γ

𝑐1 (N⊗ℓΓ
Γ ) = 𝑐1

(
N⊗ℓΔ̂ ,𝐿+1

Δ̂/𝛿�
𝐿+1 (Δ̂)

)
(76)

by splitting the degeneration into codimension one degenerations and applying successively Corol-
lary 7.7 in the case 𝛿𝐿+1 (Δ̂) = Γ. An application of the push-pull formula now gives the expression in
the proposition.

To prove the claim, note that the induction hypothesis directly implies that

𝑃𝐵�
Γ
=

𝑁−2∑
𝐿=0

∑
Δ∈LG𝐿 (𝐵

�
Γ )

(
𝑁�
𝛿1 (Δ)

𝑒
𝜉𝐵�

Γ − 1
)
𝔦Δ∗

(
𝐿∏
𝑖=1

−ℓΔ ,𝑖td
(
N⊗ℓΔ ,𝑖

Δ/𝛿�𝑖 (Δ)

)−1
)

(77)

in CH∗(𝐵�
Γ ). We now pull back this equation and our claimed equation to 𝐷𝑠

Γ and compare. Agreement
in 𝐷𝑠

Γ implies the claim, since we are working with rational Chow groups throughout. The agreement
follows from the comparison of the normal bundles in the argument of the Todd classes, which in turn
is a consequence of the comparison results in Proposition 4.9 and equation (59). �

Corollary 9.8. The Chern character of the logarithmic cotangent bundle is

ch(E𝐵) =
𝑁−1∑
𝐿=0

∑
Γ∈LG𝐿 (𝐵)

(
𝑁�
𝛿1 (Γ)

𝑒 𝜉𝐵 − 1
)
𝔦Γ∗

(
𝑒LΓ

𝐿∏
𝑖=1

−ℓΓ,𝑖td
(
N⊗−ℓΓ,𝑖

Γ/𝛿�𝑖 (Γ)

)−1
)
,

where LΓ =
∑−𝐿
𝑖=0 L

[𝑖 ]
Γ .

The subsequent simplifications of this formula are based on the following observation. Suppose that
Γ ↦→ 𝑎Γ is an assignment of a rational number to every level graph Γ ∈ LG𝐿 (𝐵) for every L with the
property that if 𝐿 > 1. Then

𝑎Γ =
𝐿∏
𝑖=1

𝑎𝛿𝑖 (Γ) (78)

is the product of those numbers over all undegenerations to two-level graphs. We use the abbreviation
𝑎Γ,𝑖 = 𝑎𝛿𝑖 (Γ) .
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Lemma 9.9. For a collection of 𝑎Γ satisfying equation (78), the identity

exp

( ∑
Γ∈LG1 (𝐵)

𝑎Γ [𝐷Γ]

)
= 1 +

𝑁−1∑
𝐿=1

∑
Γ∈LG𝐿 (𝐵)

𝑎Γ 𝔦Γ,∗
( 𝐿∏
𝑖=1

td
(
N⊗−𝑎Γ,𝑖

Δ/𝛿�𝑖 (Δ)

)−1
)

holds in CH∗(𝐵).

Proof. The proof shows that this equality holds if we restrict to any subset 𝑆 ⊂ LG1 (𝐵) on the left-
hand side and if we restrict on the right-hand side to the sum of those Γ ∈ LG𝐿 (𝐵) such that all their
two-level undegenerations belong to S. The proof now proceeds by induction over |𝑆 |.

For |𝑆 | = 1, this is the identity exp(𝑎Γ [𝐷Γ]) = 1 + 𝑎Γ𝔦Γ,∗(td(N⊗−𝑎Γ
Γ )−1) that follows from the

adjunction formula 𝔦∗Γ𝔦Γ,∗𝛼 = 𝑐1 (NΓ) ·𝛼 and the relation between the generating series of the exponential
and the Todd class.

For |𝑆 | ≥ 2, this follows from the uniqueness of the intersection orders shown in Proposition 5.1 and
induction. We give details for |𝑆 | = 2, leaving it to the reader to set up the notation for the general case.
Let Γ𝑘 ∈ LG1(𝐵) for 𝑘 = 1, 2, and abbreviate 𝐷𝑘 = 𝐷Γ𝑘 , N𝑘 = 𝑐1 (NΓ𝑘 ), 𝔦𝑘 = 𝔦Γ𝑘 and 𝔧𝑘 = 𝔧Δ ,Γ𝑘 for
any graph Δ with 𝛿𝑘 (Δ) = Γ𝑘 for 𝑘 = 1, 2. We denote by [1, 2] the set of such 3-level graphs Δ . Then
by equation (76),∑

Δ∈[1,2]
𝔦Δ ,∗

(
𝑐1
(
N

Δ/𝛿�1 (Δ)

) 𝑥−1
𝑐1
(
N

Δ/𝛿�2 (Δ)

) 𝑦−1
)
=

∑
Δ∈[1,2]

𝔦Δ ,∗
(
𝔧∗1N𝑥−1

1 𝔧∗2N
𝑦−1
2

)
=

∑
Δ∈[1,2]

𝔦1,∗
(
𝔦∗1 ([𝐷1])

𝑥−1𝔧1,∗𝔧
∗
2N

𝑦−1
2

)
= [𝐷1]

𝑥−1 ·
∑

Δ∈[1,2]
𝔦2,∗𝔧2,∗𝔧

∗
2N

𝑦−1
2

= [𝐷1]
𝑥 · 𝔦2,∗N𝑦−1

2 = [𝐷1]
𝑥 · [𝐷2]

𝑦 .

Taking the generating series over this expression proves the claim. �

Proof of Theorem 1.2. To deduce this theorem from Corollary 9.8, we introduce shorthand notations
for the products of inverse Todd classes: namely for any Γ ∈ LG𝐿 (𝐵), we let

𝑋Γ,𝑖 = td
(
N⊗−ℓΓ,𝑖

Γ/𝛿�𝑖 (Γ)

)−1
and 𝑋Γ =

𝐿∏
𝑖=1

𝑋Γ,𝑖 , (79)

and

𝑋Δ\Γ =
∏
𝑖∈𝐼�

td
(
N⊗−ℓΓ,𝑖

Γ/𝛿�𝑖 (Γ)

)−1

if Γ = 𝛿𝐼 (Δ) is the undegeneration keeping only the level passages in I of Δ . Now the argument of
Lemma 9.9 with ℓΓ playing the role of 𝑎Γ and with both sides restricted to degenerations of a fixed
Γ ∈ LG𝐿 (𝐵) gives

exp(LΓ) = exp

( ∑
Γ∈LGΓ

𝐿+1 (𝐵)

ℓΓ [𝐷Γ]

)
= 1 +

𝑁−1∑
𝐿′=𝐿+1

∑
Δ∈LGΓ

𝐿′
(𝐵)

ℓΔ 𝔧Δ ,Γ,∗(𝑋Δ\Γ) ,

where LGΓ
𝐿′ (𝐵) are the graphs with 𝐿 ′ levels below zero that are degenerations of Γ. We inject this

formula into the right-hand side of Corollary 9.8. Since

𝔦Γ,∗
(
𝔧Δ ,Γ,∗(𝑋Δ\Γ) · 𝑋Γ) = 𝔦Δ ,∗(𝑋Δ ),
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by the projection formula and equation (76), we obtain

ch(E𝐵) =
𝑁−1∑
𝐿=0

(−1)𝐿
∑

Γ∈LG𝐿 (𝐵)

(
𝑁�
𝛿1 (Γ)

𝑒 𝜉𝐵 − 1
) 𝑁−1∑
𝐿′=𝐿

∑
Δ∈LGΓ

𝐿′
(𝐵)

ℓΔ 𝔦Δ ,∗(𝑋Δ ) .

It remains to sort this expression as a sum over ℓΔ𝔦Δ ,∗(𝑋Δ ). Since each Δ ∈ LG𝐿′ (𝐵) appears in the
expression of each Γ with 𝛿𝐼 (Δ) = Γ, its coefficient in the final expression of ch(E𝐵) is (defining
min({∅}) = 𝐿 ′ + 1)∑

𝐼 ⊆{1, · · · ,𝐿′ }

(−1) |𝐼 | ·
(
𝑁�
𝛿min(𝐼 ) (Δ)

𝑒 𝜉𝐵 − 1
)
= 𝑒 𝜉𝐵 ·

∑
𝐼 ⊆{1, · · · ,𝐿′ }

(−1) |𝐼 |𝑁𝛿min(𝐼 ) (Δ)

= 𝑒 𝜉𝐵 ·
(
𝑁 − 𝑁�

𝛿𝐿′ (Γ)

)
,

where the disappearance of (−1) |𝐼 |+1 in the first equality and the cancellation in the second equality stem
from canceling the contributions of pairs under the involution 𝐼 ↦→ 𝐼 ∪ {𝐿 ′} if 𝐿 ′ ∉ 𝐼 and 𝐼 ↦→ 𝐼 \ {𝐿 ′},
if 𝐿 ′ ∈ 𝐼. �

In preparation for the next theorem, we switch to the language of profiles introduced in Section 5 and
recall that the notation depends on the choice of the numbering of LG1 (B) = {Γ1, . . . , Γ𝑀 }. We claim
that Theorem 1.2 can equivalently be restated as

ch(E𝐵) = 𝑒 𝜉𝐵 ·

𝑁−1∑
𝐿=0

∑
[ 𝑗1 ,..., 𝑗𝐿 ] ∈𝒫𝐿

(
𝑁 − 𝑁�

𝑗𝐿

) 𝐿∏
𝑖=1

(
𝑒ℓ 𝑗𝑖 [𝐷 𝑗𝑖 ] − 1

)
, (80)

where 𝒫𝐿 is the set of profiles of length L. To see the equivalence, it suffices to expand the product in
equation (80) and to use Proposition 5.1 about the uniqueness of the order of letters in a profile. Note
that we cannot replace 𝒫𝐿 with LG𝐿 (𝐵) in equation (80), as this would give wrong multiplicities.

We abbreviate the difference of dimensions 𝑟Γ,𝑖 = 𝑁 −𝑁�
𝛿𝑖 (Γ)

and write 𝑟Γ =
∏𝐿

𝑖=1 𝑟Γ,𝑖 . It is useful to
remember that 𝑟Γ,𝑖 =

∑𝐿
𝑗=𝑖+1 𝑁

[− 𝑗 ] =
∑𝐿

𝑗=𝑖+1(𝑑
[− 𝑗 ] + 1) is the sum of the unprojectivised dimensions of

the lower levels. If we work with profiles and the elements of LG1(B) are numbered, we write 𝑟 𝑗 = 𝑟Γ 𝑗

and ℓ𝑖 = ℓΓ𝑖 . We can now state an additive and a multiplicative decomposition of the Chern polynomial.

Theorem 9.10. The Chern polynomial of the logarithmic cotangent bundle is

𝑐(E𝐵) =
𝑁−1∏
𝐿=0

∏
[ 𝑗1 ,..., 𝑗𝐿 ] ∈𝒫𝐿

∏
𝐼 ⊆{1,...,𝐿 }

(
1 + 𝜉 +

∑
𝑖∈𝐼

ℓ 𝑗𝑖 [𝐷 𝑗𝑖 ]
) (−1) |𝐼� | ·𝑟 𝑗𝐿

=
𝑁−1∑
𝐿=0

∑
Γ∈LG𝐿 (𝐵)

ℓΓ𝔦Γ,∗

(∑
k

(
𝑁 −

∑𝐿
𝑖=1 𝑘𝑖

𝑘0

)
𝜉𝑘0 ·

𝐿∏
𝑖=1

(
𝑟Γ,𝑖 −

∑𝐿
𝑗>𝑖 𝑘 𝑗

𝑘𝑖

)
(ℓ𝑖𝜈Γ,𝑖)

𝑘𝑖−1

)
,

(81)

where k = (𝑘0, 𝑘1, . . . , 𝑘𝐿) is a tuple with 𝑘0 ≥ 0 and 𝑘𝑖 ≥ 1 for 𝑖 = 1, . . . , 𝐿 and where 𝜈Γ,𝑖 =
𝑐1 (NΓ/𝛿�𝑖 (Γ)

). For 𝐿 = 0, the exponent 𝑟 𝑗𝐿 is to be interpreted as N.

Proof. We deduce the first line from equation (80). We compute the degree-d-part of its interior product
to be [

𝑒 𝜉𝐵
𝐿∏
𝑖=1

(
𝑒ℓ 𝑗𝑖 [𝐷 𝑗𝑖 ] − 1

) ]
𝑑
=

1
(𝑑 − 1)! · 𝑑

∑
𝐼 ⊆{1,...,𝐿 }

(−1) |𝐼
� |
(
𝜉 +

∑
𝑖∈𝐼

[𝐷 𝑗𝑖 ]
)𝑑
.
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On the other hand, recall from [ACG11, p. 586] that the Chern polynomial is given in terms of the
graded pieces of the Chern character by

𝑐(E𝐵) = exp
(∑
𝑑≥1

(−1)𝑑−1(𝑑 − 1)!ch𝑑 (E𝐵)
)
.

Using the generating series of the logarithmic function, we then obtain the first line of the statement by
combining the previous two expressions.

To pass to the second line, we show that the first line formally fits with Lemma 9.11 below. We want
to replace the two exterior products over all L and profiles 𝒫𝐿 by all subsets of the integer interval
[[1, . . . , 𝑀]] without altering the value of the product. For this purpose, we claim that for each element
of 𝒫𝐿 the interior product

𝑃 =
∏

𝐼 ⊆{1,...,𝐿 }

(
1 + 𝜉 +

∑
𝑖∈𝐼

ℓ 𝑗𝑖 [𝐷 𝑗𝑖 ]
) (−1) |𝐼� | ·𝑟 𝑗𝐿

considered as an element in the polynomial ring is in 1 + 𝐷1 · · ·𝐷𝐿 · Q[𝜉, 𝐷1, . . . , 𝐷𝐿]. This claim
implies that the additional products give zero in the Chow ring and considering the profiles as subsets
of [[1, . . . , 𝑀]] rather than as ordered tuples is no loss of information thanks to Proposition 5.1. To
justify the claim, we may assume 𝑟 𝑗𝐿 = 1, since the claim persists when raising to an integral power.
For 𝐿 = 1, the claim is obvious; and for the inductive step, one replaces 𝜉 successively with 𝜉 + ℓ 𝑗𝑘𝐷𝑘

to see that 𝑃 − 1 is divisible by 𝐷𝑖 for all 𝑖 ≠ 𝑘 .
Now we are in the situation to apply the image of the formula of Lemma 9.11 in the Chow ring.

To match the second line of the lemma and the theorem, we define, for a tuple k = (𝑘0, 𝑘1, . . . , 𝑘𝑀 )

as in the lemma, the integer L to be the number of entries 𝑘𝑖 that are positive. Consider a summand
k = (𝑘0, 𝑘1, . . . , 𝑘𝑀 ) in the second line of the statement of Lemma 9.11, and say that 𝑖1, . . . , 𝑖𝐿 are those
indices where the entries 𝑘𝑖 𝑗 are positive. Then the contribution of this summand to the second line of
equation (82) equals the contributions of the (possibly empty) set of level graphs in 𝐷𝑖1 ∩ · · · ∩ 𝐷𝑖𝐿 to
the second line of equation (81). �

Lemma 9.11. In the polynomial ring Q[𝜉, 𝐷1, . . . , 𝐷𝑀 ], the identity∏
[ 𝑗1 ,..., 𝑗𝐿 ] ⊆{1,...,𝑀 }

∏
𝐼 ⊆{1,...,𝐿 }

(
1 + 𝜉 +

∑
𝑖∈𝐼

ℓ 𝑗𝑖𝐷 𝑗𝑖

) (−1) |𝐼� | ·𝑁 𝑗𝐿

=
∑

k

(
𝑁 −

∑𝑀
𝑖=1 𝑘𝑖

𝑘0

)
𝜉𝑘0 ·

𝑀∏
𝑖=1

(∑
𝑗≥𝑖 𝑁

[− 𝑗 ] −
∑𝑀

𝑗>𝑖 𝑘 𝑗

𝑘𝑖

)
(ℓ𝑖𝐷𝑖)

𝑘𝑖

(82)

holds, where k = (𝑘0, 𝑘1, . . . , 𝑘𝑀 ) is a tuple of nonnegative integers and 𝑁𝑠 :=
∑𝑀

𝑗=𝑠+1 𝑁
[− 𝑗 ] and

𝑁 = 𝑁∅ =
∑𝑀

𝑗=0 𝑁
[− 𝑗 ] .

Proof. We proceed by induction on M. The case 𝑀 = 0 is the binomial expansion. The effect of the
passage from 𝑀 −1 to M is given on the left-hand side by replacing 𝑁 [−(𝑀−1) ] with 𝑁 [−(𝑀−1) ] +𝑁 [−𝑀 ]

in all those factors where 𝑗𝐿 < 𝑀 and by multiplying by the factors where 𝑗𝐿 = 𝑀: that is, by
multiplication with ∏

[ 𝑗1 ,..., 𝑗𝐿−1 ]⊆{1,...,𝑀−1}
𝐼⊆{1,...,𝐿−1}

(
1 + 𝜉 + 𝐷𝑀 +

∑
𝑖∈𝐼

ℓ 𝑗𝑖𝐷 𝑗𝑖

) (−1) |𝐼� | ·𝑁 [𝑀 ]

=
∑
𝑘𝑀 ≥0

(
𝑟𝑀
𝑘𝑀

)
𝐷𝑘𝑀 ·

∏
[ 𝑗1 ,..., 𝑗𝐿−1 ]⊆{1,...,𝑀−1}

𝐼⊆{1,...,𝐿−1}

(
1 + 𝜉 +

∑
𝑖∈𝐼

ℓ 𝑗𝑖𝐷 𝑗𝑖

) (−1) |𝐼� | · (𝑁 [𝑀 ]−𝑘𝑀 )
.
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Applying the induction hypothesis with 𝑁 [−(𝑀−1) ] replaced by 𝑁 [−(𝑀−1) ] + 𝑁 [−𝑀 ] − 𝑘𝑀 gives the
claim. �

The following step concludes the proof of all main theorems.

Lemma 9.12. Suppose that 𝛼Γ ∈ CH0(𝐷Γ) is a top-degree class and 𝑐∗Γ𝛼Γ =
∏−𝐿 (Γ)

𝑖=0 𝑝 [𝑖 ],∗
Γ 𝛼𝑖 for

some 𝛼𝑖 . Then ∫
𝐷Γ

𝛼Γ =
𝐾Γ

|Aut(Γ) |ℓΓ

−𝐿 (Γ)∏
𝑖=0

∫
𝐵 [𝑖 ]
Γ

𝛼𝑖 .

Proof. We have ∫
𝐷Γ

𝛼Γ =
1

deg(𝑐Γ)

∫
𝐷𝑠

Γ

𝑐∗Γ (𝛼Γ) =
deg(𝑝Γ)
deg(𝑐Γ)

−𝐿 (Γ)∏
𝑖=0

∫
𝐵 [𝑖 ]
Γ

𝛼𝑖 ,

and the claim follows from Lemma 4.5. �

Proof of Theorem 1.3. By Proposition 2.1, it is enough to compute the top Chern class 𝑐𝑑 (E𝐵), where
𝑑 = dim(𝐵) = 𝑁−1. We investigate for each L and each Γ ∈ LG𝐿 (𝐵) the contribution of the second line
of equation (81) in Theorem 9.10 to 𝑐𝑑 (E𝐵). It suffices then to show that the expression inside the 𝔦Γ,∗
is equal to 𝑁�

Γ

∏𝐿−1
𝑖=0 (𝜉 [𝑖 ]Γ )𝑑

[𝑖 ]
Γ . Note that by Proposition 7.5 the first Chern class of the normal bundle

N
Γ/𝛿�𝑖 (Γ)

is supported on the levels −𝑖 + 1 and −𝑖 of Γ. Considering the bottom level, we deduce that if

the summand k contributes nontrivially to the top Chern class 𝑐𝑑 , then we must have 𝑘𝐿 ≥ 𝑑 [𝐿 ] + 1 so
that the 𝜈Γ,𝐿-power is large enough for its binomial expansion to contain a top 𝜉-power for the bottom
level. On the other hand, for the binomial coefficient in front of it to be nonzero, we need 𝑟Γ,𝐿 ≥ 𝑘𝐿 ,
which is equivalent to 𝑘𝐿 ≤ 𝑑 [𝐿 ] + 1. So 𝑘𝐿 = 𝑑 [𝐿 ] + 1, the binomial coefficient is one and we have to
select from the expansion of 𝜈𝑑 [𝐿 ]

Γ𝐿
the term that does not contribute to level −𝑖−1. Since the top entry of

the binomial coefficient is 𝑟Γ,𝑖 −
∑𝐿

𝑗>𝑖 𝑘 𝑗 = 1 + 𝑁𝑖 +
∑𝐿

𝑗>𝑖 (𝑑
[ 𝑗 ] + 1 − 𝑘 𝑗 ), we can inductively repeat this

argument for all levels and deduce 𝑘 𝑗 = 𝑑 [ 𝑗 ] + 1 for all 𝑗 ≥ 1 and 𝑘0 = 𝑑 [0] . The only nontrivial factor
is now 𝑁�

Γ , which stems from the first binomial coefficient in the second line of equation (81). The final
shape of the statement follows then directly from Proposition 4.9 and Lemma 9.12, after noticing that
the ℓΓ coefficients cancel. �

10. Examples: Geometry and values

In this section, we explain how to evaluate top-degree classes. We provide examples illustrating the
geometry at the boundary of the compactification PΞM𝑔,𝑛 (𝜇) and examples of our formulas for the
normal bundles, the Chern polynomials and the Euler characteristic.

10.1. Evaluation of top 𝝃-powers

First we explain how to evaluate the expression in Theorem 1.3; see [CMZ20] for many algorith-
mic details. We only need to explain how to evaluate

∫
𝐵
𝜉𝑑: that is, top powers of 𝜉 on generalised

strata.
Suppose that 𝐵 = PΩM𝑔,1(2𝑔− 2) is a stratum parametrising connected surfaces with a single zero.

Then the generating series of top 𝜉-powers is given by a simple power series inversion that arises in the
computation of Masur-Veech volumes; see [Sau18] and [CMSZ20, Theorem 3.1] and Table 2 for some
values.
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Table 2. Integrals of top 𝜉 -powers for some connected strata..

𝜇 (0) (2) (4) (6) (0, 0, −2) (2, −2)∫
𝐵
𝜉 dim(𝐵) 1

24 − 1
640

−305
580608 − 87983

199065600 1 − 1
8

𝜇 (1, 1, −2) (4, −2) (3, 1, −2) (2, 1, −3) (5, −3) (8, −2, −2, −2)∫
𝐵
𝜉 dim(𝐵) 0 − −23

1152 0 5
8 − 21

20 − 4527
32

Suppose that 𝐵 = PΩM𝑔,𝑛 (𝜇) is a stratum parametrising connected surfaces of holomorphic type:
that is, with all 𝑚𝑖 ≥ 0 and with 𝑛 ≥ 2. Then

∫
𝐵
𝜉𝑑 = 0 by [Sau18, Proposition 3.3].

It remains to explain how to evaluate
∫
𝐵
𝜉𝑑 , top powers of 𝜉 on meromorphic generalised strata.

First we write 𝜉 with the help of Proposition 8.2 as a 𝜓-class and boundary strata. The product of such
objects, which are standard generators of the tautological ring as defined in 6, can be rewritten as a
sum of standard additive generators via the algorithm explained in the proof of Theorem 1.5, more
specifically in the part in which we show that 𝑅•

𝑓 𝑔 (𝐵) = 𝑅•(𝐵) is a ring. Now that we have rewritten
𝜉𝑑 in terms of standard additive generators, by Lemma 9.12, it only remains to explain how to evaluate
a top-dimensional standard generator – that is, the top power of a 𝜓-class – on a generalised stratum 𝐵.
Since 𝜓-classes are pulled back from M𝑔,𝑛, we can use a push-pull argument and express∫

𝐵
𝜓𝑑
𝑖 =

∫
M𝑔,𝑛

𝜋∗([𝐵])𝜓
𝑑
𝑖 ,

where 𝜋 : 𝐵 → M𝑔,𝑛 is the forgetful morphism and we use as always the abuse of notation 𝜓𝑖 = 𝜋∗(𝜓𝑖).
If we can express the class 𝜋∗([𝐵]) in terms of the standard generators of M𝑔,𝑛, we can use the sage

package admcycles to obtain a number.
If 𝐵 is a stratum parametrising meromorphic differentials on connected surfaces without residue

conditions, the class 𝜋∗([𝐵]) was computed in [Sau19] and [BHPSS20], and the algorithmic task can be
performed again by the sage package admcycles, which implements the algorithm based on the formula
in [Sch18] and [BHPSS20].

If the stratum 𝐵 more generally parametrises differentials on disconnected surfaces and with residue
conditions, we first use Proposition 8.3 repetitively to write the class of 𝐵 into the associated stratum
without residue conditions in terms of additive generators of the stratum with no conditions. We then
reduce to the computation of the class 𝜋∗([𝐵]) in the case that 𝐵 has no more residue conditions
but is potentially disconnected. If 𝐵 is disconnected, then 𝜋∗([𝐵]) is zero. Since we can scale the
differentials on the components independently, the fibre dimension to a product of M𝑔𝑖 ,𝑛𝑖 is positive,
and by definition of pushforward, we get the zero class.

For the subsequent examples, we present some cases where we can directly evaluate the top 𝜉-power
for meromorphic strata in genus 0 and genus 1.

Proposition 10.1. The integrals of the top 𝜉-power are given (𝑎𝑖 , 𝑘 ≥ 0)

for 𝐵 = PΩ0,𝑛+1

(
−2 −

𝑛∑
𝑖=1

𝑎𝑖 , 𝑎1, . . . , 𝑎𝑛

)
by

∫
𝐵
𝜉𝑛−2
𝐵

=

(
−1 −

𝑛∑
𝑖=1

𝑎𝑖

)𝑛−2

,

for 𝐵 = PΩ1,2 (−𝑘, 𝑘) by
∫
𝐵
𝜉𝐵 = −

(𝑘 − 1) (𝑘2 − 1)
24

,

for 𝐵 = PΩ1,3 (−𝑘 − 1, 1, 𝑘) by
∫
𝐵
𝜉2
𝐵

=
(𝑘4 − 1)

24
.
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Proof. The first statement follows easily from Proposition 8.2, which in this case implies 𝜉𝐵 = (−1 −∑𝑛
𝑖=1 𝑎𝑖)𝜓1. Indeed, there cannot be any boundary divisors that have the pole on the lower level. Hence

∫
𝐵
𝜉𝑛−2
𝐵

=

(
−1 −

𝑛∑
𝑖=1

𝑎𝑖

)𝑛−2 ∫
M0,𝑛+1

𝜓𝑛−2
1 =

(
−1 −

𝑛∑
𝑖=1

𝑎𝑖

)𝑛−2

.

The second statement follows immediately as the previous one, since again there cannot be boundary
divisors where the pole is on the lower level. Hence∫

𝐵
𝜉 = −(𝑘 − 1)

∫
M1,2

𝜋∗([𝐵])𝜓1 = −
(𝑘 − 1) (𝑘2 − 1)

24
,

where we used [CC14, Proposition 3.1] for the computation of 𝜋∗([𝐵]).
For the proof of the last statement, notice that there can be only one nonhorizontal boundary

divisor 𝐷3 that has the pole on the lower level (see Section 10.3 for the full boundary description).
Using Proposition 8.2, we find then 𝜉𝐵 = −𝑘𝜓1 − 𝐷3, which yields∫

𝐵
𝜉2 = −

∫
𝐵
𝜉𝐵 (𝐷3 + 𝑘𝜓1) =

(
−1/24 +

∫
𝐵
𝑘𝜓1 (𝐷3 + 𝑘𝜓1)

)
=
(
−1/24 + 𝑘2

∫
M1,3

𝜋∗([𝐵]) · 𝜓
2
1

)
= (𝑘4 − 1)/24

again by the computation in [CC14, Proposition 3.1] of the class 𝜋∗([𝐵]) of the stratum in M1,3. �

10.2. The minimal stratum P𝛀M2,1(2)

This stratum is small enough that we can show all the level graphs, including those with horizontal nodes
and their adjacency, in Figure 5. The picture shows the dual graphs of stable curves in the boundary
of this stratum, where the top level is on top of each graph. The number in a vertex denotes the genus,
and a black dot corresponds to genus zero. The numbers associated to the legs are the orders of zero. In
this stratum, all interior edges have enhancement 𝜅𝑒 = 1, so the discussion of prong-matchings is void
here. There are only three graphs without horizontal nodes, in fact |LG1(𝐵) | = 2 and |LG2(𝐵) | = 1,
where 𝐵 = PΩM2,1 (2) as usual. Taking into also account the entire stratum and the stack structure of
the banana graphs and using the values of top 𝜉-powers from Section 10.1, we get

(−1)3 · 𝜒(𝐵) = 4 ·
−1
640

+ 0 + 2 ·
1
24

·
−1
8

+ 2 ·
1
2
·

1
24

· 1 · 1 =
1
40

as in the table in the introduction, in accordance with the fact that this stratum is a 6-fold unramified
cover of M2 and 𝜒(M2) = − 1

240 .

10.3. The stratum P𝛀M1,3(−𝒌 − 1, 1, 𝒌)

This example illustrates the quotient stack structure at the boundary of the smooth compactification
that results from prong-matchings: that is, from points with TwΓ ≠ Tw𝑠

Γ. We have chosen a genus-one
stratum with a simple zero since the projection to M1,2 forgetting the simple zero provides an alternative
way to compute all invariants in this case. We label the points 𝑧1 (pole), 𝑧2 (simple zero) and 𝑧3. The
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Figure 5. Level graphs appearing in the boundary of ΩM2,1 (2). Graphs corresponding to components
of the same dimension are in the same row (divisors in the first row, points in the bottom row). The lines
connecting the graphs symbolise degeneration. The double line indicates a self-intersection.

boundary divisors here are 𝐷h and five more types of divisors, namely there are the divisors

𝐷1,𝑎 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑘 − 1

−𝑎 − 1

𝑎 − 1

−1 − 𝑏

𝑏 − 1

𝑘1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐷2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

−𝑘 − 1

−𝑘 − 3

𝑘 + 1

1𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐷3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1

−2

0

1
𝑘

−𝑘−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝑎, 𝑏 ≥ 1 and 𝑎 + 𝑏 = 𝑘 + 1. Here 𝐷1,𝑎 = 𝐷1,𝑘+1−𝑎, and if k is odd, the middle divisor 𝐷1, (𝑘+1)/2
has an Z/2-involution. Moreover, there are the divisors

𝐷4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑘 − 1 1

1
−𝑘

𝑘 − 2

𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐷5,𝑎′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−𝑘 − 1 1

−𝑎′ − 1

𝑎′ − 1

−1 − 𝑏′

𝑏′ − 1

𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 𝑎′ ∈ {1, . . . , 𝑘 − 1} and 𝑏′ = 𝑘 − 𝑎′. Again, 𝐷5,𝑎′ = 𝐷5,𝑘−𝑎′ with an involution on 𝐷5,𝑘/2 if k is
even. The local exponents are

ℓ1,𝑎 = lcm(𝑎, 𝑘 + 1 − 𝑎), ℓ2 = 𝑘 + 2, ℓ3 = 1, ℓ4 = 𝑘 − 1, ℓ5,𝑎′ = lcm(𝑎′, 𝑘 − 𝑎′)
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H/Γ(2) ⊆ D4

D5,2

D1,4

D1,3

D1,1

H/Γ(4) ⊆
D

4

Dh

D2

D5,3

D1,2

D5,1

Figure 6. The intersection behavior of the boundary in the stratum PΩM1,3(−5, 1, 4). The figure has
to be considered as quotient by the elliptic involution that interchanges 𝐷1,1 with 𝐷1,4 and 𝐷5,1 with
𝐷5,3 and so on.

and the dimensions of the top-level components are

𝑁�
1 = 1, 𝑁�

2 = 2, 𝑁�
3 = 2, 𝑁�

4 = 1, 𝑁�
5 = 2 .

We abbreviate 𝐷1 = 1
2
∑𝑘
𝑎=1 𝐷1,𝑎 and 𝐷5 = 1

2
∑𝑘−1
𝑎′=1 𝐷5,𝑎′ .

The local geometry of the boundary divisors
We give a summary of the boundary points and intersection behaviour of the boundary divisors listed
above. We start with the boundary divisors that map to the interior of M1,2. These are represented by
the thin lines in Figure 6, while thick lines are mapped to the point at infinity of M1,1. The divisor 𝐷3
is simply a copy of the modular curve, intersecting 𝐷h once.

The divisor 𝐷2 minus its intersection with other boundary divisors is the union of the modular curves
𝑋1 (𝑑) = H/Γ1 (𝑑) for all divisors 𝑑 > 1 of 𝑘 + 1. The only intersections with other boundary divisors
are �(𝑘 + 1)/2� − 1 intersection points with 𝐷h and gcd(𝑎, 𝑏)-points with 𝐷1,𝑎.

The divisor 𝐷4 minus its intersection with other boundary divisors is the union of the modular curves
𝑋1 (𝑑) = H/Γ1(𝑑) for all divisors 𝑑 > 1 of k. The only intersections with other boundary divisors are
�𝑘/2� − 1 intersection points with 𝐷h and gcd(𝑎′, 𝑏′)-points with 𝐷5,𝑎′ .

The curves 𝐷1,𝑎 and 𝐷5,𝑎′ form the exceptional divisor when realising the level compactification
PΞM1,3(−𝑘−1, 1, 𝑘) as a blowup ofM1,2 in the node of the universal family overM1,1. Without prong-
matchings, the curves 𝐷1,𝑎 were just an 𝑀0,4 (with a stack structure of an involution if 𝑎 = (𝑘 + 1)/2).
The three boundary points correspond to the intersection with 𝐷5,𝑎−1 and 𝐷5,𝑎 (respectively, with 𝐷h
and 𝐷5,𝑎 if 𝑎 = 1) and with 𝐷2. By the formulas in Section 3.4, at the generic point of 𝐷1,𝑎 (and
also near the intersection with 𝐷2), there are gcd(𝑎, 𝑏) prong-matching equivalence classes. At the
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intersections with 𝐷5, there is just one prong-matching equivalence class. This implies that each 𝐷1,𝑎
is a gcd(𝑎, 𝑏)-fold cover of M0,4, totally ramified over the two points of intersection with 𝐷5.

Similarly, the divisor 𝐷5 is a gcd(𝑎′, 𝑏′)-fold cover of M0,4, totally ramified over the two points that
correspond to the intersections with 𝐷1. We compute the normal bundles of the boundary divisor using
the special geometry of this example, independently of Theorem 7.1.

Proposition 10.2. The self-intersection number of 𝐷1,𝑎 is

𝐷2
1,𝑎 = −𝛿𝑘+1

𝑎 · 𝑘𝑔1,𝑎/ℓ1,𝑎 where 𝑔1,𝑎 = gcd(𝑎, 𝑏)

and where 𝛿𝑘+1
𝑎 = 1/2 if 𝑎 = (𝑘 + 1)/2 and 𝛿𝑘+1

𝑎 = 1 otherwise. The self-intersection number of 𝐷5,𝑎′ is

𝐷2
5,𝑎′ = −𝛿𝑘𝑎′ · (𝑘 + 1) 𝑔5,𝑎′/ℓ5,𝑎′ where 𝑔5,𝑎′ = gcd(𝑎′, 𝑏′) .

Proof. We consider the fibration 𝜋 : PΞM1,3 (−𝑘 − 1, 1, 𝑘) → M1,1 obtained from forgetting the last
two marked points and take a smooth chart of the quotient stack near the image of the curves 𝐷1,𝑎 and
𝐷5,𝑎′ . From the intersection discussion above, we deduce that the fibre over ∞ in M1,1 consists of a
ring of rational curves intersecting in the order

𝐷h − 𝐷1,1 − 𝐷5,1 − 𝐷1,2 − 𝐷5,2 − · · · − 𝐷1,𝑘−1 − 𝐷5,𝑘 − 𝐷1,𝑘+1 − 𝐷h ;

see again Figure 6. We claim that the multiplicity of 𝐷1,𝑎 in the fibre 𝐹 = 𝜋−1 (∞) is equal to
(𝑘 + 1)/gcd(𝑎, 𝑘 + 1). This can be deduced from the fact that 𝜋 |𝐷2 is a cover of degree (𝑘 + 1)2 − 1
and from the order of the cusp stabilisers (see [DS05, Section 3.8], in particular the explanation around
Figure 3.2) since 𝐷2 and 𝐷1,𝑎 intersect transversally in PΞM1,3 (−𝑘−1, 1, 𝑘). Similarly, the multiplicity
of 𝐷5,𝑎′ in this fibre is 𝑘/gcd(𝑎′, 𝑘). Using the orbifold degree of the intersection points given in equation
(23) and 𝐷1,𝑎 · 𝐹 = 0, we find with 𝑎′ = 𝑎 − 1 and 𝑏′ = 𝑏 − 1 that

𝐷2
1,𝑎 = −

gcd(𝑎, 𝑏)
𝑘 + 1

·
𝑎𝑏𝑘

ℓ1,𝑎
·
( 𝑎′

ℓ5,𝑎′ gcd(𝑎′, 𝑘 − 𝑎′)
+

𝑏′

ℓ5,𝑏′ gcd(𝑏′, 𝑘 − 𝑏′)

)
= −

gcd(𝑎, 𝑏)
𝑘 + 1

·
𝑎𝑏𝑘

ℓ1,𝑎
·
𝑘 + 1
𝑎𝑏

= −𝑘 · 𝑔1,𝑎/ℓ1,𝑎 .

The proof of 𝐷5,𝑎′ is similar. �

Proposition 10.2 agrees with Theorem 1.6. Indeed, since the dimension of the top (respectively,
bottom) level stratum of 𝐷1,𝑎 (respectively, 𝐷5,𝑎′) is zero (so codimension one classes vanish), we
compute

𝐷2
1,𝑎 = c1 (N𝐷1,𝑎 ) =

1
ℓ1,𝑎

(
−𝜉�𝐷1,𝑎

− L�
𝐷1,𝑎

+ 𝜉⊥𝐷1,𝑎

)
=

𝐾1,𝑎

ℓ2
1,𝑎Aut(𝐷1,𝑎)

𝜉𝐵⊥
1,𝑎

=
𝑔1,𝑎

ℓ1,𝑎Aut(𝐷1,𝑎)
· (−𝑘),

where in the last two equalities we used Lemma 9.12 about evaluating top classes and the computation
of top powers of 𝜉 that can be done analogously as in the first case of Proposition 10.1. Similarly, we
also get
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𝐷2
5,𝑎′ = c1(N𝐷5,𝑎′ ) =

1
ℓ5,𝑎′

(
−𝜉�𝐷5,𝑎′

+ 𝜉⊥𝐷5,𝑎′
− L�

𝐷5,𝑎′

)
= −

𝐾5,𝑎′

Aut(𝐷5,𝑎′ )ℓ
2
5,𝑎′

𝜉𝐵�
5,𝑎′

−
1

ℓ5,𝑎′
L�
𝐷5,𝑎′

=
𝑔5,𝑎′

Aut(𝐷5,𝑎′ )ℓ5,𝑎′
· (−𝑘) −

1
ℓ5,𝑎′

(
[𝐷5,𝑎′ ] · ( [𝐷4] + [𝐷1,𝑎′ ] + [𝐷1,𝑎′+1])

)
=

𝑔5,𝑎′

Aut(𝐷5,𝑎′ )ℓ5,𝑎′
· (−𝑘 − 1).

The Euler characteristic
We give two ways to prove the following fact.

Proposition 10.3. The moduli space PΩM1,3 (−𝑘−1, 1, 𝑘) has Euler characteristic equal to 𝑘 (𝑘 +1)/6.

Proof. The first proof uses the description of 𝐵 = PΩM1,3 (−𝑘 − 1, 1, 𝑘) as the complement of 𝐷2 and
𝐷4 in M1,2. By the above description of 𝐷2 and 𝐷4, we need to compute

∑
𝑑 |𝑘
𝑑≠𝑘

𝜒(𝑋1 (𝑘/𝑑)) = 𝜒(M1,1)
∑
𝑑 |𝑘
𝑑≠𝑘

[SL2(Z) : Γ1 (𝑘/𝑑)] = −
𝑘2 − 1

12
,

which holds, since the rightmost sum counts the number of nonzero k-torsion points in an elliptic curve.
Together with 𝜒(M1,2) = −1/12 implies the claim.

The second proof evaluates Theorem 1.3, given in the surface case concretely by

𝜒(𝐵) = 3𝜉2
𝐵 +

∑
Γ∈LG1 (B)

𝐾Γ · 𝑁�
Γ

|Aut(Γ) |

(∫
𝐵�
Γ

𝜉𝐵�
Γ
+

∫
𝐵⊥
Γ

𝜉𝐵⊥
Γ

)
+

∑
Δ∈LG2 (𝐵)

ℓ𝛿0 (Δ)ℓ𝛿1 (Δ) [𝐷Δ ] .

Using the third statement of Proposition 10.1, we find

3
∫
𝐵
𝜉2 = 3(𝑘4 − 1)/24.

For the divisors 𝐷1,𝑎 and 𝐷4, the contribution from 𝜉𝐵�
Γ

is zero and that of 𝜉𝐵⊥
Γ

is nonzero, while for
𝐷2, 𝐷3 and 𝐷5,𝑎′ the converse holds. We evaluate in detail the contribution of that last divisor type. Its
top levels are 𝐷�

5,𝑎′ = PΩ0,4 (1, 𝑎′ − 1, 𝑏′ − 1,−𝑘 − 1). Using again Proposition 10.1, we get

∑
Γ=𝐷5,𝑎
𝑎=1,...𝑘/2

𝐾Γ · 𝑁�
Γ

|Aut(Γ) |

∫
𝐵�
Γ

𝜉𝐵�
Γ
=

1
2

𝑘−1∑
𝑎′=1

2𝑎′(𝑘 − 𝑎′) · (−𝑘) =
−𝑘2 (𝑘2 − 1)

6
.

Similar computations again using Proposition 10.1 yield

∑
Γ=𝐷1,𝑎

𝑎=1,... (𝑘+1)/2

𝐾Γ𝑁
�
Γ

|Aut(Γ) |

∫
𝜉𝐵�

Γ
= −𝑘2 𝑘

2 + 3𝑘 + 2
12

, 2ℓ𝐷3

∫
𝜉�𝐷3

=
1

12

2ℓ𝐷2

∫
𝜉�𝐷2

= −2𝑘 (𝑘 + 2)
(𝑘 + 1)2 − 1

24
, ℓ𝐷4

∫
𝜉�𝐷4

= −(𝑘 − 1)2 𝑘
2 − 1
24

.
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Table 3. Euler characteristics of some meromorphic strata..

𝜇 (4, −2) (3, 1, −2) (2, 2, −2) (2, 1, 1, −2) (14 , −2)
𝜒 (𝐵) − 19

24
28
15

17
10 −6 26

𝜇 (4, −1, −1) (3, 1, −1, −1) (2, 2, −1, −1) (2, 12 , −1, −1) (14 , −1, −1)
𝜒 (𝐵) − 8

5 −4 −4 14 −63

Using the evaluation result of Lemma 9.12, we finally get∑
Δ∈LG2 (𝐵)

ℓ𝛿0 (Δ)ℓ𝛿1 (Δ) [𝐷Δ ] = 𝑘 (𝑘 + 1)
𝑘2 + 𝑘 + 1

4
.

Adding these contributions gives the claim. �

10.4. Hyperelliptic components

We recall from [KZ03] that strata of holomorphic Abelian differentials have up to three connected
components, distinguished by the parity of the spin structure and hyperelliptic components. The strata
ΩM𝑔,1 (2𝑔 − 2) and ΩM𝑔,2 (𝑔 − 1, 𝑔 − 1) have hyperelliptic components. Their Euler characteristics
are easy to compute.

Proposition 10.4. The Euler characteristics of the hyperelliptic components are

𝜒(PΩM𝑔,1(2𝑔 − 2)hyp) =
−1

4𝑔(2𝑔 + 1)
and

𝜒(PΩM𝑔,2 (𝑔 − 1, 𝑔 − 1)hyp) =
1

(2𝑔 + 1) (2𝑔 + 2)
.

Proof. In the first case, the surfaces are double covers of surfaces in the stratum PQ0 (−12𝑔+1, 2𝑔 − 3)
of quadratic differentials with unnumbered poles, which is isomorphic to M0,2𝑔+2/𝑆2𝑔+1. The claim
follows from 𝜒(M0,𝑛+3) = (−1)𝑛 · 𝑛!, taking into account the global hyperelliptic involution on the
stratum.

Double covers of surfaces in the stratum PQ0(−12𝑔+2, 2𝑔 − 2) of quadratic differentials with un-
numbered poles produce Abelian differentials of the second case, and this stratum is isomorphic to
M0,2𝑔+3/𝑆2𝑔+2. The extra factors 2 from labelling the zeros of order 𝑔 − 1 and 1/2 from the global
hyperelliptic involution cancel each other. �

10.5. Meromorphic strata and cross-checks

In this section, we provide in Table 3 some Euler characteristics for meromorphic strata. We abbreviate
𝜒(𝜇) = 𝜒(PΩM𝑔,𝑛 (𝜇)). Moreover, we provide several cross-checks for our values. First, note that the
union of the strata of types (4), (3, 1), (2, 2), (2, 1, 1) and (14) glue together to the projectivised Hodge
bundle over M3, if all of them are taken with unmarked zeros. We read off from Table 1 that

𝜒(4) + 𝜒(3, 1) +
1
2
𝜒(2, 2) +

1
2
𝜒(2, 1, 1) +

1
4!
𝜒(14) =

3
1008

= 𝜒(P2) · 𝜒(M3) .

The value 𝜒(4) = −55/504 can also be retrieved from Proposition 10.4 and the computations of Bergvall
[Ber19, Table 4], which gives the cohomology of the stratum with odd spin structure ΩM𝑔,1 (4)odd

with Z/2-level structure. Computing the alternating sum weighted by dimension gives −141120. Since
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|Sp(6,Z) | = 1451520, this checks with

−55
504

= 𝜒(4) = 𝜒(4hyp) + 𝜒(4odd) =
−1
84

+
−141120
1451520

.

(A few other strata in 𝑔 = 3 might be cross-checked with the table in [Ber19], but one has to take into
account that Bergvall glosses over the existence of hyperelliptic curves in nonhyperelliptic strata.)

Another cross-check is the Hodge bundle twisted by twice the universal section over M2,1. It decom-
poses into the unordered strata (4,−2), (3, 1,−2), (2, 2,−2), (2, 1, 1,−2), (14,−2), (2, 0), (1, 1, 0), (2)
and the ordered stratum (1, 1), since the simple zero at the unique marked point is distinguished. Note
that 𝜒(2, 0) = 3𝜒(2) and 𝜒(1, 1, 0) = 3𝜒(1, 1). We can now add up the contributions listed in Table 1
and Table 3 and find that the sum equals 1

40 = 𝜒(P2) · 𝜒(M2,1). A similar cross-check can be made for
the Hodge bundle over M2,2 twisted by every section once, using the second row of Table 3.
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