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Abstract

We solve the problem of finding a simultaneous matrix normal form for an element
of the Lie algebra o(p, q) and the underlying indefinite inner product. The results
are used to determine several classes of classical Hamiltonian dynamical systems
which possess a first integral linear in the momentum variables.

1. Introduction

The purpose of this paper is an attempt to characterise Hamiltonian systems
which have a first integral linear in the momentum variables. The Hamiltoni-
ans concerned are "classical", that is, the sum of kinetic and potential energy
terms, but the metric although flat is not assumed to be positive definite. In
order to effect this characterisation of the Hamiltonian systems it is necessary
to be able to find a normal form for elements of the Lie algebra o(p, q) of
the generalised orthogonal group O(p, q). This normal form problem is con-
siderably more complicated than that of finding normal forms for elements
of o{n) (see [2]), essentially because the eigenspaces of an element M of
o(p, q) need not produce a basis for Rp+g .

In Section 2, the normal form problem for elements of o(p, q) is solved
completely and by methods which require nothing other than standard tech-
niques from elementary linear algebra. It is shown that a given element M
of o(p, q) can always be put into real Jordan normal form in such a way
that, at the same time, the inner product g used to define o(p, q) by the
requirement that the matrix gM be skew-symmetric, is also in normal form.
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[2] Normal forms and Hamiltonians 487

However, it is not usually the case that g will be in diagonal form with l's
and - l ' s o n the diagonal. The approach pursued here is to be contrasted
with the theoretical investigations of Burgoyne and Cushman [1], who con-
sidered the problem of characterising the orbits of the adjoint representation
of the classical Lie algebras.

In Section 3, the normal form theory is applied to obtain several classes
of classical Hamiltonians with linear integrals of motion. In particular, we
obtain all such Hamiltonians corresponding to Euclidean and Lorentzian met-
rics.

The notion, such as it is, is explained in the paper itself. We write
diag,(A, B, ... , C) for a matrix in block diagonal form for which the blocks
are A,B, ... ,C.

As a final remark in the Introduction, we should like to point out that
we are currently engaged on the project of using the theory of Section 2 to
normalise the holonomy algebra of the Levi-Civita connection of a pseudo-
Riemannian metric. The results of that investigation will be reported else-
where.

2. Normal forms for elements of o(p, q)

We let g be the inner product with matrix [ <J _/ 1 relative to the standard

basis for Rp+9 . This representation of g is for the purpose of exposition only
and will subsequently be changed. We shall also denote the g-inner product
o f t w o v e c t o r s x , y e R p + 9 b y { x , y ) ( = g { x , y ) ) . A (p + q) x (p + q)
matrix M belongs to the Lie algebra o{p, q) if and only if

(Mx,y) + (x,My) = 0 (2.1)

for all x, y € Rp+9 . Since we are assuming for the moment that the matrix
of g is [ o _j 1 , (2.1) is equivalent to M being of the form

( 2-2 )

where M and N are skew p x p and q x q matrices, respectively, and Q
is p x q. The adjoint representation is given by

ad(A)M = A~XMA (2.3)

where A e O(p, q) and M € o{p, q). It is a simple matter to check that
the form of M given by (2.2) remains invariant under the adjoint action.

Our normal form problem consists of finding a simple matrix description
for a given element M of o(p, q) under the adjoint action. However, we
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488 G. Thompson [3]

shall also allow ourselves to change the representation of the inner product
g by making a linear transformation, T say, of Rp+9 . Under such a trans-
formation, M and g change according to T~XMT and T7gT, of course.

We shall establish the following lemmas.

LEMMA 2.1. (i) If X is an eigenvalue of M, then so too is -X.
(ii) If X and n are eigenvalues of M with associated eigenvectors x and

y, respectively, then x and y are g-orthogonal if X + ft is nonzero.
(iii) If X is not zero, any eigenvector of M with eigenvalue X is null.

PROOF. Let x be an eigenvector of M with eigenvalue X, that is,

Mx = Xx. (2.4)

Equations (2.1) and (2.4) imply that for all y e Rp+9 ,

{x,(M + XI)y) = 0. (2.5)

Now if —X were not an eigenvalue of M, then M + XI would be invertible
and then x would be orthogonal to all y e Rp+q . In turn it would follow
that JC were zero, a contradiction.

(ii) We have in addition to (2.4)

Mx = fiy. (2.6)

Equations (2.1), (2.4) and (2.6) imply that

(X + »)(x,y) = 0 (2.7)

and the result follows.

(iii) Suppose that (2.4) holds. Then setting y = x in (2.1) gives

X(x,x) = 0 (2.8)

and the result is now clear.

LEMMA 2.2. If the subspace W is M-invariant then so too is Wx.

PROOF. The proof is standard noting that it requires only nondegeneracy of
g and not positive-definitiveness.

LEMMA 2.3. The dimensions of the kernels of M — XI and M + XI are equal.

PROOF. Note first of all that (2.1) implies that the adjoint M* of M is given
by -M. Thus the adjoint of M -XI is -(M + XI) and

Ker(M - XI) = [Im(M - XI)*]1- = [ Im(-(M + A/))]"1".
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[4] Normal forms and Hamiltonians 489

Now dim[Im(-(M + A/))]"1 = dim(Ker(M + A/)) and the result follows.
In view of Lemma 1 (i), we may classify the eigenvalues of M into the fol-

lowing types: 0, ± a ; ±ifi; ±y± id , where a , fi, y, 8 are nonzero and real.
In the sequel, we shall consistently use the letters a, fi, y,S as above to dis-
tinguish the four different kinds of eigenvalue (and consequently eigenspace)
and append subscripts when we wish to consider several eigenvalues of the
same type simultaneously. It will also be convenient to introduce the notion
of generalised eigenspace Vx, which extends the usual notion of eigenspace in
two ways. First of all, for a given eigenvalue A of M, we consider kernels of
powers of M — XI just as in Jordan canonical form theory. For fixed (real)
A these kernels form an increasing sequence of subspaces of Rp+g, which
eventually stabilise. (Indeed the index of stabilisation is just the power of
x - A occurring in the minimum polynomial of M with indeterminate x.)

The second way in which the notion of eigenspace is extended depends on
the nature of the eigenvalue A itself. For 1 = 0 we take Vo to be the kernel
of Mr°, where r0 is the index of stabilisation in the sense defined above.
For A = ±a we take for Va the direct sum of the subspaces Ker(Af - a)r"
and Ker(M + a)r", where ra is the index of stabilisation corresponding to
both a and -a. (The fact that these indices are equal follows from an easy
modification of Lemma 2.3.) For A = ±ifi to define V* we proceed as for
A = ± a except that it is to be understood that we take the real subspace
determined by KeT(M-ifi)r' and Ker(Af +ifi)r". (For every element x of
Ker(M-ifi)r> the conjugate x belongs to Ker(Af + ifi)r". Thus x + x and
i(x - x) span a real two-dimensional subspace.) Finally, for A = ±y ± id
we take the direct sum of the kernels of {M - i(±y ± d))'*-* regarded as real
subspaces whose dimension is divisible by four. Here r s is the index of
stabilisation corresponding to each of the four values A = ±y ± id .

The following lemma greatly simplifies the task of finding a normal form
for M.

LEMMA 2.4. The generalised eigenspaces of M are g-orthogonal.

PROOF. Suppose that A and fi are eigenvalues of M and that A + fi is non-
zero. Suppose further that the index of stabilisation of M- A and M-/i are
r and .s, respectively. Assume also that (M — k)rv — 0 and (M - fi)sw — 0 ,
so that v and w belong to the generalised eigenspaces corresponding to A
and n, respectively. We have to show that (v, w) = 0 and we use induction
as follows.

We suppose there exists a positive integer / such that for I < p + a < r+s

((M - k)"v, (M - n°)w) = 0. (2.9)
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490 G. Thompson [5]

We show that (2.9) is also true for / - 1 < p + a < r + s. Proceeding in this
way, we can reduce to the case where (2.9) holds for p = a = 0, which gives
the desired conclusion.

From (2.1) we have the following identity:

{M(M - X)"v , (M - n)"w) + ({M - Xfv, M(M - fifw) = 0 (2.10)

^ ({M - X)p+Xv, (M - n)"w) + X({M - k)p+Xv, (M - n)aw)

+ ((M - X)pv , (M - ji)a+lw) + n({M - k)"v, (M - fifw) = 0.

(2.11)

Now by the induction hypothesis, the first and third terms in (2.11) vanish
for I < p + a + \ < r + s and since X + n is nonzero, it follows that (2.9)
holds for I - \ < p + a <r + s .

We note also that M.p+9 is a direct sum of the generalised eigenspaces of
M as follows from the usual Jordan canonical form theory. In the case where
p — n and q — 0 , that is, M is a skew-symmetric matrix, the eigenspaces of
M span R" and there is no need to consider generalised eigenspaces. The
same is not true for M e o(p, q) in general, however; see, for example, the
matrices belonging to o(2, 2) numbered V and VI in Appendix 2.

According to Lemma 2.4, in order to find a normal form for M, we
need to study the generalised eigenspaces of M. It will, however, suffice to
consider subspaces of these generalised eigenspaces which are irreducible in
the sense that they cannot be split as a direct sum of M-invariant subspaces.
In effect, we are breaking M into irreducible Jordan block components and
then combining them according to the nature of the eigenvalues so as to
obtain maximal, M-invariant, irreducible, real subspaces. These generalised
Jordan blocks give a block decomposition for the matrix of M on each
generalised eigenspace and thus determine the entire normal form for M.

Let W be a maximal, A/-invariant, irreducible real subspace. Then W
has a subspace spanned by (possibly complex) eigenvectors of M, which we
call the eigensubspace of W and denote by V. We claim that V is a null
subspace, in the sense that the restriction of the inner product g to V is
zero. Indeed, suppose that V were not null. Then we could find a subspace
F, of V on which g were nondegenerate. Howver, in that case W would
be the direct sum of Vl and its £|W-orthogonal space F, , which would
contradict the irreducibility of W.

We shall assume that a basis for Rp+9 has been chosen, relative to which
the matrix of M is in "real Jordan canonical form." With the convention
for eigenvalues introduced above, this means that for 0, ± a , ±ifi, ±y± id ,
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the canonical Jordan blocks have the following forms, respectively:
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(2.12,)
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'yl + SJ
0
0
0

0
0

G. Thompson

/ 0
SJ) 0 /

yl + SJ 0
0 -(yl + SJ)

[7]

0

/

0
yl + SJ

0

0

0

(2-12,,,)

In the matrices (2.12) we have been deliberately vague about the size of
the blocks. However, we can certainly assume from Jordan canonical form
theory, that the following is the case: if the block on the (/, 7)th entry is of
size ir x is, then /' > / and / > j imply that i'r> < ir and j's, < j s . In fact
we shall see that in order for the matrix of gM to be skew-symmetric and
g to be nondegenerate, the blocks in each case in (2.12) are square and of
the same size. We shall write the matrix for g (or better the restriction of
g to the maximal, M-invariant, irreducible real subspaces corresponding to
(2.12)) in the following form

"21

'12

"22

'13

ICy -kkA

(2.13)

where C u is zero in (2.120) and Cu , C] 2 , C21, C22 are zero in the other
cases in (2.12), C33, . . . , Ckk are symmetric and T C is equal to Cjm for
j different from m .

We consider next the case where M is given by (2.12 s). Here we assume
that (2.13) has the same block decomposition as (2.12, g). The analysis will
be facilitated by means of several lemmas. The matrices in the lemmas are
all 2nx2n and / denotes the canonical complex structure [_ / 0 | on R2" .
We prove only the nontrivial parts of the lemmas.

LEMMA 2.5. (i) A 2nx2n matrix M commutes with J if and only if M is
"complex," that is, M = \ _B A\ for some n x n matrices A, B.
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[8] Normal forms and Hamiltonians 493

(ii) A 2nx2n matrix M anti-commutes with J {MJ + JM = 0) if and

[ A B ~\
B -A for some n x n matrices A, B.

(iii) If the 2n x 2n matrix M satisfies the condition

2yM + S{MJ-JM) = 0, (2.14)

where y is not zero, then M is zero.

PROOF OF (iii). Pre-multiplying and post-multiplying (2.14) by J and adding
the results imply, as a is not zero, that

MJ + JM = 0.

Equation (2.14) and the latter condition give

[yl - 8J)M = 0.

The result now follows because if y is not zero, yl -8J is invertible. It will
be useful to refer to a matrix which anti-commutes with J as "anti-complex."

LEMMA 2.6. Given a 2nx2n matrix A which is invertible and anti-complex,
there exists complex P such that

PROOF. If A is anti-complex, f { J A is complex and equal to P~l, say,
which gives as required,

0 / '
AP~'I

LEMMA 2.7. (i) Suppose C is a matrix such that CJ-JC is complex. Then
C is complex.

(ii) Suppose C is a matrix such that CJ + JC is anti-complex. Then C
is anti-complex.

PROOF, (i)

J(CJ - JC) - {CJ - JC)J = 0

(ii) The proof of (ii) is similar to that of (i).
We now reconsider the matrix of gM, where g and M are given by

(2.13) and (2.12^ s), respectively. In order for gM to be skew-symmetric it
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494 G. Thompson [9]

is necessary and sufficient that the following conditions hold for I < j , m <
k:

( - l ) ; C m / 7 / + ^ ) + ( - l ) m ( ) ' / - ^ ) C m y = Cm;._2 + Cm_2y. (2.15)

In (2.15) j and m may be supposed to assume all values between 1 and k
and where those C's occur which are not defined, such as C10 and C
these C 's may be taken to be zero.

Suppose that both j and m are even in (2.15). Then one finds that

2 _x

S(cmij - jcmi) = cm,_
mj' "mj-2 'm-2j- (2.16)

It follows, by induction on the value of j; + m and from Lemma 2.5, that
whenever m and j are both even, C is zero. The induction starts because
C04, C22 and C40 are all zero. Similarly, whenever m and j are both odd,
C is also zero.

Suppose next that j is even and m is odd in (2.15) so that

5{CmjJ JCmj) = Cmj_2

By induction and Lemma 2.7 it follows that each C

(2.17)

with j even and
m odd is anti-complex. Similarly, C . with j odd and m even is anti-
complex. Furthermore we have that

CM, , + Cm , . = 0 (2.18)
rnj — L Ttl—Z.J *• '

whenever the sum of j and m is odd and satisfies 3<j + m<2k-2.
Next we exploit the fact that (2.12^ s) is invariant under a change of basis

corresponding to a matrix of the form

0 a, 0 a , 0

0
0
0
0

0

0
0
0

0
a,

0
0

0
a2
0
ai
0

0

0
b,

0 1

0

a, 0
0 ft,
/ 0
0 /

(2.19)

where the a's and b's are complex but otherwise arbitrary. We find that under
(2.19) the C2s+l fc's transform as follows:
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[10] Normal forms and Hamiltonians 495

,* = a]Cxk + a,T-,(-CIJk*, + Cn) + aT
s_2(Clkb2 - Cikb{ + C5k)

+ (-l)sClkbs + C ^ j ^ f t j + C2,_3>fc62_C2j_1>fc61 +

(2.20)
In view of (2.20), (2.13) may be reduced to a block diagonal form with blocks
running from the upper right to the lower left hand corners. Because of (2.18)
we only have to reduce to zero the entries in the last column other than Clk .
Now we could, for example, set all the b 's to zero and determine the a's
inductively by requiring C2s+1 k to be zero. This is possible because as can
be solved for since Clk is nonsingular.

We have reduced the marix (2.13) to one in which the only nonzero blocks
are those on the diagonal from the upper right to lower left hand corners. We
still have at our disposal a transformation corresponding to a matrix of the
form

dw(P,Q,P,Q,...,P,Q) (2.21)

where P and Q are non-singular and complex and there are k/2 such P 's
and (?'s. Such a transformation leaves invariant the matrix (2.12y g) and

induces the transformation PTCllcQ on Clk . Using Lemma 2.6 we can find

P and Q such that PJClkQ is the form f 7 o l • This gives the normal form

for (2.13) starting from (2.12^ g) and the details are given in Appendix 1.
We examine next the case where M is given by (2.12a). The analysis

is very similar to that just performed for (2.12? g) with 6 equal to zero.
However, the blocks in (2.12a) may be n x n with n odd and the block
decomposition in (2.13) is now assumed to be aligned with (2.12a). From
the discussion given for (2.12^ g), we may conclude in the present context
the following: C is zero whenever j and m have the same parity. Fur-
thermore, whenever j and m have opposite parity and 3<j + m<2k — 2,

Cm)-2 + Cm-2j = 0- (2-22)

Again (2.12Q) is invariant under transformations which correspond to
matrices which formally resemble (2.19) and (2.21) except that the blocks
involved no longer need to be complex. The reduction of (2.13) to normal
form then proceeds much as in the previous case except that the fundamental
block Cik may now be reduced to / . The details are to be found in Appendix
1.

We examine now the situation where the matrix of M is given by (2.13^).
Since k is even, we define / to be one-half the value of k and recast (2.12^)
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as follows
PJ

0
0

G.

/

pj
0

Thompson

0
I

BJ

[11]

(2.23)

o o p\
We now assume that (2.13) gives an / x / block decomposition for the matrix
of g aligned with (2.23) and for which C,, is zero. The conditions required
to ensure that the matrix of gM is skew-symmetric are

fi(CmJJ - JCmj ) + C
m._,

Cm_ly. = 0 (2.24)

for 1 < j , m < I and the C 's undefined in (2.24) such as C01 are un-
mj

derstood to be zero. From (2.24), Lemma 2.7 and induction, it follows that
each C . in (2.13) is complex and also that

Cm-XJ = °
In turn, (2.25) implies that C

(2.25)

is zero forfor 2 < j + m < 21-2.
2<j + m<l.

Note that (2.12J is invariant under a change of basis corresponding to a
matrix of the form

0
0
0

0

a\
I
0
0

a\
I
0

ai

a\
I

al-2

a\
I
0

al-\

a2

I

(2.26)

where ax, ... , a{_x are complex but otherwise arbitrary. By making such a
change of basis, we can determine the a's inductively so that (2.13) is in block
diagonal form much in the same way as for (2.12y <J). The normalisation
procedure then reduces to finding a normal form for A (= Cu) under the
action of PTAP where P is in GL(«, C) . This is because (2.12J remains
invariant under a change of basis corresponding to an / x / block matrix of
the form

di&g(P,P,P,...,P). (2.27)

The matrix A is complex and distinct cases arise according to whether / is
even or odd. When / is even, A is skew-symmetric and may be brought into
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[12] Normal forms and Hamiltonians 497

symplectic normal form [_/ol • When / is odd, however, A is symmetric
and may be brought into diagonal form with l's and - 1 's on the diagonal.
The details of the normal form are given in Appendix 1.

It remains to consider the case where M is given by (2.120). We assume
that the matrix of g given by (2.13) is aligned with (2.120) and that C n is
zero. In this case, the analysis is very similar to that for (2.12^) with /? set
equal to zero, except that the blocks in (2.13) are not necessarily complex.
Again (2.120) is invariant under transformations corresponding to matrices
of the form (2.26) and (2.27) except that the a's, b 's and P need not be
complex. The normal form for M reduces to finding the normal form for
Clfc under the transformation PrClkP, where Clk is skew-symmetric for
k even and symmetric for k odd. The details of the normal form are given
in Appendix 1.

Before stating a theorem which summarises the results obtained thus far in
this section, we make one further point concerning the normal forms given
in Appendix 1. To each maximal, M-invariant, irreducible subspace we
attach a signature, which is the difference between the number of positive
and negative signs when each of the inner products are written in diagonal
form. Of course in terms of building up the possible normal forms for M
and g, one may take the signatures given in Appendix 1 or their opposites
corresponding to replacing g by —g. Actually, it is only in cases (2.120, k
odd) and (2.12^, I/2k odd) that the signature of g can be nonzero. In
this cases, the signature of g is expressed in terms of the signature of the
fundamental block A.

THEOREM 2.8 . Given an element M of o{p, q), there exists a basis of Rp+1

relative to which the matrix representing M is block diagonal {real Jordan
canonical form), each block being one of the types occurring in (2.12). Fur-
thermore, the matrix of g has the same block decomposition as M with each
block given by one of the types in Appendix 1.

To conclude this section we use the theory developed above to obtain
normal forms for elements of several Lie algebras. The results will be quoted
in Section 3. Consider first of all the case of o(n), that is, p = n , q = o . In
this case the signature of g must be n and the only possible blocks in the
normal form for M e o{n) are of type (2.120, k odd) and (2.12^ , 1/2A:
odd). It is then easy to see that the only way to obtain signature n for g
is to have, up to change of basis of course, g correspond to the standard
Euclidean metric and M be given by, for some 0 < r < [n/2] (the integral
part of n/2)

&a%{pxJ,p2J,...,PrJ,0). (2.28)
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In (2.28) / is the 2 x 2 matrix [_°, J] , and "0" the (n-2r) x (n-2r) zero
matrix. Notice that we obtain as a corollary that the eigenvalues of M are
zero or pure imaginary.

We next consider the Lie algebra o(p, 1). It will be convenient to discuss
separately the cases where p is even, say p = 2n, and p is odd, say p =
2n + 1. In these cases the signature of g is In — 1 and 2n , respectively.
Immediately we can assert that the only possible blocks in the normal form
for M eo(2n, 1) or o(2n + l, 1) are of type (2.120, k odd), (2.12J and
(2A2p, I/2k odd). For the other block types would lead to 4-dimensional
subspaces with signature zero which would make it impossible for g to be
Lorentzian. In the case of o(2n, 1) one finds that the signature 2n - 1 can
be achieved if and only if M can be brought into one of the following three
forms where 0 < r < n in (2.29) and 0 < r < n - 1 in (2.30) and (2.31):

,02/, . . . ,fl ,/ ,O) (2.29)
(0, the (2(« - r) + 1) x (2(n - r) + 1) zero matrix),

diag ( / ? , / , / ? 2 / , . . . , / ? , / , [ ° | j ] , o ) (2.30)

(0, the (2(n-r- 1) + 1) x (2(n-r- 1) 4-1) zero matrix),

0 1 0
1 0 - 1 , 0 (2.31)
0 1 0

(0, the 2(« - r - 1) x (2n - r - 1) zero matrix).

Note that the matrix for g corresponding to (2.31) is

d i a g ( l , 2 , . . . , 1 , 1 , - 1 )

so that the normal form given in Appendix 1, to be specific (2.120) with k
equal to 3 and A equal to 1, has been modified slightly so as to make the
matrix for g diagonal.

The corresponding analysis for M e o(2n + 1 , 1 ) leads to the conclusion
that the matrix for g can be put into the form diag( 1, 1 , . . . , 1, 1 ,-1) and
that the matrix for M can be brought into forms similar to (2.29), (2.30) and
(2.31), except that "0" is now the 2 ( n - r + l ) x 2 ( n - r + l ) , 2{n - r) x 2{n - r)
and (2(« — r) — 1) x (2(« — r) -1) matrix, respectively. In the first and second
of these cases r may assume all integral values between 0 and n inclusive
and in the third case between 0 and n - 1 inclusive.
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3. Classical Hamiltonians with linear integrals of motion

We suppose throughout this section that we are given a Hamiltonian func-
tion h:T*M —• M, where T*M is the cotangent bundle of some smooth
/n-dimensional manifold M. We suppose further that M carries a flat,
non-degenerate but not necessarily positive definite metric g and denote the
dual or contravariant cometric by G. Letting II be the natural submersion
map from T*M to M, the Hamiltonian h is given by

h(p)=l/2G(p,p) + (n*V)(p), (3.1)

where p is a typical point of T*M and V:M —> R is the potential energy
function.

Two such Hamiltonians h{ and h2 with

l l i (3.2)

h2{p) = l/2G2(p, p) + (II* V2)(p) (3.3)

will be said to be equivalent if there exists a diffeomorphism ^ of M such
that

<j>tGl = G2, (3.4)

4>'V2 = VV (3.5)

Since the metrics concerned are flat, such a diffeomorphism <j> can be as-
sumed locally to be of the form

x = Ax + b (3.6)

where A € O(p, q), b € Rm , p + q = m and the metrics have signature

We shall now investigate under what conditions a Hamiltonian h of the
form (3.1) has a first integral, k say, which is linear in the momentum
variables p . By Noether's theorem, such as integral can be identified with a
certain vector field K on M, the function k(p) being given by the pairing of
K and p, for any point p € T*M. The necessary and sufficient conditions
for K to give rise to a first integral are:

LKG = 0 (3.7)

and

KV = 0. (3.8)
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(In (3.7) L denotes the Lie derivative operator and (3.8) represents the di-
rectional derivative of V along K.)

Equation (3.7) states that AT is a Killing vector field of the cometric G
and hence the corresponding metric g. Since g is flat, it may be identified
locally with the standard indefinite metric of signature (p, q) on Rp+* (see
[3]). Using standard coordinates (x1) on Rp+9, we may write an arbitrary
Killing field K as

iJLi± (3.9)
K a x + I J i

' dxJ dx'
where a € o(p, q), fi e K and the summation convention on repeated
indices applies. The matrix a in (3.9) corresponds to a general, infinitesimal
pseudo-rotation and n to an arbitrary translation.

Consider next the effect of applying the isometric transformation (3.6) to
K as given by (3.9). If K is transformed into K where

ii^ i^ (3.10)K a i x 1 + ] I r
' dx1 dx'

then a and a and ft and //, respectively, are related by

a = A~xaA, (3.11)

H = A~Xab + A~xu. (3.12)

(The products on the right-hand side of (3.11) and (3.12) are matrix products
and b and n are properly regarded as column vectors.)

Equation (3.11) reveals the connection between the problem at hand and
the normal form theory of Section 2. In principle, one can classify Hamilto-
nians of the form (3.1) having a first integral linear in momenta by bringing
the matrix a, and the inner product g into normal form. It is obviously
impractical to effect this classification in complete generality owing to the
very large number of normal forms. Accordingly, we shall content ourselves
by discussing several important cases.

The first of these cases is where p — m and q = 0, so that g is a
Euclidean metric. Referring to (3.11) we can reduce a to the normal form
given by (2.28) of Section 2. Thereafter we set A = I in (3.6) and (3.12)
becomes

fi = ab + Ji. (3.13)

From (3.13) it follows that we may translate to zero each fi' in (3.9) which
corresponds to a nonzero eigenvalue in the normal form of a. In short, K
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can be normalised to the form:

Q ( l d i d \ _ / 3 d 4 3 X= B, [s —^ - x — r + /?, Lx — T - x —=•
l \ dx2 dxlJ 2\ dx4 dx*J

2,-1 d 2r d \ d d

(3.14)

Next, we reconsider (3.12) and write A as \ Q B\ where B e O(m - 2r).
By choosing B appropriately, we can rotate the constant coefficient part of
(3.14) so that on introducing the abbreviation Ktj to denote x'd/dxj —

xjd/dxi

r a

(3.15)

With K given by (3.15) the partial differential equation (3.8) may be inte-
grated in closed form by the method of characteristics, yielding the solution
as an arbitrary smooth function of m - 1 arguments. We summarise these
results in the following theorem, in which arctan(.x'/.r') is abbreviated to
atj. Similarly in Theorem 3.2, arctanh^./x.) is denoted by bt,.

THEOREM 3.1. Let h be a Hamiltonian of the form (3.1)lwith G a flat Eu-
clidean metric. Then the Hamiltonian flow determined by h has a first inte-
gral I of degree one in momenta if and only if h can be represented locally as
h = jS'JPiPj + V, where V is an arbitrary smooth function of the following
m — 1 arguments (r being some integer satisfying 0 < r < [w/2], [m/2]
denoting the integral part of m/2):

2<k < m).
i=\

Furthermore in that case I is given by Y,]=\ Pi{xll~lpli - x2lp2i_x) + HPlr+x •

The second of the cases that we consider is where p is m - 1 and q is
1, so that g is a flat Lorentz metric. It is convenient to separate further the
cases where p is even and p is odd, so we assume first of all that p is 2n .
We proceed much in the same way as we did in the Euclidean case, this time
making use of the normal forms (2.29), (2.30) and (2.31). Thus we find that
the analogue of (3.15) either formally resembles (3.15) but on a space with
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the extra variable x 2 n + 1 , or is given by

2r+l d 2r+2 d \ _d ,-,,tS

or

2r+2 d , , 2r+3 2r+K

dx*
Ft

(3.17)

In each of these three cases (3.6) can be integrated explicitly and leads to the
following result.

THEOREM 3.2. A Hamiltonian ofthe form (3.1) with G the flat Lorentz metric
diag(l, 1 , . . . , 1 , -1 ) of signature In — 1 has a first integral I of degree
one in momenta if V is of the form given in Theorem 3.1 with m equal to
In + 1, or else V is an arbitrary smooth function of the following two sets of
In variables corresponding to (3.16) and (3.17), respectively.

(i) ( x 2 ' - 1 ) ^ * 2 ' ) 2 ( l < i < r ) ,

Pja2j-2,2,-3 " Pj-1 U2j, Ij-1 (2<j<r),
n t / 2r+1.2 / 2r+2s2

aa2r,2r-l-Prb2r+2,2n+l> (X ) " (x ) •
r

E , o 2r+3 N , 2r+3

(fitx -na2i2i_x) + ax ~
(2r + 4 < k < In + 1). (//ere a is not zero and 0 < r < n - 1.)

1=1

xk

(ii)

- (x 2 ' + 3 ) 2 ,

(x2 r + 1 - x2 r + 3 ) + nx2r+2 + x 2 r + 4 (x 2 r + 1 - x 2 r + 3 ) ,

|._,), xfc (2r+5<A:<2«

(//ere 0 < r < n - 1).
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We consider next the situation where g is Lorentzian with signature 2n .
Pursuing the same sort of analysis as before leads to the following conclusion.

THEOREM 3.3. A Hamiltonian of the form (3.1) with G the flat Lorentz
metric diag(l , 1 , . . . , 1 , - 1 ) of signature 2n has a first integral I of degree
one in momenta iff V is of one of the following three types:

(i) as given in Theorem 3.1 with m equal to 2n + 2 and 0 < r < n.
(ii) as given in Theorem 3.2(i) with 0 < r < n and V depending arbitrar-

ily on x2n+2 .
(iii) as given in Theorem 3.2(ii) with in addition V depending arbitrarily

onx2n+2.

Theorem 3.3 completes our discussion of the case in which G in (3.1) is
Lorentzian. The other class of examples we shall consider is where G is a
cometric with signature (2 ,2 ) . Again we shall use (3.11) and (3.12) and
(3.6) with A e o(2, 2). There are seven main classes which are numbered I
through VII. The analysis for these classes proceeds in a manner very similar
to the Euclidean and Lorentzian cases already considered. Accordingly we
simply summarise the results for o(2, 2) in the following theorem.

THEOREM 3.4. A Hamiltonian h of the form (3.1) with G aflat metric of
signature (2, 2) has a first integral I of degree one in momenta iff h can be
represented locally as one of the following seven types:

I. / = al(x
lpl - x2p2) + a2(x

3p} - x4pA) + fip3,

... a.a, # 0 1 , .. ( I 2 3 4 A ,
(I) _ n i P\Pi ~^~ P3P4 + v [x x , x x , a^arctann

-a,arctanh

- n arctanh

(iii) a i ~ aJ- ~ \ h = pxp2 + p^p4 + V(xl, x2, x4).

II. / = fil(x
1p2 - x2px) + p2{x3Pt - x4p2
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filfi2^0^ h= I 2 + 2_ 2_ 2.

r1)2 + (x 2 ) 2 , (x3)2 + ( x 4 ) 2 , fi2a2x - pxa43,

. . . . ^ . ^ 0 \ , 1 . 2 2 2 2. . . . . 1,2 , 2,2>
( u ) fi = 0 ) 2^1 +P2-P3-P*) + Viix) + ( x ) ) ,

III.

/ = (yx1 + Sx2)Pl + iyx2 - Sxl)p2 - iyx3 + Sx4)p3 + iyx3 - Sx4)p,,

h=Plp4+p2p3 + F(<Jln((x1)2 + (x2)2)) - 2ya21,

5(ln((x3)2 + (x4)2)) - 2ya34, x'x3 - x2x\

IV.

/ = x3px - x2p2 + xlp3 + fip4,

h = i(2Plp3-p
2
2 +p2

4) + VHx1)2,-ix3)2, ixl+x3)x2,tix2 + x4).

V.

/ = (ax1 + X3)p, - (ax2 + x*)p2 + ax3p3 - ax4/>4

T. [ax1 . . i. ax2 . . 4. x1 X2\
V I — 3 - - l n ( x ) , — r - l n ( x ) , — + — ] •

VI.

/ = ifix2 + x3)Pl - ifixx + xA)p2 + fixAp3 - fix\,

h = Pip4 - p2p3 + F(2/?(xV - x2x3) + (x4)2 - (x3)2,

VII.

(x3)2 + (x4)2;

= x3p, - x4p2

= PXP4 - P2P3 + F(x4 , ^x 2 + x 3 x 4 , 2pixl - ix3)2).
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Appendix 1

Normal forms for g corresponding to maximal, M-invariant, irreducible
subspace {all matrices (k x k)

(2A20)keven
signature zero

• o
0

0
0
0

-J

0

0
0
J
0

0
_ /

0
0

/
0
0
0

0
0
0

- /

0
0
J
0

0
_ /

0
0

0

/
0
0
0

0
0

J =

(2A20)kodd
f —sig(A), ^f-

signature = <
( sig(j4), ^yi

A = diag( 1, 1

(2-12J
(k necessarily even)
signature zero

'-[' i ]L J

- odd

even

, 1 , .

0
0

0
0
0
B

0

0
0
B
0

, - 1

0

0
B
0
0

0
0

0
0
A

, - 1

B
0
0
0

0

0
-A

0

A
0
0

0
0
0
B

1)

0
0
B
0

0
0
A

0
B
0
0

0

0
-A

0

0

Bl
0
0
0

0
0

A
0
0

0
0

https://doi.org/10.1017/S0334270000007189 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007189


506

(2.12,)
1/2 keven
signature zero

G.

0
0

0
0
0
/

Thompson

0

0
0
_ /
0

0

0
0

J
0
0
0

0
0
0
/

0
0
_ /
0

0
_ /
0
0

0

/
0
0
0

0
0

[21]

1 /Ik odd
f 2sigM), ^ e v e n

signature = {
\ -2sig{A), ^ odd

0 0
0

0 0 - / 1 0
0 0 0 -A
,4 0 0 0
0 / 1 0 0

0 0 A 0
0 0 0 ^
-Ad 0 0
0 -A 0 0

0
0 0

- 1 , - 1 -1)

(2-12,,,)
(l/2fc necessarily even)
signature zero

0 0
0

0
0 0

Appendix 2

Normal forms for elements of o(2, 2)
Here we list the normal forms for elements of the Lie algebra o(2, 2) .

The list is complete in the sense that every M e o(2, 2) belongs to precisely
one of the seven types.
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II.

III.

IV.

V.

VI.

VII.

Inner Productg
0
1
0

.0

1
0
0

.0

0
0
0
1

0
0
1
0

p
 

p
 

p

1

0
0
0
1

0
0
0

.1

1
0
0
0

0
1
0
0

0
0
1
0

0
- 1
0
0
0
0

- 1
0

0
0

- 1
0

0
0

- 1
0

0
0
0
1

0
0

- 1
0

0
1
0
0

1
0
0
0
0
1
0
0

0
- 1
0 -
0

0
- 1
0
0

0'
0
1
0.

0
0
0

- 1

r
0
0
0.

0"
0
0
1

r
0
00

—
 

p
 

p
 

p

0
0
0

-

-

Canonical
al 0
0 - Q ,
0

. 0

• o

-Pi
0
0

y
-6
0
0

0
0
0
0

a
0
0

.0

0
-p
0
0

0
0
0
0

0
0

Pi
0
0
0

8
y
0
0

1
0
0
0

0
—a
0
0

p
0
0
0

0
0
0
0

Form
0
0

Q2
0

0
0
0

-p

0
0

-y
6

0
1
0
0
1
0
Q

0

1
0
0

-p

1
0
0
0

of M
0 '
0
0

- " 2 .

0"
0
Pi

2 0J

0
0

-s
-y

0'
0
0
0

Eignevalues

±a, , ±a2
a, > 0, a2 > 0

±ifi, ±ifi
Pi > 0 , P2>0

±y ± iS
y>0, (5>0

0 with
multiplicity 4

o •
- 1
0

—a

0"
1

P
0.

0'
1
0
0

±a each with
multiplicity

2, a > 0

±ift each with
multiplicity
2 , P>0

0 with
multiplicity 4
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