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Abstract

A balanced tournament design, BTD(n), denned on a 2n-set V is an arrangement of the (2
2")

distinct unordered pairs of the elements of V into an n x 2/i - 1 array such that (1) every
element of V is contained in precisely one cell of each column, and (2) every element of V
is contained in at most two cells of each row. In this paper, we investigate the existence of
balanced tournament designs with a pair of almost orthogonal resolutions. These designs can be
used to construct doubly resolvable (v , 3, 2)- BIBD s and, in our smallest applications, have
been used to construct previously unknown doubly resolvable (v , 3, 2)- BIBD s.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 05 B 30.

1. Introduction

A balanced tournament design, BTD(n), denned on a 2«-set V is an ar-
rangement of the (2

2") distinct unordered pairs of the elements of V into
an n x 2n - 1 array such that

(1) every element of V is contained in precisely one cell of each column,
and

(2) every element of V is contained in at most two cells of each row.
An example of a balanced tournament design, a BTD(3), is displayed in

Figure 1.
The existence of BTD(n)s was established in [16]. (A simpler proof of

this result appears in [7].)
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FIGURE 1. BTD(3)

T H E O R E M 1.1. For n a positive integer, n^2, there exists a BTD(n).

An element which is contained only once in row i of a BTD(n) is called a
deficient element of row i. The two deficient elements of row / are referred
to as the deficient pair of row / . It is easy to prove the following.

LEMMA 1.2. The deficient pairs of a BTD(n) defined on a 2n set V par-
tition the elements of V into n pairs.

A resolution of a BTD{n) is a resolution of the (2«, 2 , \)-BIBD con-
tained in its cells. Let B be a BTD(n). Let RX,R2, ... ,Rn be the rows
of B and let C , , C 2 , . . . , C2n_l be the columns of B. C = {Cl, C2,... ,
C2n_1} is a resolution of B. A resolution D = {Di, D2, ... , D2n_l} will
be called almost orthogonal to C if

( i ) Cln_^D2n_{,
( i i ) \CjHDjl < 1 f o r l<i,j<2n-2,
( i i i ) \DjnRt\ = l for j =1,2, ... ,2n-\ a n d i = 1 , 2 , ... , n .

If D exists, we say that B has a pair of almost orthogonal resolution (AORs).
The columns of the array form one resolution and the columns of the array
in Figure 2 form an almost orthogonal resolution.
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FIGURE 2. BTD(3)

Let 5 be a BTD(n) with AORs. Suppose that the resolution class which
is shared by the pair of almost orthogonal resolutions contains the deficient
pairs of B. Then B is said to have Property C ' . As an example, the
BTD(S) in Figures 1 and 2 has Property C ' .

In several previous papers, we have described new constructions for bal-
anced tournament designs, factored balanced tournament designs (FBTDs),
and partitioned balanced tournament designs (PBTDs) [7-10]. The original
study of BTD(n)s [16] was motivated by their tournament scheduling appli-
cations. The designs have become of interest more recently because of their
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relationships to several other types of combinatorial designs, such as Room
squares and Howell designs. In this paper, we investigate the existence of
balanced tournament designs with a pair of almost orthogonal resolutions.
In [11], we describe an application of these designs to constructing doubly
resolvable (v, 3 , 2)- BIBDs. Examples of these constructions can be found
in [6]. In the smallest cases, we have been able to use balanced tournament
designs with AORs to construct previously unknown DR(v, 3, 2)-BIBDs.
Thus, determining the spectrum of balanced tournament designs with AOR s
would provide new DR(v , 3 , 2 ) - BIBDs.

In Section 2, we describe direct constructions and constructions which use
Howell designs of side 2« and order 2n + 2, H(2n, 2n + 2), for balanced
tournament designs with AOR s. There are two basic frame constructions for
balanced tournament designs with AORs; these use complementary frames
with Property T and frames with Property T2. We define the frames and
describe the constructions in Section 3. Existence results for complementary
frames with property T and frames with Property T2 are provided in Section
4. Finally, we apply our constructions in the last section to prove the existence
of several infinite classes of balanced tournament designs with AOR s.

2. Direct constructions and Howell design constructions

In this section, we use Howell designs of side 2« and order 2M + 2,
H(2n, 2n + 2), to construct balanced tournament designs with AOR s.

Let V be a set of 2« elements. A Howell design of side s and order 2« ,
or more briefly an H(s, 2/t), is an s x s array in which each cell is either
empty or contains an unordered pair of elements from V such that

(1) each row and each column is Latin (that is, every element of V is in
precisely one cell of each row and column), and

(2) every unordered pair of elements of V is in at most once cell of
the array. It follows immediately from the definition of an H(s, 2n) that
n < s < 2n - 1. The spectrum of Howell designs was determined by D. R.
Stinson in [17].

THEOREM 2.1 [16]. There exists an H(s, 2«) if and only if (2n, s) satisfies
n<s<2n-l and (s,2n) <£ {(3, 4), (2, 4), (6, 6), (5, 8)}.

Our first construction is a starter-adder construction for a BTD(n + 1).
We will use a starter for an H(2n, 2n + 2). For definitions and results on
starters and adders for H(2n, 2n + 2), we refer to [1].
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THEOREM 2.2. Let S = {{xl,y1}, {x2, y2},... , {xn_l, ? „ _ , } , {a, z , } ,
{oo, z2}} be a starter for an H(2n, 2n + 2) defined on Z2n U {a , oo}. Let
S' = S - {xt, yt} for some i, 1 < i < n - 1. Suppose there is an adder
A = (flj, a2, ... , an) of n distinct elements of Z2n such that

(i) \ak - Oj\ ^n for 1 < i, j < n, and

(ii) (S' + A)U (S' + (A + n)) contains every element of Z2n U {a , oo} at
most twice.
Then there is a BTD(n + 1).

PROOF. Let S' = (Bl, B2, . . . , Bn) and let A = {ax, a2, . . . , an). The

pair which has been removed from S is {xt, yt) and the pairs which do not
occur in the H(2n, 2n+2) are {a, oo} , {0, n} , { 1 , n+\},..., { « - l , 2w-
1} . Let (S' + A) U (S' + (A + n)) = 2{Z2n U {a, oo}) - ({«,, «,} U {u2, v2})
where |M( - vt\ = n for i = 1, 2 .

We construct an « + 1 X 2 M + 1 array B defined on Z2nli{a, oo} as follows.
Label the rows of B 0, 1, 2, ..., n and the columns of' B 0, 1, 2 , . . . , 2« .
F o r / = 1,2, ... , n a n d j — 0, 1,2, ... , n - I, p lace Bi + at + j i n cell
U. ai + j) a n d place Bt + a( + n + j in cell (j, a( + n + j). (The second argu-
ment is taken modulo 2n .) In row n and column j place {x( + j , yt + j}
for j = 0, I, ... , 2n - I. In row j and column 2« place {«j + j,V}+ j}
for j = 0, 1, . . . , n - 1. Finally, in cell (n, 2n) place the pair {a, oo} .

The resulting array B is a BTD(n+l) defined on Z2nU{a, oo} . The first
column of B contains the pairs in S. Column j of B contains the pairs in
S+j for j = 0, I, ... , 2n—l. Column 2« of B contains the pairs {a, oo},
{ 0 , n } , {1, n + 1}, . . . , { « - l , 2 « - l } . Thus, each column of B contains
every element of Z2n u {a, oo} precisely once. The adder A is defined so
that every element of Z2n U {a, oo} occurs at most twice in each row of B.
The deficient pair for row j is {u2 + j , v2 + j} for j = 0 , 1 , ..., n — 1
and {a, oo} for row n . Since we have used a starter for an H(2n ,2n + 2)
and added the pairs which did not occur, every distinct pair in Z2n U {a, oo}
occurs once in B. This verifies that B is a BTD(n + 1).

This construction was modified in [7, 8] to produce factored BTDs
(FBTDs) and partitioned BTDs (PBTDs). The following corollary de-
scribes how to use this starter-adder construction to produce balanced tour-
nament designs with AOR s.

COROLLARY 2.3. Let B be a BTD(n + 1) constructed using Theorem
2.2. Let \xt - yt\ = A and let T = (S1 + A) U (S' + (A + n)). Let t =
{TX,T2,... ,Tn) be a set ofn pairs chosen from T such that every difference
in Zln except n and A occurs once and such that the elements a and oo
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each occur once in T1. Suppose there is an adder A' — (a[, a'2, ... , a'n) of
n distinct elements of Z2n such that

(i) \ak - a'j\ ^n for \<i,j<n,

(ii) Z2nU {a, 00} - {T1 + A') = {r, t} where \r - t\ = A ,

(iii) (S' + c) n (T' + A') = 0 where {x( + c,y, + c} = {r,t}. {T1 + A1

and S' + c are sets of pairs here.)
Then B has a pair of almost orthogonal resolutions.

PROOF. The columns C,, C2, . . . , C2n+l form one resolution for the
BTD(n + 1). The adder A' is denned so that an almost orthogonal res-
olution contains C2n+l and the resolution classes Rl, R2, ... , R2n where

R t = {T1 + A' + (i - l))U {r + i - I, t + i - 1 } , 1 < i < 2 n .

The smallest non-trivial BTD with AORs is displayed in Figures 1 and
2. This design could also be described using starters and adders. Since there
do not exist starters and adders for H(6, 8) and / / ( 8 , 10) [5], we illustrate
this theorem for the next case, using a starter-adder pair for an H(IO, 12).

LEMMA 2.4. There exists a BTD(6) with AORs.

PROOF. We list the starters and adders below. The array is displayed in
Figure 3.

S' 12 0 4 6 9 Q 7 008 {ul,vl} = {0, 5}
A 3 7 0 6 4

4 5 7 1 6 9 a 3 00 2 {u2, v2} = {3, 8}
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The next construction in this section uses the equivalence between BTD s
with AOR s and H(2n, 2n + 2)s with Property T2.

Let H be an H{2n,2n + 2) defined on a set V = {JC. ,y t \ \ <i <n +
1}. Suppose the pairs which do not occur in H are {x(, yt} for 1 < / <
n + 1; and let M denote this set of pairs. We say H has Property T2 if
we can partition the nonempty cells of H into n + 1 transversals of 2/z
cells each, T{, T2, ... , Tn+l, such that (1) every element in V occurs at
most twice in the pairs in T(, 1 < / < n + 1, and (2) the four elements
un > M/2 > vn ' va w^ich occur at most once each in Ti can be used to form
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two pairs {«,.,, «,.,} and {ui2, vi2} where {{«,.,, v n } | / = 1, 2, . . . , n + l} =
M and IJ"_+,1{M,.,,V,.,} = F .
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FIGURE 3. BTD{6) with AORs

THEOREM 2.5. There exists a BTD(n+1) with a pair of almost orthogonal
resolutions if and only if there is an H(2n, 2n + 2) with Property T2.

PROOF. Let B be a BTD(n + 1) with AORs denned on a set V. The
columns Cx, C2, ... , C2n+l form one resolution of the design. Suppose the
almost orthogonal resolution has resolution classes Bx, B2, ... , B2n+l where
B2n+\ = C2n+l • Let Rl ' R2 ' • • • ' ^n+1 b e t h e f 0 W S ° f B •

We construct an H(2n, 2n + 2), H from B by using the pair of al-
most orthogonal resolutions. Index the rows of H by the resolution classes
Bx, B2, ... ,B2n and the columns by C,, C2, . . . , C2n . If 5, f l ^ / 0 ,
place Bt n Cj in cell (Bt, C'.). The pairs in R( with the pair in C2n+l

deleted will form a transversal T( of H. Every element in V will occur at
most twice and the pair in C2n+l will not occur in H. Thus, the rows of B
correspond to a set of n + 1 transversals of H and H has Property T2.

Conversely, if H has Property T2, we use the transversals to form n + 1
rows of an array B. Use the columns of H to form the columns of the array
B and add a last column with the pairs {un , vn} for 1 < i < n + 1. The
rows of H will form an almost orthogonal resolution (the last column will
be the same in each resolution). The deficient pairs will be {w/2, vi2} for
i = 1, 2, . . . , n + 1.

We use Theorem 2.5 to provide results for the next two smallest cases,
BTD(n) for n = 4 and 5.

LEMMA 2.6. There does not exist a BTD(4) with a pair of almost orthog-
onal resolutions.

PROOF. There exist three non-isomorphic Howell designs H(6, 8) [15].
We show that none of these designs has Property T2.
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(i)Let
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23

46
18.

The pairs which do not occur in Hx are { 1 , 2 } , { 3 , 4 } , { 5 , 6 } , and { 7 , 8 } .
There are three possible transversals of Hi which contain the pair {1 , 3} .
These are

13 35 58 26 47 18
13 27 58 46 15 38.
13 27 58 46 26 47

Since none of these transversals is missing a pair which does not occur in
H{, Hx cannot have Property T2.

(ii) Let

H2 =

The pairs which do not occur in H2 are { 1 , 2} , { 3 , 4 } , {5 ,6} and {7, 8} .
There are two possible transversals which contain {1 , 3} . These are

13 38 47 27 58 45
13 26 15 28 46 58"

If H2 is to satisfy Property T2, then the first transversal must have {ullt viX}
= {1 ,2} and the second must have {uu,vn} = { 3 , 4 } . But, this forces
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48
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57
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38
26

68
23
15
47

24
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37
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28
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45

•

27
35
46
18.

ul2 = vl2 in both cases. So H2 cannot have Property T2.
(iii) Let

13
67
48

25

68
14
27
35

15
47
38
26

24
58

16

37

36
28
17
45

57"
23

46
18.

There is no transversal of 773 which contains the pair {6, 7 } , and so H3

cannot have Property T2.

LEMMA 2.7. There exists a BTD{5) with a pair of almost orthogonal res-
olutions.
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PROOF. The BTD(5) in Figure 4 was constructed from the / / ( 8 , 10) in
[12, Figure 1]. The columns of the arrays displayed in Figure 4 and Figure 5
form a pair of almost orthogonal resolutions for a BTD{5).

FIGURE 5. A BTD(5) whose columns form an almost
orthogonal resolution for the BTD(5) in Figure 4
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FIGURE 4. A BTD(5) with AOR s
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3. Frame constructions

In this section, we describe frame constructions for balanced tournament
designs with almost orthogonal resolutions. There are two basic construc-
tions. The first one uses complementary frames with Property T and sets of
orthogonal partitioned incomplete Latin squares to construct balanced tour-
nament designs with AOR s. The second uses frames with Property T2 to
construct Howell designs with Property T2. In order to describe these con-
structions, we require several definitions.

Let V be a set of v elements. Let Gx, G2, ... , Gm be a partition of V
into m sets. A {Gl, G2, ... , Gm}-frame F with block size k, index A,
and latinicity n is a square array of side v which satisfies the properties
listed below. We index the rows and columns of F by the elements of V.

(1) Each cell is either empty or contains a A>subset of V.
(2) Let Fi be the subsquare of F indexed by the elements of Gi. F{ is

empty for i — 1, 2, ... , m . (The subsquares of Ft are often referred to as
the holes of F .)
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(3) Let j € Gt. Row j of F contains each element of V - Gi n times
and column j of F contains each element of V - Gi n times.

(4) The collection of blocks obtained from the nonempty cells of F is
a GDD(v ;k;Gl,G2,...,Gm;O,X). (See [21] for the notation for group
divisible designs (GDDs).)

If there is a {G, , G2, ... , Gm}-frame H with block size k, index X, and
latinicity n such that

(1) Hx, = Ft for i = 1, 2, . . . , m, and
(2) H can be written in the empty cells of F - \J'^ Ft,

then H is called a complement of F and denoted by F. If a complement
of F exists, we call F a complementary {G{, G2, ... , Gm}-frame. A com-
plementary {G,, G2, ... , Gm}-frame F is said to be skew if at most one of
the cells (i,j) and (j, i) (i ^ j) is nonempty.

We will use the following notation for frames. If |G;| — h for i =
1, 2 , . . . , m , we call F a (/*, A; k, m, A)-frame. The type of a {Gx, G2,
. . . , Gm}-frame is the multiset {|G,|, |G2|, . . . , \Gm\) . We will say that a
frame has type t"112

2 •• • t"k
k if there are w, Gj 's of cardinality t{, I <i<k.

A frame of type tn is called uniform, since all the holes have the same size.
In this paper, we will restrict our attention to frames with n = X = 1 and
k = 2. For notational convenience, if ft — X — 1 and k = 2, we will denote
a frame simply by its type or partitioning ({G1, G2, ... , Gm}).

Let V = Ujl, ^ and let ^ = (J*, Wt where |K,| = | ^ | for / =
1,2, ... , m. Let F tea complementary {V{, V2, ... , Fm}-frame denned
on V. Let F be a complement of F denned on W so that F is a
{JP,, W2,..., WOT}-frame. A will denote the array of pairs formed by the
superposition of F and F, 4̂ = F o F. We say that the complemen-
tary frame F has Property T if there exists a set of Yl7=\ l̂ /l transversals,
r = {T,1, T2, ... , 7 ^ 1 / = 1, 2, . . . , m} , of the array A such that

(i) T'knTJ = 0 for I <k<\Vt\, 1 < / < \Vj\, \ < i, j < m excluding
the case k = I and i = j ,

(ii) Every element of (V - Vt) U (W - Wt) occurs precisely once in r j for
y = l , 2 , . . . , | ^ | , ( i = l , 2 , . . . , w ) ,

(iii) T'j contains \Vt\ empty cells from the hole F(.

We call T a set of skew transversals if each transversal Tj has the property
that if cell (x, y) is in the transversal then so is cell (y, x). An example of
a skew 1 frame is displayed in Figure 6. This frame has a set of 7 skew
transversals. The pairs contained in these transversals are listed in Table 1.
The elements of the complement are not shown.
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Let V = U£L, V{ where \V^ = 2ti (tt is a positive integer) for / =
1, 2, ... , m. Suppose F is a {V{, V2, ... , f^j-frame defined on V. We
say F has Property T2 if there exists a set of YliLi li transversals, {T[, T2,
... ,T}\i= 1,2, ... ,m}, of F s u c h t h a t

(i) T'k n T\ = 0 fo r 1 <i,j <m, 1 <k <tt, 1 < I < tj e x c l u d i n g t h e
case / = j and k = / ,

(ii) every element of V—Vj occurs precisely twice in T' for 7 = 1 , 2 , . . . ,
*,. (i= 1 , 2 , . . . , m),

(iii) r ' contains 2/( empty cells from the hole Fi.

42

23
1 5

26

50

34

45
30

6 1

56
4 1

02

1 3

60
52

24

0 1
63

35

1 2
04

FIGURE 6. A skew 17 frame

TABLE 1. A set of skew transversals for Figure 6

Tl
r3
r4
TS
rfi
Tl

34
4 5
5 6
60
0 1
1 2
23

1 6
20
3 1
42
53
64
05

2 5
3 6
40
5 1
62
03
1 4

An example of a 2 frame with Property T2 is displayed in Figure 7. The
five transversals are listed by their pairs in the frame in Table 2.

In the next section, we discuss existence results for complementary frames
with Property T and frames with Property T2.

We will also use sets of orthogonal partitioned incomplete Latin squares
(OPIL s) in the first construction. For completeness, we include the necessary
definitions. We refer to [3, 19, 20] for the existence results that we will use
and for further information on OPIL s.

Let P = {Sl, S2, ... , Sm} be a partition of a set S (m > 2). A parti-
tioned incomplete Latin square, having partition P, is an |5 | x |5 | array L,
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20
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1 1
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30
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00
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FIGURE 7. A 2 frame with Property T2

TABLE 2. Transversals for Property T2 of the 25 frame in Figure 7

31,20 30,21 11,40 10,41 20,30 21,31 41,11 40,10

41,30 40,31 21,00 20,01 30,40 31,41 01,21 00,20

01,40 00,41 31,10 30,11 40,00 41,01 11,31 10,30

11,00 10,01 41,20 40,21 00,10 01,11 21,41 20,40

21,10 20,11 01,30 00,31 10,20 11,21 31,01 30,00

indexed by the elements of S, satisfying the following properties.
(1) A cell of L either contains an element of 5 or is empty.
(2) The subarrays indexed by 5( x 5( are empty for 1 < / < m .
(3) Let j e Si. Row j of L contains each element of S - S1, precisely

once and column j of L contains each element of S - 5( precisely once.
The type of L is the multiset {\SX \, \S2\, ... , \Sm |} . If there are M; SV S

of cardinality tt, 1 < i < k, we say L has type t"11"2 ••• tu
k
k.

Suppose L and M are a pair of partitioned incomplete Latin squares
with partition P. L and M are called orthogonal if the array formed
by the superposition of L and M, L o M, contains every ordered pair in
S x S - U£Li('S', x Sj) precisely once. A set of n partitioned incomplete
Latin squares with partition P is called a set of n mutually orthogonal
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partitioned incomplete Latin squares of type {\SX\, \S2\, . . . , |Sm|} if each
pair of squares is orthogonal.

We are now in a position to describe our first frame construction for bal-
anced tournament designs with AOR s. This construction is a modification
of the frame constructions that we used in [8, 9] for partitioned balanced
tournament designs. We state it in the most general form.

THEOREM 3.1. If there exists a complementary {Vx, V2,... , Vm}-frame
with property T, a set of three mutually orthogonal partitioned incomplete
Latin squares of type {\VX\, \V2\, . . . , \VJ} andside £ ? , \Vt\,and BTD(\Vt\
+ 1) with AORsfor 1 < i < m, then there is a BTD(YlT=i \Vi\ + ' ) with

AORs.

PROOF. Let V = (J™, Vj and let W = (J™i Wt where \Vt\ = \Wt\ for
i= 1,2, ... ,m.

Let F be a complementary {VX,V2, ... , J^J-frame with Property T. Let
F be a complement of F defined on W so that T is a {Wx, W2, ... , Wm}-
frame. A will denote the array formed by superimposing F and ~F, A =
FoT.

Let L, and L2 be a pair of orthogonal partitioned incomplete Latin
squares of type {\V{\, \V2\, . . . , \Vm\) where L, has partition {Fj, V2, . . . ,
Vm) and L2 has partition {W{, W2, ... , Wm}. L will be the array of pairs
formed by superimposing L, and L2, L — LxoL2.

Let Bt be a BTD{\Vt\ + 1) defined on ^ . u ^ u { a , o o } . Bi can be
written in the following form.

B.=
{a,oo}

where Ci is the common resolution class for the pair of almost orthogonal
resolutions and Ai and Dt are \V{\ x \V{\ arrays.

We construct a BTD on Vl) W\j {a, oo} as follows. Place the array Ai

in the hole of A indexed by Vt and W{ and place the array Dt in the hole
of L indexed by Vt and W{. Let A1 and D' denote the resulting arrays.
Add a new row [RnR2x • &m{R2\

R22 '" Rm2^ t o t n e a r r a y lA'L'] • Finally,
add a new column [CXC2 • • • Cm{a, oo}]r to this array. It is straightforward
to verify that the resulting array B is a BTDC^Zi \Vi\ + l) defined on
F U W U {a, oo} .

One resolution of B is given by the columns of B. To construct an almost
orthogonal resolution, we use the transversals of A (Property T) and the
transversals of L provided by the third orthogonal partitioned incomplete
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Latin square together with the almost orthogonal resolutions of the Bt s. The
common resolution class will be the last column of B.

Our second frame construction for balanced tournament designs with
AOR s is a modification of the standard frame construction for Howell de-
signs. This construction produces H(2n, 2« + 2)s with Property T2.

THEOREM 3.2. If there exists a {VX,V2, ... , Vm}-frame with Property T2
where \Vt\ = 0 (mod 2) for i — l,2,...,m, and if there exist
H(\Vi\> \Vi\ + 2) with Property T2 for i = 1,2, . . . , m, then there is an

*! \vi\> E*11^1 + 2) with Property T2.

PROOF. Let F = U™, V{ and \V{\ = 2tt for i = 1, 2 , . . . , m. Let F

be a {Vl, V2,... , Fm}-frame with Property T2. Suppose the transversals
associated with F. are T[,T'2, ... , T\ .

Let Hi denote an / / ( | ^ . | , | ^ | + 2) with Property T2 defined on Vt u
{a, oo} where {a, oo} does not occur in H(. The transversals of H{ pro-
vided by Property T2 are H\, H2', . . . , H\ , , H't where H't contains every
element of Vt twice.

To construct an H(ZZi \Vi\ - E * 11^1 + 2) defined on V u {a, oo} and
denoted by H, we place the array Hi in the hole Ft of F . We associate

tt transversals of H with this hole; they are T ^ , - I = H) u T) for j =

1,2,... t tr This provides Y^Li tt transversals. The last transversal t p r + 1

required for Property T2 is {J?=iK- E a c h o f t h e s e T,?=i h + l transversals
contains every element of V u {a, oo} at most twice. Suppose the elements
which do not occur twice in T, are un , vn , ui2, vj2 . Then, since each
of the Hi s has Property T2, the pairs {un , vn} do not occur in H and

U^i ' ; + 1{",2 >
 va} = ^ U {a, oo} . This verifies that H has Property T2.

In Section 5, we use the existence results for frames from the next section
together with Theorems 3.1 and 3.2 to construct several infinite classes of
balanced tournament designs with AOR s.

4. Complementary frames with Property T and
frames with Property T2

In the previous section, we described constructions for balanced tourna-
ment designs with AORs which require the existence of complementary
frames with Property T and frames with Property T2. Thus, to construct
BTD(n)s with AORs we will construct frames and complementary frames
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with the appropriate properties. We can use 3-dimensional frames to con-
struct some of these.

An M-dimensional {Gx, G2, ... , <7m}-frame is an ^-dimensional cube of
side J2'iLi \Gj\ s u c n t n a t e a c n 2-dimensional projection is a {(?,, G2, . . . ,
Gm}-frame.

An easy way to construct a complementary frame with Property T is to
construct a skew frame with a set of skew transversals. This is equivalent
to constructing a 3-dimensional frame where the 2-dimensional projections
are complementary frames with some additional structure [ 13]. Similarly, we
can use 3-dimensional frames to construct frames with Property T2. Let F
be a {Gx, G2, ... , <7OT}-frame where \G(\ = 0 (mod 2) . We say F is row
complementary if at most one of the cells (i , j) and (i + 1, j) is nonempty
for i = 0 (mod 2) and 0 < / < Y^Li \Gi\~l ( t n a t is> w e c o u l d construct a
complement for F by interchanging pairs of rows). Rt{F) will denote the
collection of pairs in the ith row of a row complementary frame F. Figure
8 contains an example of a row complementary frame of type 2 .

LEMMA 4.1. If there exists a 3-dimensional {G{, G2, ... , Gm}-frame with
at least two row complementary {Gl, G2, ... , Gm}-frames, Fx and F2, as 2-
dimensionalprojections where R^) = Rf(F2) for i = 1 , 2 , . . . , £™ , |G,|,
then there is a {Gl, G2,... , Gm}-frame with Property T2.

PROOF. Let F be a 3-dimensional {Gx, G2,... , Gm}-frame where \Gf\
= 2ti for / = 1,2, ... , m. Suppose Fx and F2 are two row complemen-
tary {Gx, G2, ... , Gm}-frames which are 2-dimensional projections of F.
Suppose F3 is the remaining 2-dimensional projection of F. We show that
F3 is a {GX,G2, ... , (7m}-frame with Property T2. Let Rt denote the col-
lection of pairs in row / of F, (and F2). Then RiL)Ri+l for i = 0 (mod 2)
and 0 < i < J2T=-\ 1̂ ,1 ~ * *s a transversal of F3 with the required property.
For example, if / = 0 (mod 2) and 0 < i < 2tx, then R( U RM contains
every element of YlT=i Gi Precisely twice.

The equivalence of the types of frames that we are interested in to 3-
dimensional frames with special properties allows us to use P5D-closure to
construct infinite classes of these frames. Definitions and results on PBD-
closure can be found in [2]. Let t be a positive integer. We define St = {u\
there exists a skew t" frame with a set of tn skew transversals } , and we
define RCt = {u\ there exists a 3-dimensional t" frame with at least two
row complementary t" frames Fx and F2 as 2-dimensional projections and
*,.(*-,) = Rt{F2) for i = l , 2 , . . . , ft*}.

LEMMA 4.2. Let t be a positive integer. St and RCt are PBD-closed.
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FIGURE 8. A row complementary frame of type 2

PROOF. This follows immediately from the P-ffD-closure of skew frames,
row complementary frames, and 3-dimensional frames [2, 18].

Before we describe constructions and existence results for complementary
frames with Property T and frames with Property T2, we note that some of
the product constructions for frames can be generalized for these types of
frames. Since these are standard constructions, we omit the proofs.

lx l2 frame with
tu

k
k frame with Property T2), then there exists a com-

THEOREM 4.3. If there exists a complementary
Property T (or a t"1 *"•
plementary (t{x)Ul • • • (tkx)"k frame with Property T (or a (txxfx • • • (tkx)Uj

frame with Property T2) for x a positive integer and x ^ 2, 6 or 10.

The next two product constructions are direct generalizations of [18, The-
orems 3.5 and 3.6].

THEOREM 4.4. Let s = u(v - 1) + 1, and let t be a rational number such
that kt and (v - l)/t are both integers and (v-l)/t^2,6 or 10. If there
exist complementary frames with Property T (or frames with Property T2) of
type (kt)u and kv , then there exists a complementary frame with Property T
(or a frame with Property T2) of type ks.

THEOREM 4.5. Let s = uv, and let t be a rational number such that kt
and v/t are both integers and v/t ^ 2 , 6 or 10. If there exist complementary
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frames with Property T {or frames with Property T2) of type (kt)u and kv ,
then there is a complementary frame with Property T {or a frame with Property
T2) of type ks.

In [13], we investigated the existence of skew frames with skew transver-
sals. The following theorem summarizes these results. We note that the result
for M s 1 (mod 4) in [13] can be improved. We write 57 = 7 (9 - 1) + 1 and
93 = 23(5 - 1) + 1 and apply Theorem 4.4 with t - 1/2 to construct skew
frames of type 257 and 293 with skew transversals.

THEOREM 4.6 [13]. (1) Let n be an odd prime power, n >1, n ^ 9.
There exists a skew l" frame with a set of n skew transversals. (2) Let
n = 1 (mod 2), n > 1, and n ^ 3m where m > 5 and {m, 3) < 1. There
exists a skew l" frame with a set of n skew transversals. (3) Let u = 1
(mod 4), u 7̂  33 or 133. There exists a skew frame of type {2n)u with a set
of 2nu skew transversals for n a positive integer.

We now consider the existence of frames with Property T2. The starter-
adder construction which was used in [13] to produce skew frames of type
(2")* with sets of skew transversals where q is a prime power and q = 1
(mod 4) can also be used to construct frames of type {2")q with Property
T2. This is done by pairing the starters and adders for / and i + 1 (i = 0
(mod 2)). This construction also produces 3-dimensional frames with two
row-complementary frames as 2-dimensional projections with the appropri-
ate rows. We state this result in terms of 3-dimensional frames, since we will
use it in a P^D-construction.

THEOREM 4.7. Let n be a positive integer, and let q = 1 (mod 4) be a
prime power. There exists a 3-dimensional frame of type {2n)q with two
row-complementary frames, F, and F2, as 2-dimensional projections where
Ri{Fl) = Ri{F2)for i = 1, 2, . . . , 2nq.

Using P5Z)-closure as in [13, 18] and Theorem 4.4, we also have the
following.

THEOREM 4.8. Let n be a positive integer. If u = 1 (mod 4) and u ^
33 or 133, then there exists a 3-dimensional frame of type {2")u with two
row-complementary frames, F, and F2, as 2-dimensional projections with
Rt(Fx) = Rt(F2) for i = 1, 2, ... , 2nu.

The next construction uses complementary frames with Property T to con-
struct frames with Property T2.
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THEOREM 4.9. If there exists a complementary frame of type t" with Prop-
erty T and a set of three mutually orthogonal partitioned incomplete Latin
squares of type t", then there is a frame of type (2t)u with Property T2.
Furthermore, the frame of type (2t)u with Property T2 is equivalent to a 3-
dimensional (2t)u frame with two row complementary {2t)u frames, F{ and
F2, as 2-dimensionalprojections where R^F^) = Ri{F2) for \ <i < 2tu.

PROOF. Let V = (J"=i
 vt and let W = \J"=l Wl\. Let F be a comple-

mentary {Fj, V2, ... , FM}-frame of type t" with Property T. F will be a
complement of F denned on W so that F is a {W{, W2, ... , H^}-frame
of type tu. A will denote the array of pairs formed by the superposition of
F and F, A = F o F. Property T provides a set T of tu transversals of
A, T = {r; |i = l , 2 , . . . , « , ; = l , 2 , . . . , r } .

Let L, and L2 be a pair of OPIL s of type t" where L{ has partition
{Vx,V2,...,Vu} a n d L 2 h a s p a r t i t i o n {WX,W2,...,WU}. L will d e n o t e
the array of pairs formed by the superposition of Lx and L2 , L — Lx o L2.
We use the third OPIL of type t" to determine a set S of tu transversals
of L, S = {Sj\i = 1, 2, . . . , u, j = 1, 2, . . . , t} where 5J contains t cells
from the / th hole.

The following array B is a frame of type (2t)u denned on V U W. B =
iil] w n e r e 0 is a tu x tu empty array. The transversals for Property T2
are T-US'j for i= 1, 2, . . . , u and j = 1, 2, . . . , t.

Let Dt denote the collection of pairs in row / of B and let C, denote
the collection of pairs in column / of B. let k = 0, 1, . . . , u - 1 and let
j = 1, 3, ... , 2t - 1. Define R2kt+j = 7^ ' 1 ) / 2 and R2kt+j+l = s f£1 ) / 2 .

We construct a row complementary (2t)u frame as follows. Index of rows
of a 2tu square array with R{, R2, ... , R2tu and the columns of the array
with DX,D2, ... , D2tu . In cell (i, j), place Rt n ZX . It is straightfor-
ward to verify that the resulting array Fx is a row complementary {Vx u
Ffj, . . . , Vu U W^j-frame. Similarly, we can construct a row complementary
{KjUW;, . . . , F u u^}- f rame using / ? , , . . . , i?2/u and C,, C2, . . . , C2tu.
It is clear that R^) = /?,(-F2) • 5 (with a suitable permutation of the
rows and columns), F{ and F2 are the three 2-dimensional projections of a
3-dimensional {F, U W,, . . . , Vu u JFJ-frame of type (2f)" •

COROLLARY 4.10. Let n be an odd prime power, n>l, n ^ 9 . There is a
^-dimensional 2" frame with two row complementary 2n frames, F{ and F2,
as 2-dimensional projections where Ri(Fl) = Ri(F2) for i = 1, 2,... , 2n.

PROOF. We apply Theorem 4.9 using Theorem 4.6(1) and the existence of
three OPJL s of type l" for n a prime power.
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We will now use the P5Z)-closure of RCt and a recent result of Mullin and
Stinson [14] on pairwise balanced designs with odd block size to construct
frames of type 2" (for n odd) with Property T2. P5 will denote the set
of odd prime powers greater than or equal to 5 and we denote B(P5) =
{v\ there exists a {v,P5)-PBD}. Let Q = {15, 33, 39, 51 , 75, 87, 93,
183,219}

THEOREM 4.11 [14]. If n>5 is odd and n £ Q, then n e B(PS).

The next result follows immediately from the PZ?£>-closure of RC2,
Lemma 4.1 and Theorem 4.11 together with Corollary 4.10, and Theorem
4.8.

THEOREM 4.12. If n > 5 is odd and n $ Q, then there is a 2" frame
with Property T2.

5. Applications

In this section, we use the results of the previous sections to provide several
infinite classes of balanced tournament designs with AOR s. We recall that
we have constructed BTD(n) with AORs for n = 3 , 5 and 6 (Section 2).
These are respectively 7/(4, 6), / / ( 8 , 10), and 7/(10, 12) with Property
T2. We will use these small designs in our recursive constructions. We first
consider applications of Theorem 3.1.

THEOREM 5.1. Let n be a positive integer, n / 8 or 33. There exists a
BTD(m) with AORs for m = Sn + 3 and m = l6n + 5.

PROOF, (i) Let m = 8« + 3 . We apply Theorem 3.1 using complementary
frames of type 24n+1 with Property T and three OPILs of type 24 n + 1 , as
well as a BTD(3) with AOR s. The existence of complementary frames of
type 24"+1 with Property T is provided by Theorem 4.8. The existence of
three OP/Lsof type 24"+1 is proved in [19].

(ii) Let m = 16m+5 . We apply Theorem 3.1 using complementary frames
of type 44"+1 with Property T (Theorem 4.8), three 0 P / L s of type 44"+1

and a BTD(5). The three OPILs of type 44n+1 can be constructed using
the direct product for OPIL s.

Next, we apply Theorem 3.2, which constructs Howell designs with Prop-
erty T2.
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THEOREM 5.2. Let n be a positive integer, n>2, and 2 M + 1 £ Q. There
exists a BTD(m) with AORsfor m = Sn + 5 and m = l0n + 6.

PROOF, (i) Let m — &n + 5 . We apply Theorem 3.2 using a frame of type
82n+1 with Property T2 and an H(%, 10) with Property T2. The frame of
type 8 "+ with Property T2 can be constructed by using the frames of type
22"+1 with Property T2 provided by Theorem 4.12 and Theorem 4.3 with
x = 4.

(ii) Let m = 10« + 6. A frame of type 102"+1 with Property T2 can be
constructed using Theorem 4.12 and Theorem 4.3 with x — 5. Again we
apply Theorem 3.2, using an # (10 , 12) in the holes of the 102n+1 frame.

We can also use Howell designs to construct two other classes of BTD(m)s
with AOR s, where m=\ (mod 4).

THEOREM 5.3. Let n be a positive integer. There exist BTD(m) with
AORsfor m = 20« + 1 and m = 20« + 5.

PROOF. It is well known that there exist (v, 5, 1)- BIBD s for v = 1 and
5 (mod 20), v > 5 [4]. Let v = 20n + 1 or 20n + 5. By deleting one
element from each of these designs, we can construct GDD(20n; 5; 4; 0, 1)
and GDD(20n + 4; 5; 4; 0, 1) respectively. To each of these designs, we
apply Wilson's Fundamental Construction [22], weighting by a factor of 2
and replacing each block with the 25 frame with Property T2 from Theorem
4.7, to construct frames with Property T2 of type 85" and 85n+1 . Then we
apply Theorem 3.2 using i / (8 , 10)s with Property T2.

We note that the BTD(n) that we constructed for n = 3, 5, and 6 have
Property C'. Since the recursive constructions that we have used in this
section preserve Property C', it is straightforward to verify that the designs
produced by Theorems 5.1, 5.2, and 5.3 all have Property C'.

There are several other smaller classes of balanced tournament designs with
AOR s which can be constructed by applying Theorems 3.1 and 3.2 using the
designs described above and frames with larger holes (which can be found us-
ing the product constructions). However, in order to complete the spectrum
of balanced tournament designs with AOR s using the frame constructions,
we require the existence of several other frames with Property T2 or com-
plementary frames with Property T and the appropriate set of OPIL s. For
example, the existence of complementary frames of type 2" with Property
T for all /t > 5 and a set of three OPIL s of type 2" would allow us to
construct all but a small number of BTD{m) where m = 1 (mod 2). The
existence of Howell designs was determined using frame constructions [17].
These constructions used non-uniform frames. All of our existence results
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in Section 4 are for uniform frames. Thus, we need to determine the exis-
tence of some non-uniform frames with Property T2, in order to use similar
constructions to find the spectrum of H(2n, 2n + 2) with Property T2 (or
BTD(n + l)s with AORs).

Note added in proof

A recent result by Lindner and Stinson can be used to generalize Theorem
5.3 to include almost all m congruent to 1 mod 4. In "Nesting of cycle
systems of even length", Graphs and Combinatorics (submitted), they show
that there is a GDD(4u;{5, 9, 13, 17, 29, 49}; 4; 0, 1) for all u > 5 and
u <£ N = {7, 8, 12, 14, 18, 19, 23, 23, 33, 34}. The construction of The-
orem 5.3 then produces BTD(m) with AORs for all m = 4M + 1, u > 5
and u £ N.
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