GREEN'S RELATIONS AND REGULARITY IN CENTRALIZERS OF PERMUTATIONS

JANUSZ KONIECZNY
Department of Mathematics, Mary Washington College, Fredericksburg, Virginia 22401, USA
e-mail: jkoniecz@mwcgw.mwc.edu

(Received 18 February, 1997)

Abstract

For any permutation σ on $N=\{1,2, \ldots, n\}$: (i) Green's relations are characterized in the centralizer $C(\sigma)$ of σ (relative to the semigroup $P T_{n}$ of partial transformations on N); and (ii) a criterion is given for $C(\sigma)$ to be a regular semigroup (inverse semigroup, union of groups).

1. Introduction. Let $P T_{n}$ denote the semigroup of partial transformations on $N=\{1,2, \ldots, n\}$, and let S_{n} denote the symmetric group of permutations on N, the group of units of $P T_{n}$. For $\gamma \in P T_{n}$, the set

$$
C(\gamma)=\left\{\alpha \in P T_{n}: \alpha \gamma=\gamma \alpha\right\}
$$

is a subsemigroup of $P T_{n}$, called the centralizer of γ.
Centralizers of partial transformations are studied in [3], where the elements of $C(\gamma)$ are characterized. It is shown in [7] that for a permutation $\sigma \in S_{n}, C(\sigma)$ can be embedded into a wreath product of two semigroups determined by the number and length of cycles in σ. Centralizers in some subsemigroups of $P T_{n}$ have also been studied. A structure of centralizers in the symmetric group S_{n} is presented in [8]. A representation and order of centralizers in the symmetric inverse semigroup I_{n} are given in [4] and [5]. A construction of centralizers in the full transformation semigroup T_{n} is presented in [1]. Many results from the above references are collected in [6].

In this paper, we study centralizers of permutations in $P T_{n}$. Section 2 introduces notation, definitions, and some preliminary results. In Section 3, Green's relations in $C(\sigma)$ (for any $\sigma \in S_{n}$) are determined. Section 4 characterizes the permutations $\sigma \in S_{n}$ whose centralizer $C(\sigma)$ is a regular semigroup (inverse semigroup, union of groups). In particular, we find that $C(\sigma)$ is an inverse semigroup if and only if it is a union of groups. As an illustration, the egg-box structure of a specific centralizer is presented (Section 5).
2. Preliminary results. For $\alpha \in P T_{n}$, the domain and range of α will be denoted by dom α and ran α, respectively. The kernel of α, denoted by ker α, is the equivalence relation on dom α defined by x (ker α) $y \Longleftrightarrow x \alpha=y \alpha$. Denoting by $\operatorname{dom} \alpha / \operatorname{ker} \alpha$ the partition of dom α induced by $\operatorname{ker} \alpha$, we have $|\operatorname{dom} \alpha / \operatorname{ker} \alpha|=$ $|\operatorname{ran} \alpha|$. This common cardinality of dom $\alpha / \operatorname{ker} \alpha$ and ran α is called the rank of α and denoted rank α. For example, for

$$
\alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 4 & - & 4 & 3 & 1
\end{array}\right) \in P T_{7},
$$

$\operatorname{dom} \alpha=\{1,2,3,5,6,7\}, \operatorname{ran} \alpha=\{1,3,4\}$, ker $\alpha=|135| 26|7|$ (we identify ker α with $\operatorname{dom} \alpha / \operatorname{ker} \alpha$), and rank $\alpha=3$.

Throughout the paper, we shall use the following characterization of the elements of $C(\sigma)\left(\sigma \in S_{n}\right)$, which is a special case of [3, Theorem 5].

Theorem 2.1. Let $\sigma \in S_{n}$ and $\alpha \in P T_{n}$. Then $\alpha \in \mathrm{C}(\sigma)$ if and only if for every cycle $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ in σ such that some $x_{i} \in \operatorname{dom} \alpha$, the following conditions are satified:
(i) $\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\} \subseteq \operatorname{dom} \alpha$;
(ii) there is a cycle $\left(y_{0} y_{1} \ldots y_{m-1}\right)$ in σ such that m divides k and for some index j,

$$
x_{0} \alpha=y_{j}, \quad x_{1} \alpha=y_{j+1}, \quad x_{2} \alpha=y_{j+2}, \ldots,
$$

where the subscripts on ys are calculated modulo m.
Let $\sigma \in S_{n}$ be a permutation with cycle decomposition $\sigma=a_{1} \cdots a_{t}$ (1-cycles included). For $\alpha \in C(\sigma)$, define a partial transformation t_{α} on the set $A=$ $\left\{a_{1}, \ldots, a_{t}\right\}$ of the cycles in σ by:
(1) $\operatorname{dom} t_{\alpha}$ consists of all cycles $a=\left(x_{0} x_{1} \ldots x_{k-1}\right) \in A$ such that some x_{i} is in dom α;
(2) for each $a=\left(x_{0} x_{1} \ldots x_{k-1}\right) \in \operatorname{dom} t_{\alpha}$ and each $b=\left(y_{0} y_{1} \ldots y_{m-1}\right) \in A$

$$
a t_{\alpha}=b \Longleftrightarrow x_{i} \alpha=y_{j} \text { for some } x_{i} \text { and some } y_{j} .
$$

By Theorem 2.1, t_{α} is well defined. Speaking informally, $a t_{\alpha}=b$ if α wraps cycle a around cycle b one or more times. As an example, consider the permutation $\sigma=$ $a b c=\left(\begin{array}{llll}1 & 2\end{array}\right)\left(\begin{array}{lllll}3 & 4 & 5\end{array}\right)\left(\begin{array}{llll}6 & 7 & 8 & 9\end{array}\right)$ in S_{9} and $\alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ - & - & 4 & 5 & 3 & 1 & 2 & 1 & 2\end{array}\right) \in C(\sigma)$. Then $t_{\alpha}=\left(\begin{array}{ccc}a & b & c \\ - & b & a\end{array}\right)$.

For a cycle $a, \ell(a)$ will denote the length of a. For example, if $a=\left(\begin{array}{ll}1 & 2\end{array}\right)$, then $\ell(a)=3$.

We shall frequently use the following lemma.
Lemma 2.2. If $\sigma \in S_{n}, a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$ and $b=\left(y_{0} y_{1} \ldots y_{m-1}\right)$ are cycles in σ, and $\alpha, \beta \in \mathrm{C}(\sigma)$, then:
(1) $t_{\alpha \beta}=t_{\alpha} t_{\beta}$;
(2) if $a t_{\alpha}=b$ then $\ell(b)$ divides $\ell(a)$;
(3) $b \in \operatorname{ran} t_{\alpha}$ if and only if $\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\} \subseteq \operatorname{ran} \alpha$;
(4) $a t_{\alpha}=b t_{\alpha}$ if and only if $x_{i} \alpha=y_{j} \alpha$ for some x_{i} and some y_{j}.

Proof. Immediate by the definition of t_{α} and Theorem 2.1.
3. Green's relations. If S is a semigroup and $a, b \in S$, we say that $a \mathcal{L} b$ if $S^{1} a=$ $S^{1} b, a \mathcal{R} b$ if $a S^{1}=b S^{1}$, and $a \mathcal{J} b$ if $S^{1} a S^{1}=S^{1} b S^{1}$, where S^{1} is the semigroup S with an identity adjoined. We define \mathcal{H} as the intersection of \mathcal{L} and \mathcal{R}, and \mathcal{D} as the join of \mathcal{L} and \mathcal{R}, i.e., the smallest equivalence containing both \mathcal{L} and \mathcal{R}. These five equivalences are known as Green's relations [2, p. 45]. The relations \mathcal{L} and \mathcal{R}
commute, and consequently $\mathcal{D}=\mathcal{L} \circ \mathcal{R}=\mathcal{R} \circ \mathcal{L}$. If S is finite then $\mathcal{D}=\mathcal{J}$. For $a \in S$, we denote the equivalence classes of a with respect to $\mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{H}$, and \mathcal{D} by L_{a}, R_{a}, J_{a}, H_{a}, and D_{a}, respectively.

Green's relations in the semigroup $P T_{n}$ are well known [2, Exercise 17, p. 63].
Lemma 3.1. If $\alpha, \beta \in P T_{n}$, then the following hold.
(1) $\alpha \mathcal{L} \beta \Longleftrightarrow \operatorname{ran} \alpha=\operatorname{ran} \beta$.
(2) $\alpha \mathcal{R} \beta \Longleftrightarrow \operatorname{ker} \alpha=\operatorname{ker} \beta$.
(3) $\alpha \mathcal{H} \beta \Longleftrightarrow \operatorname{ran} \alpha=\operatorname{ran} \beta$ and $\operatorname{ker} \alpha=\operatorname{ker} \beta$.
(4) $\alpha \mathcal{D} \beta \Longleftrightarrow \operatorname{rank} \alpha=\operatorname{rank} \beta$.

A description of Green's relations in $C(\sigma)\left(\sigma \in S_{n}\right)$ will involve $t_{\alpha}(\alpha \in C(\sigma))$. The following lemma clarifies the relation between the range and kernel of α and t_{α}.

Lemma 3.2. If $\sigma \in S_{n}$ and $\alpha, \beta \in C(\sigma)$, then
(1) $\operatorname{ran} \alpha=\operatorname{ran} \beta \Longleftrightarrow \operatorname{ran} t_{\alpha}=\operatorname{ran} t_{\beta}$,
(2) $\operatorname{ker} \alpha=\operatorname{ker} \beta \Longrightarrow \operatorname{ker} t_{\alpha}=\operatorname{ker} t_{\beta}$.

Proof. Statement (1) follows from (3) of Lemma 2.2 and Theorem 2.1. To show (2), suppose ker $\alpha=$ ker β. Let $a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$ and $b=\left(y_{0} y_{1} \ldots y_{m-1}\right)$ be cycles in σ. Then,

$$
\begin{aligned}
(a, b) \in \operatorname{ker} t_{\alpha} & \Longleftrightarrow a t_{\alpha}=b t_{\alpha} \\
& \Longleftrightarrow x_{i} \alpha=y_{j} \alpha \text { for some } x_{i} \text { and some } y_{j} \quad(\text { by (4) of Lemma 2.2) } \\
& \Longleftrightarrow x_{i} \beta=y_{j} \beta \quad(\text { since ker } \alpha=\operatorname{ker} \beta) \\
& \Longleftrightarrow a t_{\beta}=b t_{\beta} \quad(\text { by }(4) \text { of Lemma 2.2) } \\
& \Longleftrightarrow(a, b) \in \operatorname{ker} t_{\beta} .
\end{aligned}
$$

The implication in (2) cannot be reversed. For example, if $\sigma=a b=(12)(3) \in S_{3}$, then for $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & -\end{array}\right)$ and $\beta=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 3 & -\end{array}\right)$ in $C(\sigma)$, we have $t_{\alpha}=\left(\begin{array}{cc}a & b \\ a & -\end{array}\right)$ and $t_{\beta}=\left(\begin{array}{ll}a & b \\ b & -\end{array}\right)$. Thus ker $t_{\alpha}=\operatorname{ker} t_{\beta}=|a|$, but ker $\alpha=|1| 2 \mid$ is different from ker $\beta=|12|$.

There is no corresponding result for ranks. It is possible to have $\alpha, \beta \in C(\sigma)$ with $\operatorname{rank} \alpha=\operatorname{rank} \beta$ but rank $t_{\alpha} \neq \operatorname{rank} t_{\beta}$ as well as with rank $t_{\alpha}=\operatorname{rank} t_{\beta}$ but rank $\alpha \neq \operatorname{rank} \beta$.

For $\sigma \in S_{n}, \alpha \in C(\sigma)$, and $b \in \operatorname{ran} t_{\alpha}$, we denote by $t_{\alpha}^{-1}(b)$ the set of all cycles $a \in \operatorname{dom} t_{\alpha}$ such that $a t_{\alpha}=b$.

The following theorem characterizes Green's \mathcal{L} relation in $C(\sigma)$.
Theorem 3.3. Let $\sigma \in S_{n}$ and let $\alpha, \beta \in C(\sigma)$. Then, $\alpha \mathcal{L} \beta$ (in $\left.C(\sigma)\right)$ if and only if the following conditions are satisfied:
(1) $\operatorname{ran} t_{\alpha}=\operatorname{ran} t_{\beta}$;
(2) for every $c \in \operatorname{ran} t_{\alpha}=\operatorname{ran} t_{\beta}$:
(a) if $a \in t_{\alpha}^{-1}(c)$, then there exists $b \in t_{\beta}^{-1}(c)$ such that $\ell(b)$ divides $\ell(a)$;
(b) if $a \in t_{\beta}^{-1}(c)$, then there exists $b \in t_{\alpha}^{-1}(c)$ such that $\ell(b)$ divides $\ell(a)$.

Proof. Suppose $\alpha \mathcal{L} \beta$. Then $\alpha \mathcal{L} \beta$ in $P T_{n}$ and so (1) holds by (1) of Lemma 3.1 and (1) of Lemma 3.2. To show (2)(a), suppose $c \in \operatorname{ran} t_{\alpha}=\operatorname{ran} t_{\beta}$ and let $a \in t_{\alpha}^{-1}(c)$. Since $\alpha \mathcal{L} \beta$, we have $\alpha=\gamma \beta$ for some $\gamma \in C(\sigma)$ and so, by (1) of Lemma 2.2, $t_{\alpha}=$ $t_{\gamma} t_{\beta}$. Since $a t_{\alpha}=c$, there is a cycle b in σ such that $a t_{\gamma}=b$ and $b t_{\beta}=c$. Thus $\ell(b)$ divides $\ell(a)$ (by (2) of Lemma 2.2) and $b \in t_{\beta}^{-1}(c)$. The condition 2(b) follows by symmetry.

Conversely, suppose (1) and (2) hold. We shall construct $\gamma \in C(\sigma)$ such that $\alpha=$ $\gamma \beta$. First, we set $\operatorname{dom} \gamma=\operatorname{dom} \alpha$. To define the values of γ, let $a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$ be a cycle in σ with $a \in \operatorname{dom} t_{\alpha}$, and let $c=\left(y_{0} y_{1} \ldots y_{m-1}\right)=a t_{\alpha}$. By Theorem 2.1, m divides k and for some index j,

$$
x_{0} \alpha=y_{j}, \quad x_{1} \alpha=y_{j+1}, \quad x_{2} \alpha=y_{j+2}, \ldots
$$

where the subscripts on y s are calculated modulo m. By (1) and (2)(a), $c \in \operatorname{ran} t_{\beta}$ and there is $b=\left(w_{0} w_{1} \ldots w_{p-1}\right) \in \operatorname{dom} t_{\beta}$ such that $b t_{\beta}=c$ and p divides k. By Theorem 2.1, m divides p and for some index i,

$$
w_{0} \beta=y_{i}, \quad w_{1} \beta=y_{i+1}, \quad w_{2} \beta=y_{i+2}, \ldots,
$$

where the subscripts on y s are calculated modulo m. Let $u \in\{0,1, \ldots, p-1\}$ be an index such that $w_{u} \beta=y_{j}$. Since p divides k, we may define

$$
x_{0} \gamma=w_{u}, \quad x_{1} \gamma=w_{u+1}, \quad x_{2} \gamma=w_{u+2}, \ldots,
$$

where the subscripts on w s are calculated modulo p. By the construction of γ and Theorem 2.1, we have $\alpha=\gamma \beta$ and $\gamma \in C(\sigma)$. By symmetry, there is $\delta \in C(\sigma)$ such that $\beta=\delta \alpha$, which concludes the proof.

To illustrate Theorem 3.3, let $\sigma=a b c d=(12)(345)(6)(7) \in S_{7}$ and consider α $=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 6 & 7 & 7 & 7 & 6 & 6\end{array}\right)$ and $\beta=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 7 & 6 & 6 & 6 & 7 & -\end{array}\right)$ in $C(\sigma)$. Calculating $t_{\alpha}=\left(\begin{array}{llll}a & b & c & d \\ c & d & c & c\end{array}\right)$ and $t_{\beta}=\left(\begin{array}{lll}a & b & c \\ d & d & d\end{array}\right)$, we see that (1) of Theorem 3.3 holds, but (2) does not hold. Indeed, $a \in t_{\alpha}^{-1}(c)$ and $\ell(a)=2$, but the only element of $t_{\beta}^{-1}(c)$ is b, for which $\ell(b)$ $=3$. Hence, α and β are not in the same \mathcal{L}-class in $C(\sigma)$. Note, however, that $\alpha \mathcal{L} \beta$ in $P T_{n}$ since ran $\alpha=\operatorname{ran} \beta$.

For any integers i and $m, m \geq 1$, we denote by $(i)_{m}$ the unique integer j such that $i \equiv j(\bmod m)$ and $0 \leq j \leq m-1$.

Unlike the \mathcal{L} relation, Green's \mathcal{R} relation in $C(\sigma)$ is simply the restriction of the \mathcal{R} relation in $P T_{n}$ to $C(\sigma) \times C(\sigma)$.

Theorem 3.4. Let $\sigma \in S_{n}$ and let $\alpha, \beta \in C(\sigma)$. Then $\alpha \mathcal{R} \beta$ (in $\left.C(\sigma)\right)$ if and only if $\operatorname{ker} \alpha=\operatorname{ker} \beta$.

Proof. If $\alpha \mathcal{R} \beta$ in $C(\sigma)$, then $\alpha \mathcal{R} \beta$ in $P T_{n}$ and so ker $\alpha=$ ker β by (2) of Lemma 3.1. Conversely, suppose $\operatorname{ker} \alpha=\operatorname{ker} \beta$. We shall construct $\gamma \in C(\sigma)$ such that $\alpha \gamma=\beta$. First, we set dom $\gamma=\operatorname{ran} \alpha$. To define the values of γ, let
$b=\left(y_{0} y_{1} \ldots y_{m-1}\right) \in \operatorname{ran} t_{\alpha}$ and let $a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$ be a cycle in dom t_{α} such that $a t_{\alpha}=b$. By Theorem 2.1, m divides k and for some index j,

$$
x_{0} \alpha=y_{j}, \quad x_{1} \alpha=y_{j+1}, \quad x_{2} \alpha=y_{j+2}, \ldots,
$$

where the subscripts on y s are calculated modulo m. Since $\operatorname{ker} \alpha=\operatorname{ker} \beta$, we have ker $t_{\alpha}=\operatorname{ker} t_{\beta}$ by (2) of Lemma 3.2, which implies dom $t_{\alpha}=\operatorname{dom} t_{\beta}$. Thus $a \in \operatorname{dom}$ t_{β} and let $c=\left(z_{0} z_{1} \ldots z_{p-1}\right)=a t_{\beta}$. By Theorem 2.1, p divides k and for some index i,

$$
x_{0} \beta=z_{i}, \quad x_{1} \beta=z_{i+1}, \quad x_{2} \beta=z_{i+2}, \ldots,
$$

where the subscripts on $z \mathrm{~s}$ are calculated modulo p. Note that ker $\alpha=\operatorname{ker} \beta$ implies $m=p$. (Indeed, if, say, $m<p$, then $x_{0} \alpha=x_{m} \alpha=y_{j}$, implying $z_{i}=x_{0} \beta=x_{m} \beta=$ $z_{(i+m)_{p}}$, which is a contradiction since for $m<p, z_{i} \neq z_{(i+m)_{p}}$.) Thus we may define

$$
y_{j} \gamma=z_{i}, \quad y_{j+1} \gamma=z_{i+1}, \quad y_{j+2} \gamma=z_{i+2}, \ldots,
$$

where the subscripts on $y \mathrm{~s}$ and on $z \mathrm{~s}$ are calculated modulo $m(=p)$. By the construction of γ and Theorem 2.1, $\gamma \in C(\sigma)$. It remains to show that $\alpha \gamma=\beta$. Since $\operatorname{dom} \gamma=\operatorname{ran} \alpha$ and $\operatorname{dom} \alpha=\operatorname{dom} \beta$, we have $\operatorname{dom}(\alpha \gamma)=\operatorname{dom} \beta$. Let $w \in \operatorname{dom}(\alpha \gamma)$ $=\operatorname{dom} \beta$. Then there is $d=\left(w_{0} w_{1} \ldots w_{q-1}\right) \in \operatorname{dom} t_{\alpha}$ such that $w=w_{s}$ for some index s. Let $b=\left(y_{0} y_{1} \ldots y_{m-1}\right)=d t_{\alpha}, a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$, and $c=\left(z_{0} z_{1} \ldots z_{p-1}\right)$ be the cycles used in the construction of γ. Let $y_{v}=w_{s} \alpha(v \in\{0,1, \ldots, m-1\})$ and let u be the unique number in $\{0,1, \ldots, m-1\}$ such that $v=(j+u)_{m}$. Then $w_{s}(\alpha \gamma)=y_{v} \gamma=$ $z_{(i+u)_{m}}$. Note that $x_{u} \alpha=y_{(j+u)_{m}}=y_{v}=w_{s} \alpha$. This and the fact that ker $\alpha=\operatorname{ker} \beta$ give $w_{s} \beta=x_{u} \beta=z_{(i+u)_{m}}$, which shows that $\alpha \gamma=\beta$. By a similar construction, we obtain $\delta \in C(\sigma)$ such that $\beta \delta=\alpha$, which concludes the proof.

Corollary 3.5. Let $\sigma \in S_{n}$ and let $\alpha, \beta \in C(\sigma)$. Then, $\alpha \mathcal{H} \beta$ (in $\left.C(\sigma)\right)$ if and only if $\operatorname{ran} t_{\alpha}=\operatorname{ran} t_{\beta}$, $\operatorname{ker} \alpha=\operatorname{ker} \beta$, and (2) of Theorem 3.3 is satisfied.

Proof. Follows from Theorem 3.3, Theorem 3.4, and the fact that $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$.
The next theorem characterizes Green's \mathcal{D} relation in $C(\sigma)$.
Theorem 3.6. Let $\sigma \in S_{n}$ and let $\alpha, \beta \in C(\sigma)$. Then, $\alpha \mathcal{D} \beta$ (in $C(\sigma)$) if and only if the following conditions are satisfied.
(1) $\operatorname{rank} t_{\alpha}=\operatorname{rank} t_{\beta}$.
(2) The sets $\operatorname{ran} t_{\alpha}$ and $\operatorname{ran} t_{\beta}$ can be ordered, say,

$$
\begin{aligned}
& \operatorname{ran} t_{\alpha}: c_{1}, c_{2}, \ldots, c_{u}, \\
& \operatorname{ran} t_{\beta}: d_{1}, d_{2}, \ldots, d_{u},
\end{aligned}
$$

in such a way that for each $i, 1 \leq i \leq u, \ell\left(c_{i}\right)=\ell\left(d_{i}\right)$ and:
(a) if $\mathrm{a} \in t_{\alpha}^{-1}\left(c_{i}\right)$, then there exists $b \in t_{\beta}^{-1}\left(d_{i}\right)$ such that $\ell(b)$ divides $\ell(a)$;
(b) if $\mathrm{a} \in t_{\beta}^{-1}\left(d_{i}\right)$, then there exists $b \in t_{\alpha}^{-1}\left(c_{i}\right)$ such that $\ell(b)$ divides $\ell(a)$.

Proof. Suppose $\alpha \mathcal{D} \beta$. Since $\mathcal{D}=\mathcal{R} \circ \mathcal{L}$, there is $\delta \in C(\sigma)$ such that $\alpha \mathcal{R} \delta$ and $\delta \mathcal{L} \beta$. Then ker $t_{\alpha}=\operatorname{ker} t_{\delta}$ (by Theorem 3.4 and (2) of Lemma 3.2) and ran $t_{\delta}=\operatorname{ran} t_{\beta}$ (by

Theorem 3.3), which implies rank $t_{\alpha}=\operatorname{rank} t_{\delta}=\operatorname{rank} t_{\beta}$. Select an ordering of

$$
\operatorname{ran} t_{\alpha}: c_{1}, c_{2}, \ldots, c_{u}
$$

Since $\alpha \mathcal{R} \delta, \alpha \gamma=\delta$ for some $\gamma \in C(\sigma)$, which gives $t_{\alpha} t_{\gamma}=t_{\delta}$ by (1) of Lemma 2.2. Moreover, by the proof of Theorem 3.4, γ can be selected in such a way that dom t_{γ} $=\operatorname{ran} t_{\alpha}$, $\operatorname{ran} t_{\gamma}=\operatorname{ran} t_{\delta}$, and for each $c_{i} \in \operatorname{dom} t_{\gamma}=\operatorname{ran} t_{\alpha}$, the cycle $c_{i} t_{\gamma}$ has the same length as c_{i}. Since t_{γ} maps ran t_{α} onto ran t_{δ} and $\left|\operatorname{ran} t_{\alpha}\right|=\left|\operatorname{ran} t_{\delta}\right|$, we also have that t_{γ} is one-one. Therefore, setting $d_{i}=c_{i} t_{\gamma}(1 \leq i \leq u)$, we obtain the corresponding ordering of

$$
\operatorname{ran} t_{\beta}=\operatorname{ran} t_{\delta}=\operatorname{ran} t_{\gamma}: d_{1}, d_{2}, \ldots, d_{u}
$$

with $\ell\left(c_{i}\right)=\ell\left(d_{i}\right)$ for each i. Let $i \in\{1, \ldots, u\}$. Then, for every cycle a in σ,

$$
\begin{aligned}
a \in t_{\alpha}^{-1}\left(c_{i}\right) & \Longleftrightarrow a t_{\alpha}=c_{i} \\
& \Longleftrightarrow\left(a t_{\alpha}\right) t_{\gamma}=d_{i}\left(\text { since } c_{i} t_{\gamma}=d_{i} \text { and } t_{\gamma} \text { is one-one }\right) \\
& \Longleftrightarrow a t_{\delta}=d_{i}\left(\text { since } t_{\delta}=t_{\alpha} t_{\gamma}\right) \\
& \Longleftrightarrow a \in t_{\delta}^{-1}\left(d_{i}\right) .
\end{aligned}
$$

Thus $t_{\alpha}^{-1}\left(c_{i}\right)=t_{\delta}^{-1}\left(d_{i}\right)$ and so (2) is satisfied by the fact that $\delta \mathcal{L} \beta$ and Theorem 3.3.
Conversely, suppose that (1) and (2) are satisfied. For $i \in\{1, \ldots, u\}$, let $c_{i}=$ $\left(x_{i 0} x_{i 1} \ldots x_{i, r_{i}-1}\right)$ and $d_{i}=\left(y_{i 0} y_{i 1} \ldots y_{i, r_{i}-1}\right)$. Let $\gamma, \gamma^{\prime} \in P T_{n}$ be transformations with $\operatorname{dom} \gamma=\operatorname{ran} \alpha$, dom $\gamma^{\prime}=\operatorname{ran} \beta$, and values determined by $x_{i j} \gamma=y_{i j}$ and $y_{i j} \gamma^{\prime}=x_{i j}$ $\left(1 \leq i \leq u, 0 \leq j \leq r_{i-1}\right)$. Then, by Theorem 2.1, $\gamma, \gamma^{\prime} \in C(\sigma)$. Setting $\delta=\alpha \gamma$, we have $\delta \gamma^{\prime}=\alpha \gamma \gamma^{\prime}=\alpha$, which gives $\alpha \mathcal{R} \delta$. By the definitions of γ and δ, we have that ran t_{δ} $=\left\{d_{1}, \ldots, d_{u}\right\}=\operatorname{ran} t_{\beta}$ and that for each $i, 1 \leq i \leq u, t_{\alpha}^{-1}\left(c_{i}\right)=t_{\delta}^{-1}\left(d_{i}\right)$. This, (2), and Theorem 3.3 imply $\delta \mathcal{L} \beta$, which, coupled with $\alpha \mathcal{R} \delta$, gives $\alpha \mathcal{D} \beta$.

Recall the example given after Theorem 3.3: $\sigma=a b c d=(12)(345)(6)(7) \in S_{7}$, $\alpha=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 6 & 7 & 7 & 7 & 6 & 6\end{array}\right)$ and $\beta=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 7 & 6 & 6 & 6 & 7 & -\end{array}\right)$ in $C(\sigma)$. Calculating $t_{\alpha}=\left(\begin{array}{llll}a & b & c & d \\ c & d & c & c\end{array}\right)$ and $t_{\beta}=\left(\begin{array}{lll}a & b & c \\ d & c & d\end{array}\right)$, we have rank $t_{\alpha}=\operatorname{rank} t_{\beta}=2$. Moreover, ordering ran $t_{\alpha}: c, d$ and $\operatorname{ran} t_{\beta}: d, c$ we see that (2) of Theorem 3.6 is also satisfied. Hence $\alpha \mathcal{D} \beta$ in $C(\sigma)$.

In a finite semigroup S, the \mathcal{D}-classes are partially ordered by the following relation:

$$
D_{a} \leq D_{b} \Longleftrightarrow S^{1} a S^{1} \subseteq S^{1} b S^{1}
$$

where $a, b \in S$. The relation \leq is a partial ordering since in a finite semigroup $\mathcal{D}=\mathcal{J}$. When studying the structure of a finite semigroup, it is important to determine not only the $\mathcal{L}, \mathcal{R}, \mathcal{H}$, and \mathcal{D}-classes, but also the partial ordering of \mathcal{D}-classes.

The next theorem determines the partial ordering of \mathcal{D}-classes in $C(\sigma)$.
Theorem 3.7. Let $\sigma \in S_{n}$ and let $\alpha, \beta \in C(\sigma)$ with $\operatorname{ran} t_{\alpha}=\left\{c_{1}, c_{2}, \ldots, c_{u}\right\}$. Then, $D_{\alpha} \leq D_{\beta}$ if and only if to each sequence

$$
\begin{equation*}
s: a_{1} \in t_{\alpha}^{-1}\left(c_{1}\right), a_{2} \in t_{\alpha}^{-1}\left(c_{2}\right), \ldots, a_{u} \in t_{\alpha}^{-1}\left(c_{u}\right) \tag{1}
\end{equation*}
$$

we can assign a sequence of elements of $\operatorname{ran} t_{\beta}$:

$$
\begin{equation*}
d^{s}: d_{1}^{s}, d_{2}^{s}, \ldots, d_{u}^{s} \tag{2}
\end{equation*}
$$

in such a way that for all sequences s and t as in (1) and for all $i, j \in\{1, \ldots, u\}$:
(i) $\ell\left(c_{i}\right)$ divides $\ell\left(d_{i}^{s}\right)$;
(ii) there is $b_{i} \in t_{\beta}^{-1}\left(d_{i}^{S}\right)$ such that $\ell\left(b_{i}\right)$ divides $\ell\left(a_{i}\right)$;
(iii) if $d_{i}^{s}=d_{j}^{t}$, then $i=j$.

Proof. Suppose $D_{\alpha} \leq D_{\beta}$, i.e., $\alpha=\delta \beta \gamma$ for some $\delta, \gamma \in C(\sigma)$. By (1) of Lemma $2.2, t_{\alpha}=t_{\delta} t_{\beta} t_{\gamma}$. Consider a sequence s as in (1) and let $i \in\{1, \ldots, u\}$. Since $a_{i} t_{\alpha}=c_{i}$ and $t_{\alpha}=t_{\delta} t_{\beta} t_{\gamma}$, there are cycles b_{i} and d_{i}^{5} in σ such that $a_{i} t_{\delta}=b_{i}, b_{i} t_{\beta}=d_{i}^{5}$, and $d_{i}^{5} t_{\gamma}$ $=c_{i}$. Then $b_{i} \in t_{\beta}^{-1}\left(d_{i}^{S}\right)$ and, by (2) of Lemma 2.2, $\ell\left(c_{i}\right)$ divides $\ell\left(d_{i}^{5}\right)$ and $\ell\left(b_{i}\right)$ divides $\ell\left(a_{i}\right)$. Thus, assigning $d_{1}^{5}, d_{2}^{5}, \ldots, d_{u}^{s}$ to s, we have that (i) and (ii) are satisfied. To show (iii), assume that s and t are sequences as in (1) and that $i, j \in\{1, \ldots, u\}$. Then,

$$
d_{i}^{s}=d_{j}^{t} \Rightarrow d_{i}^{s} t_{\gamma}=d_{j}^{t} t_{\gamma} \Rightarrow c_{i}=c_{j} \Rightarrow i=j
$$

Conversely, suppose that to each sequence (1) we can assign a sequence (2) in such a way that the conditions (i)-(iii) are satisfied. We shall construct $\delta, \gamma \in C(\sigma)$ such that $\alpha=\delta \beta \gamma$. First, we define dom γ to be the set of all elements that occur in any cycle d in σ such that $d=d_{v}^{s}$ for some sequence s as in (1) and some $v \in\{1, \ldots, u\}$. To define the values of γ, let $d=d_{v}^{s}=\left(w_{0} w_{1} \ldots w_{q-1}\right)$ and let $c_{v}=\left(z_{0} z_{1} \ldots z_{p-1}\right)$. By (i), p divides q, and so we may define

$$
w_{0} \gamma=z_{0}, \quad w_{1} \gamma=z_{1}, \quad w_{2} \gamma=z_{2}, \ldots,
$$

where the subscripts on z s are calculated modulo p. By (iii), γ is well-defined. Next, we set $\operatorname{dom} \delta=\operatorname{dom} \alpha$. To define the values of δ, let $a=\left(x_{0} x_{1} \ldots x_{k-1}\right) \in \operatorname{dom} t_{\alpha}$. Then $a \in t_{\alpha}^{-1}\left(c_{v}\right)$ for some $v \in\{1, \ldots, u\}$. Select a sequence s as in (1) with $a_{v}=a$, and let $d_{v}^{s}=\left(w_{0} w_{1} \ldots w_{q-1}\right)$ and $c_{v}=\left(z_{0} z_{1} \ldots z_{p-1}\right)$ be as in the construction of γ. By (ii), there is $b_{v}=\left(y_{0} y_{1} \ldots y_{m-1}\right) \in t_{\beta}^{-1}\left(d_{v}^{5}\right)$ such that m divides k. By Theorem 2.1, p divides q, q divides m, and for some indices $i \in\{0,1, \ldots, p-1\}$ and $j \in\{0,1, \ldots, q-1\}$,

$$
x_{0} \alpha=z_{i}, x_{1} \alpha=z_{i+1}, x_{2} \alpha=z_{i+2}, \ldots, \text { and } y_{0} \beta=w_{j}, y_{1} \beta=w_{j+1}, y_{2} \beta=w_{j+2}, \ldots,
$$

where the subscripts on z s are calculated modulo p and the subscripts on w s are calculated modulo q. Let $r \in\{0,1, \ldots, m-1\}$ be an index such that $y_{r} \beta=w_{i}$. Since m divides k, we may define

$$
x_{0} \delta=y_{r}, \quad x_{1} \delta=y_{r+1}, \quad x_{2} \delta=y_{r+2}, \ldots,
$$

where the subscripts on y s are calculated modulo m. By the constructions of γ and δ and Theorem 2.1, we have $\delta, \gamma \in C(\sigma)$ and $\alpha=\delta \beta \gamma$. This concludes the proof.

Note that taking $s=t$ in (iii), we get that $d_{1}^{s}, d_{2}^{s}, \ldots, d_{u}^{s}$ are pairwise distinct. This, coupled with (i), shows that if $D_{\alpha} \leq D_{\beta}$, then rank $t_{\alpha} \leq \operatorname{rank} t_{\beta}$ and rank $\alpha \leq$ rank β.

To illustrate Theorem 3.7, consider $\sigma=a b c d e=\left(\begin{array}{ll}1 & 2)(34)(567)(8)(9) \in S_{9} \text {, }\end{array}\right.$ and $\alpha=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 8 & - & - & 8 & 8 & 8 & - & 9\end{array}\right)$ and $\beta=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & - & - & 7 & 5 & 6 & - & 8\end{array}\right)$ in $C(\sigma)$. Since $t_{\alpha}=$
$\left(\begin{array}{ccccc}a & b & c & d \\ d & - & d & e \\ d & - & e\end{array}\right)$, we have ran $t_{\alpha}=\{d, e\}$ and two sequences of type (1): $s: a, e$ and $t: c$, e. Since $t_{\beta}=\left(\begin{array}{cccc}a & b & c & d \\ b & - & c & e \\ \hline\end{array}\right)$ with ran $t_{\beta}=\{b, c, d\}$, we can construct the corresponding sequences of type (2): $d^{s}: b, d$ and $d^{t}: c, d$ that satisfy (i)-(iii). Therefore, $D_{\alpha} \leq D_{\beta}$. Note that it is impossible to construct a sequence d_{1}, d_{2} of elements of ran t_{β} that would work for both s and t.
4. Regularity. An element a of a semigroup S is called regular if $a=a x a$ for some x in S. If all elements of S are regular, we say that S is a regular semigroup. An element a^{\prime} in S is called an inverse of a in S if $a=a a^{\prime} a$ and $a^{\prime}=a^{\prime} a a^{\prime}$. Since regular elements are precisely those that have inverses (if $a=a x a$, then $a^{\prime}=x a x$ is an inverse of a), we may define a regular semigroup as a semigroup in which every element has an inverse.

If a \mathcal{D}-class D in S contains a regular element, then every element in D is regular, and we call D a regular \mathcal{D}-class. In a regular \mathcal{D}-class, every \mathcal{L}-class and every \mathcal{R}-class contains an idempotent (an element e with $e=e e$). If an \mathcal{H}-class H contains an idempotent, then H is a maximal subgroup of S.

If every element of a semigroup S has exactly one inverse, then S is called an inverse semigroup. An alternative definition is that S is an inverse semigroup if it is regular and its idempotents commute. If every element of S is in some subgroup of S, then S is called a union of groups. In other words, unions of groups are semigroups in which every \mathcal{H}-class is a group. (Unions of groups are also called completely regular semigroups [2, Proposition 4.1.1].) Both inverse semigroups and unions of groups are regular semigroups.

The following lemma describes regular elements in $C(\sigma)$.
Lemma 4.1. Let $\sigma \in S_{n}$. Then a transformation $\alpha \in C(\sigma)$ is regular if and only if for every $b \in \operatorname{ran} t_{\alpha}$, there is $a \in t_{\alpha}^{-1}(b)$ such that $\ell(a)=\ell(b)$.

Proof. Suppose $\alpha \in C(\sigma)$ is regular, i.e., $\alpha=\alpha \beta \alpha$ for some $\beta \in C(\sigma)$. Let $b \in$ ran t_{α} and select $c \in t_{\alpha}^{-1}(b)$. Since $t_{\alpha}=t_{\alpha} t_{\beta} t_{\alpha}$ (by (1) of Lemma 2.2) and $c t_{\alpha}=b$, there is a cycle a in σ such that $c t_{\alpha}=b, b t_{\beta}=a$, and $a t_{\alpha}=b$. Then $a \in t_{\alpha}^{-1}(b)$ and, by (2) of Lemma $2.2, \ell(c) \geq \ell(b) \geq \ell(a) \geq \ell(b)$, implying $\ell(a)=\ell(b)$.

Conversely, suppose that the given condition is satisfied. We shall define $\beta \in$ $C(\sigma)$ such that $\alpha=\alpha \beta \alpha$. First, set dom $\beta=\operatorname{ran} \alpha$. To define the values of β, let $b=\left(y_{0} y_{1} \ldots y_{m-1}\right) \in \operatorname{ran} t_{\alpha}$. Then, by the assumption, we can find a cycle $a=$ $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ in dom t_{α} such that $a t_{\alpha}=b$ and $k=m$. By Theorem 2.1, for some index j,

$$
x_{0} \alpha=y_{j}, \quad x_{1} \alpha=y_{j+1}, \quad x_{2} \alpha=y_{j+2}, \ldots
$$

where the subscripts on y s are calculated modulo m. Since $k=m$, we may define

$$
y_{j} \beta=x_{0}, \quad y_{j+1} \beta=x_{1}, \quad y_{j+2} \beta=x_{2}, \ldots
$$

where the subscripts on y s and on x s are calculated modulo $m(=k)$. By the construction of β and Theorem 2.1, we have $\beta \in C(\sigma)$ and $\alpha=\alpha \beta \alpha$. This concludes the proof.

Using Lemma 4.1, we characterize the permutations $\sigma \in S_{n}$ for which $C(\sigma)$ is a regular semigroup.

Theorem 4.2. Let $\sigma \in S_{n}$. Then $C(\sigma)$ is a regular semigroup if and only if

$$
\begin{equation*}
\text { for all cycles } a, b \in C(\sigma): \ell(b) \text { divides } \ell(a) \Rightarrow \ell(b)=\ell(a) \text {. } \tag{3}
\end{equation*}
$$

Proof. Suppose $C(\sigma)$ is a regular semigroup. Let $a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$ and $b=$ $\left(y_{0} y_{1} \ldots y_{m-1}\right)$ be cycles in σ such that m divides k. Consider $\alpha \in P T_{n}$ with $\operatorname{dom} \alpha=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ and with values defined by

$$
x_{0} \alpha=y_{0}, \quad x_{1} \alpha=y_{1}, \quad x_{2} \alpha=y_{2}, \ldots,
$$

where the subscripts on y s are calculated modulo m. By Theorem 2.1, $\alpha \in C(\sigma)$. Since dom $t_{\alpha}=\{a\}$ and ran $t_{\alpha}=\{b\}$, we have $m=k$ by the fact that α is regular and Lemma 4.1.

Conversely, suppose (3) holds. Let $\alpha \in C(\sigma)$ and let $b \in \operatorname{ran} t_{\alpha}$. Select an $a \in$ $t_{\alpha}^{-1}(b)$. By (2) of Lemma 2.2 and (3), we have $\ell(b)=\ell(a)$. It follows by Lemma 4.1 that α is regular.

For example, for $\sigma=(12)(345)(678)$ and $\rho=(12)(34)(5678)$ in S_{8}, the centralizer $C(\sigma)$ is a regular semigroup whereas $C(\rho)$ is nonregular. Note that for any permutation $\sigma \in S_{n}$ (other than the identity) with at least one 1-cycle, $C(\sigma)$ is nonregular.

In an inverse semigroup, only one \mathcal{H}-class in each \mathcal{L}-class (\mathcal{R}-class) is a group. In contrast, in a union of groups, every \mathcal{H}-class is a group. We note that in the class of centralizers of permutations, inverse semigroups and unions of groups coincide.

Theorem 4.3. For any $\sigma \in S_{n}$, the following conditions are equivalent:
(a) $C(\sigma)$ is an inverse semigroup;
(b) $C(\sigma)$ is a union of groups;
(c) for all cycles a, b in σ, if $\ell(b)$ divides $\ell(a)$ then $b=a$.

Proof. To show (a) $\Rightarrow(\mathrm{c})$, suppose $C(\sigma)$ is an inverse semigroup and let $a=$ $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ and $b=\left(y_{0} y_{1} \ldots y_{m-1}\right)$ be cycles in σ such that m divides k. By Theorem 4.2, $m=k$. Suppose $a \neq b$. Define $\varepsilon, \xi \in P T_{n}$ by: dom $\varepsilon=$ $\left\{x_{0}, \ldots, x_{k-1}, y_{0}, \ldots, y_{k-1}\right\}$, dom $\xi=\left\{y_{0}, \ldots, y_{k-1}\right\}, x_{i} \varepsilon=y_{i}, y_{i} \varepsilon=y_{i}$, and $y_{i} \xi=y_{i}(0 \leq i \leq k-1)$. By the construction and Theorem 2.1, ε and ξ are idempotents in $C(\sigma)$ with $\varepsilon \xi=\varepsilon \neq \xi=\xi \varepsilon$, which is a contradiction (since idempotents commute in an inverse semigroup). Hence $b=a$.

To show $(\mathrm{b}) \Rightarrow(\mathrm{c})$, suppose $C(\sigma)$ is a union of groups and let a and b be cycles in σ as above. Again, $k=m$ and suppose $a \neq b$. Define $\alpha \in P T_{n}$ by: dom $\alpha=$ $\left\{x_{0}, \ldots, x_{k-1}\right\}$ and $x_{i} \alpha=y_{i}(0 \leq i \leq k-1)$. By the construction and Theorem 2.1, $\alpha \in$ $C(\sigma)$ and $\alpha^{2}=0$, where 0 is the zero (empty) transformation. Since H_{α} is a group, we have $\alpha^{2} \in H_{\alpha}$ and so $\alpha \mathcal{H} 0$. This is a contradiction (by Corollary 3.5). Hence $b=a$.

Suppose (c) holds. Then, by Theorem 2.1, for every $\alpha \in C(\sigma), \alpha$ is a permutation on its domain and t_{α} fixes each element of its domain. It follows that for some integer $p \geq 1, \alpha^{p}=\varepsilon$ is an idempotent such that $\operatorname{dom} \varepsilon=\operatorname{dom} \alpha, x \varepsilon=x$ for each $x \in \operatorname{dom} \varepsilon$, and $t_{\varepsilon}=t_{\alpha}$. By Corollary $3.5, \alpha \mathcal{H} \varepsilon$, which shows that $C(\sigma)$ is a union of groups. Further, the fact that elements of $C(\sigma)$ are permutations on their domains implies that idempotents in $C(\sigma)$ are one-one. Since one-one idempotents in $P T_{n}$ commute, we have that $C(\sigma)$ is also an inverse semigroup.
5. Example. In this section, we shall use the results of Section 3 and Section 4 to present the structure of the centralizer $C(\sigma)$ for

$$
\begin{equation*}
\sigma=a b c=(12)(34)(5678) . \tag{4}
\end{equation*}
$$

We shall visualize each \mathcal{D}-class as an egg-box diagram, with each \mathcal{R}-class R_{α} (row) labelled by ker α (see Theorem 3.4) and each \mathcal{L}-class L_{α} (column) labelled by ran t_{α} (see Theorem 3.3). In each \mathcal{H}-class H (cell), we shall place a representative α of H together with t_{α}, with α being an idempotent if H is a group. Idempotents will be indicated by asterisks.

To simplify notation, we shall write both $\alpha \in C(\sigma)$ and t_{α} as sequences of images. For example, for $\alpha=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 7 \\ 1 & 2 & - & - & 3 & 4\end{array}\right)$ $12--3434$ and $t_{\alpha}=a-b$.

If $\alpha \in C(\sigma)$ with rank $\alpha=k$ and rank $t_{\alpha}=m$, we say that the \mathcal{D}-class D_{α} is of rank (k, m). This definition is justified by Theorem 3.6, which implies that if $\alpha \mathcal{D} \beta$, then rank $\alpha=\operatorname{rank} \beta$ and rank $t_{\alpha}=\operatorname{rank} t_{\beta}$.

By Theorem 2.1, the possible ranks of \mathcal{D}-classes in $C(\sigma)$ for the permutation (4) are: $(8,3),(6,2),(4,2),(4,1),(2,1)$, and $(0,0)$.

Rank (8, 3). There is one \mathcal{D}-class of this rank, say D_{1}, namely the group of units of $C(\sigma)$ (see Fig. 1). Every member of D_{1} maps either a onto a, b onto b, and c onto c or a onto b, b onto a, and c onto c. We have $2 \cdot 2 \cdot 4=16$ possibilities for the former case and the same number for the latter, giving the total of 32 elements in D_{1}.

Figure 1. D_{1} (group of units, 32 elements).
$\operatorname{Rank}(6,2)$. There is one \mathcal{D}-class of this rank, say D_{2} (see Fig. 2). Look at the \mathcal{H} class in the lower right-hand corner. Each member of this \mathcal{H}-class maps b onto b and c onto c. This can be done in $2 \cdot 4=8$ ways. Since all \mathcal{H}-classes in the same \mathcal{D}-class have the same cardinality, D_{2} has $8 \cdot 8=64$ elements.

	$a c$	$b c$						
\|13	24	5	6	7	8		$\begin{gathered} 12125678^{*} \\ a \operatorname{acc} \end{gathered}$	$\begin{gathered} 34345678^{*} \\ b b c \end{gathered}$
\|14	23	5	6	7	8		$\begin{gathered} 12215678^{*} \\ a \operatorname{acc} \end{gathered}$	$\begin{gathered} 43345678^{*} \\ b b c \end{gathered}$
\|1	2	5	6	7	8		$\begin{gathered} 12--5678^{*} \\ a-c \end{gathered}$	$\begin{gathered} 34--5678 \\ b-c \end{gathered}$
$\|3\| 4\|5\| 6\|7\| 8 \mid$	$\begin{gathered} -125678 \\ -a c \end{gathered}$	$\begin{gathered} --345678^{*} \\ -b c \end{gathered}$						

Figure 2. D_{2} (regular, 64 elements).

Rank (4, 2). There are two \mathcal{D}-classes of this rank, say D_{3} and D_{4}, one regular and one nonregular (see Figs 3 and 4). Each \mathcal{H}-class in D_{3} has 8 elements and each \mathcal{H}-class in D_{4} has 4 elements.

	$a b$				
\|157	268	3	4		$\begin{gathered} 12341212^{*} \\ a b a \end{gathered}$
$\|168\| 257\|3\| 4 \mid$	$\begin{gathered} 12342121^{*} \\ a b a \end{gathered}$				
\|1	2	357	468		$\begin{gathered} 12343434^{*} \\ a b b \end{gathered}$
\|1	2	368	457		$\begin{gathered} 12344343^{*} \\ a b b \end{gathered}$
\|1	2	3	4		$\begin{gathered} 1234----^{*} \\ a b- \end{gathered}$

Figure 3. D_{3} (regular, 40 elements).

	$a b$	$a b$
$\|13\| 24\|57\| 68 \mid$	12123434 $a a b$	34341212 $b b a$
$\|14\| 23\|57\| 68 \mid$	12214343 $a a b$	43341212 $b b a$
$\|2\| 57\|68\|$	$12--3434$ $a-b$	$34--1212$ $b-a$
$\|3\| 57\|68\|$	--341212 $-b a$	--123434 $-a b$

Figure 4. D_{4} (nonregular, 32 elements).
$\operatorname{Rank}(4,1)$. There is one \mathcal{D}-class of this rank, say D_{5}, with a single \mathcal{H}-class (see Fig. 5).

Figure 5. D_{5} (regular, 4 elements).

Figure 6. D_{6} (regular, 48 elements).

$$
\begin{gathered}
c \\
\\
\hline
\end{gathered}|57| 68 \left\lvert\, \begin{array}{c|c}
c & b \\
\cline { 2 - 3 } \begin{array}{|c|c|}
\hline---1212 \\
--a
\end{array} & ----3434 \\
--b \\
\hline
\end{array}\right.
$$

Figure 7. D_{7} (nonregular, 4 elements).

Rank (2, 1). There are two \mathcal{D}-classes of this rank, say D_{6} and D_{7}, one regular and one nonregular (see Figs 6 and 7). Each \mathcal{H}-class in each of these two \mathcal{D}-classes has 2 elements.

Rank (0,0). There is one \mathcal{D}-class of this rank, containing the zero transformation as the only element.

Thus the semigroup $C(\sigma)$ has 225 elements (189 regular and 36 nonregular) and $8 \mathcal{D}$-classes (6 regular and 2 nonregular). Using Theorem 3.7, we can determine the partial ordering of \mathcal{D}-classes (see Fig. 8). Regular \mathcal{D}-classes are marked with asterisks.

Figure 8. Global structure of $C(\sigma)$.

REFERENCES

1. P. M. Higgins, Digraphs and the semigroup of all functions on a finite set, Glasgow Math. J. 30 (1988), 41-57.
2. J. M. Howie, Fundamentals of semigroup theory (Oxford University Press, 1995).
3. J. Konieczny and S. Lipscomb, Centralizers in the semigroup of partial transformations, Math. Japon. (to appear).
4. S. L. Lipscomb, The structure of the centralizer of a permutation, Semigroup Forum 37 (1988), 301-312.
5. S. L. Lipscomb, Centralizers in symmetric inverse semigroups: structure and order, Semigroup Forum 44 (1992), 347-355.
6. S. Lipscomb, Symmetric Inverse Semigroups, Mathematical Surveys and Monographs, 46 (American Mathematical Society, Providence, RI, 1996).
7. S. Lipscomb and J. Konieczny, Centralizers of permutations in the partial transformation semigroup, Pure Math. Appl. 6 (1995), 349-354.
8. M. Suzuki, Group theory I (Springer-Verlag, 1982).
