GREEN'S RELATIONS AND REGULARITY IN CENTRALIZERS OF PERMUTATIONS

JANUSZ KONIECZNY

Department of Mathematics, Mary Washington College, Fredericksburg, Virginia 22401, USA e-mail: jkoniecz@mwcgw.mwc.edu

(Received 18 February, 1997)

Abstract. For any permutation σ on $N = \{1, 2, ..., n\}$: (i) Green's relations are characterized in the centralizer $C(\sigma)$ of σ (relative to the semigroup PT_n of partial transformations on N); and (ii) a criterion is given for $C(\sigma)$ to be a regular semigroup (inverse semigroup, union of groups).

1. Introduction. Let PT_n denote the semigroup of partial transformations on $N = \{1, 2, ..., n\}$, and let S_n denote the symmetric group of permutations on N, the group of units of PT_n . For $\gamma \in PT_n$, the set

$$C(\gamma) = \{ \alpha \in PT_n : \alpha \gamma = \gamma \alpha \}$$

is a subsemigroup of PT_n , called the *centralizer* of γ .

Centralizers of partial transformations are studied in [3], where the elements of $C(\gamma)$ are characterized. It is shown in [7] that for a permutation $\sigma \in S_n$, $C(\sigma)$ can be embedded into a wreath product of two semigroups determined by the number and length of cycles in σ . Centralizers in some subsemigroups of PT_n have also been studied. A structure of centralizers in the symmetric group S_n is presented in [8]. A representation and order of centralizers in the symmetric inverse semigroup I_n are given in [4] and [5]. A construction of centralizers in the full transformation semigroup T_n is presented in [1]. Many results from the above references are collected in [6].

In this paper, we study centralizers of permutations in PT_n . Section 2 introduces notation, definitions, and some preliminary results. In Section 3, Green's relations in $C(\sigma)$ (for any $\sigma \in S_n$) are determined. Section 4 characterizes the permutations $\sigma \in S_n$ whose centralizer $C(\sigma)$ is a regular semigroup (inverse semigroup, union of groups). In particular, we find that $C(\sigma)$ is an inverse semigroup if and only if it is a union of groups. As an illustration, the egg-box structure of a specific centralizer is presented (Section 5).

2. Preliminary results. For $\alpha \in PT_n$, the domain and range of α will be denoted by dom α and ran α , respectively. The *kernel* of α , denoted by ker α , is the equivalence relation on dom α defined by x (ker α) $y \iff x\alpha = y\alpha$. Denoting by dom α /ker α the partition of dom α induced by ker α , we have $|\text{dom } \alpha/\text{ker } \alpha| = |\text{ran } \alpha|$. This common cardinality of dom $\alpha/\text{ker } \alpha$ and ran α is called the *rank* of α and denoted rank α . For example, for

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 4 & - & 4 & 3 & 1 \end{pmatrix} \in PT_7,$$

dom $\alpha = \{1,2,3,5,6,7\}$, ran $\alpha = \{1,3,4\}$, ker $\alpha = |1 \ 3 \ 5 | 2 \ 6 | 7 |$ (we identify ker α with dom α /ker α), and rank $\alpha = 3$.

Throughout the paper, we shall use the following characterization of the elements of $C(\sigma)$ ($\sigma \in S_n$), which is a special case of [3, Theorem 5].

THEOREM 2.1. Let $\sigma \in S_n$ and $\alpha \in PT_n$. Then $\alpha \in C(\sigma)$ if and only if for every cycle $(x_0x_1...x_{k-1})$ in σ such that some $x_i \in \text{dom } \alpha$, the following conditions are satified:

- (i) $\{x_0, x_1, \ldots, x_{k-1}\} \subseteq \operatorname{dom} \alpha;$
- (ii) there is a cycle $(y_0y_1...y_{m-1})$ in σ such that m divides k and for some index j,

 $x_0\alpha = y_j, \qquad x_1\alpha = y_{j+1}, \qquad x_2\alpha = y_{j+2}, \ldots,$

where the subscripts on ys are calculated modulo m. \Box

Let $\sigma \in S_n$ be a permutation with cycle decomposition $\sigma = a_1 \cdots a_t$ (1-cycles included). For $\alpha \in C(\sigma)$, define a partial transformation t_{α} on the set $A = \{a_1, \ldots, a_t\}$ of the cycles in σ by:

- (1) dom t_{α} consists of all cycles $a = (x_0x_1...x_{k-1}) \in A$ such that some x_i is in dom α ;
- (2) for each $a = (x_0x_1 \dots x_{k-1}) \in \text{dom } t_\alpha$ and each $b = (y_0y_1 \dots y_{m-1}) \in A$

 $at_{\alpha} = b \iff x_i \alpha = y_i$ for some x_i and some y_i .

By Theorem 2.1, t_{α} is well defined. Speaking informally, $at_{\alpha} = b$ if α wraps cycle a around cycle b one or more times. As an example, consider the permutation $\sigma = abc = (1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8 \ 9)$ in S_9 and $\alpha = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 3 \ 1 \ 2 \ 1 \ 2 \end{pmatrix} \in C(\sigma)$. Then $t_{\alpha} = \begin{pmatrix} a \ b \ c \\ - \ b \ a \end{pmatrix}$.

For a cycle *a*, $\ell(a)$ will denote the length of *a*. For example, if $a = (1 \ 2 \ 3)$, then $\ell(a) = 3$.

We shall frequently use the following lemma.

LEMMA 2.2. If $\sigma \in S_n$, $a = (x_0x_1...x_{k-1})$ and $b = (y_0y_1...y_{m-1})$ are cycles in σ , and α , $\beta \in C(\sigma)$, then:

- (1) $t_{\alpha\beta} = t_{\alpha}t_{\beta};$
- (2) if $at_{\alpha} = b$ then $\ell(b)$ divides $\ell(a)$;
- (3) $b \in \operatorname{ran} t_{\alpha}$ if and only if $\{y_0, y_1, \ldots, y_{m-1}\} \subseteq \operatorname{ran} \alpha$;
- (4) $at_{\alpha} = bt_{\alpha}$ if and only if $x_i \alpha = y_i \alpha$ for some x_i and some y_j .

Proof. Immediate by the definition of t_{α} and Theorem 2.1. \Box

3. Green's relations. If *S* is a semigroup and $a,b \in S$, we say that $a \mathcal{L} b$ if $S^1 a = S^1 b$, $a \mathcal{R} b$ if $aS^1 = bS^1$, and $a \mathcal{J} b$ if $S^1 aS^1 = S^1 bS^1$, where S^1 is the semigroup *S* with an identity adjoined. We define \mathcal{H} as the intersection of \mathcal{L} and \mathcal{R} , and \mathcal{D} as the join of \mathcal{L} and \mathcal{R} , i.e., the smallest equivalence containing both \mathcal{L} and \mathcal{R} . These five equivalences are known as *Green's relations* [2, p. 45]. The relations \mathcal{L} and \mathcal{R}

46

commute, and consequently $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$. If *S* is finite then $\mathcal{D} = \mathcal{J}$. For $a \in S$, we denote the equivalence classes of *a* with respect to \mathcal{L} , \mathcal{R} , \mathcal{J} , \mathcal{H} , and \mathcal{D} by L_a , R_a , J_a , H_a , and D_a , respectively.

Green's relations in the semigroup PT_n are well known [2, Exercise 17, p. 63].

LEMMA 3.1. If $\alpha, \beta \in PT_n$, then the following hold.

(1) $\alpha \mathcal{L} \beta \iff \operatorname{ran} \alpha = \operatorname{ran} \beta.$ (2) $\alpha \mathcal{R} \beta \iff \ker \alpha = \ker \beta.$ (3) $\alpha \mathcal{H} \beta \iff \operatorname{ran} \alpha = \operatorname{ran} \beta \text{ and } \ker \alpha = \ker \beta.$ (4) $\alpha \mathcal{D} \beta \iff \operatorname{rank} \alpha = \operatorname{rank} \beta. \square$

A description of Green's relations in $C(\sigma)$ ($\sigma \in S_n$) will involve t_{α} ($\alpha \in C(\sigma)$). The following lemma clarifies the relation between the range and kernel of α and t_{α} .

LEMMA 3.2. If $\sigma \in S_n$ and $\alpha, \beta \in C(\sigma)$, then

(1) $\operatorname{ran} \alpha = \operatorname{ran} \beta \iff \operatorname{ran} t_{\alpha} = \operatorname{ran} t_{\beta}$,

(2) ker $\alpha = \ker \beta \Longrightarrow \ker t_{\alpha} = \ker t_{\beta}$.

Proof. Statement (1) follows from (3) of Lemma 2.2 and Theorem 2.1. To show (2), suppose ker $\alpha = \ker \beta$. Let $a = (x_0x_1...x_{k-1})$ and $b = (y_0y_1...y_{m-1})$ be cycles in σ . Then,

 $(a, b) \in \ker t_{\alpha} \iff at_{\alpha} = bt_{\alpha}$ $\iff x_i \alpha = y_j \alpha \text{ for some } x_i \text{ and some } y_j \quad (by (4) \text{ of Lemma 2.2})$ $\iff x_i \beta = y_j \beta \text{ (since } \ker \alpha = \ker \beta)$ $\iff at_{\beta} = bt_{\beta} \quad (by (4) \text{ of Lemma 2.2})$ $\iff (a, b) \in \ker t_{\beta}. \qquad \Box$

The implication in (2) cannot be reversed. For example, if $\sigma = ab = (1 \ 2)(3) \in S_3$, then for $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & - \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & - \end{pmatrix}$ in $C(\sigma)$, we have $t_{\alpha} = \begin{pmatrix} a & b \\ a & - \end{pmatrix}$ and $t_{\beta} = \begin{pmatrix} a & b \\ b & - \end{pmatrix}$. Thus ker $t_{\alpha} = \ker t_{\beta} = |a|$, but ker $\alpha = |1| |2|$ is different from ker $\beta = |12|$.

There is no corresponding result for ranks. It is possible to have $\alpha, \beta \in C(\sigma)$ with rank $\alpha = \operatorname{rank} \beta$ but rank $t_{\alpha} \neq \operatorname{rank} t_{\beta}$ as well as with rank $t_{\alpha} = \operatorname{rank} t_{\beta}$ but rank $\alpha \neq \operatorname{rank} \beta$.

For $\sigma \in S_n$, $\alpha \in C(\sigma)$, and $b \in \operatorname{ran} t_{\alpha}$, we denote by $t_{\alpha}^{-1}(b)$ the set of all cycles $a \in \operatorname{dom} t_{\alpha}$ such that $at_{\alpha} = b$.

The following theorem characterizes Green's \mathcal{L} relation in $C(\sigma)$.

THEOREM 3.3. Let $\sigma \in S_n$ and let $\alpha, \beta \in C(\sigma)$. Then, $\alpha \mathcal{L} \beta$ (in $C(\sigma)$) if and only if the following conditions are satisfied:

(1) ran t_{α} = ran t_{β} ;

(2) for every $c \in \operatorname{ran} t_{\alpha} = \operatorname{ran} t_{\beta}$:

JANUSZ KONIECZNY

- (a) if $a \in t_{\alpha}^{-1}(c)$, then there exists $b \in t_{\beta}^{-1}(c)$ such that $\ell(b)$ divides $\ell(a)$;
- (b) if $a \in t_{\beta}^{-1}(c)$, then there exists $b \in t_{\alpha}^{-1}(c)$ such that $\ell(b)$ divides $\ell(a)$.

Proof. Suppose $\alpha \mathcal{L} \beta$. Then $\alpha \mathcal{L} \beta$ in PT_n and so (1) holds by (1) of Lemma 3.1 and (1) of Lemma 3.2. To show (2)(a), suppose $c \in \operatorname{ran} t_{\alpha} = \operatorname{ran} t_{\beta}$ and let $a \in t_{\alpha}^{-1}(c)$. Since $\alpha \mathcal{L} \beta$, we have $\alpha = \gamma \beta$ for some $\gamma \in C(\sigma)$ and so, by (1) of Lemma 2.2, $t_{\alpha} = t_{\gamma}t_{\beta}$. Since $at_{\alpha} = c$, there is a cycle b in σ such that $at_{\gamma} = b$ and $bt_{\beta} = c$. Thus $\ell(b)$ divides $\ell(a)$ (by (2) of Lemma 2.2) and $b \in t_{\beta}^{-1}(c)$. The condition 2(b) follows by symmetry.

Conversely, suppose (1) and (2) hold. We shall construct $\gamma \in C(\sigma)$ such that $\alpha = \gamma\beta$. First, we set dom $\gamma = \text{dom } \alpha$. To define the values of γ , let $a = (x_0x_1...x_{k-1})$ be a cycle in σ with $a \in \text{dom } t_{\alpha}$, and let $c = (y_0y_1...y_{m-1}) = at_{\alpha}$. By Theorem 2.1, *m* divides *k* and for some index *j*,

$$x_0\alpha = y_j, \qquad x_1\alpha = y_{j+1}, \qquad x_2\alpha = y_{j+2}, \ldots,$$

where the subscripts on *ys* are calculated modulo *m*. By (1) and (2)(a), $c \in \operatorname{ran} t_{\beta}$ and there is $b = (w_0w_1...w_{p-1}) \in \operatorname{dom} t_{\beta}$ such that $bt_{\beta} = c$ and *p* divides *k*. By Theorem 2.1, *m* divides *p* and for some index *i*,

$$w_0\beta = y_i, \qquad w_1\beta = y_{i+1}, \qquad w_2\beta = y_{i+2}, \dots,$$

where the subscripts on *y*s are calculated modulo *m*. Let $u \in \{0,1,...,p-1\}$ be an index such that $w_u\beta = y_j$. Since *p* divides *k*, we may define

$$x_0\gamma = w_u, \qquad x_1\gamma = w_{u+1}, \qquad x_2\gamma = w_{u+2}, \ldots,$$

where the subscripts on *ws* are calculated modulo *p*. By the construction of γ and Theorem 2.1, we have $\alpha = \gamma \beta$ and $\gamma \in C(\sigma)$. By symmetry, there is $\delta \in C(\sigma)$ such that $\beta = \delta \alpha$, which concludes the proof. \Box

To illustrate Theorem 3.3, let $\sigma = abcd = (1\ 2)(3\ 4\ 5)(6)(7) \in S_7$ and consider $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 6 & 7 & 7 & 7 & 6 & 6 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 7 & 6 & 6 & 6 & 7 & - \end{pmatrix}$ in $C(\sigma)$. Calculating $t_{\alpha} = \begin{pmatrix} a & b & c & d \\ c & d & c & c \end{pmatrix}$ and $t_{\beta} = \begin{pmatrix} a & b & c & d \\ d & c & d & - \end{pmatrix}$, we see that (1) of Theorem 3.3 holds, but (2) does not hold. Indeed, $a \in t_{\alpha}^{-1}(c)$ and $\ell(a) = 2$, but the only element of $t_{\beta}^{-1}(c)$ is b, for which $\ell(b) = 3$. Hence, α and β are not in the same \mathcal{L} -class in $C(\sigma)$. Note, however, that $\alpha \mathcal{L} \beta$ in PT_n since ran $\alpha = \operatorname{ran} \beta$.

For any integers *i* and *m*, $m \ge 1$, we denote by $(i)_m$ the unique integer *j* such that $i \equiv j \pmod{m}$ and $0 \le j \le m-1$.

Unlike the \mathcal{L} relation, Green's \mathcal{R} relation in $C(\sigma)$ is simply the restriction of the \mathcal{R} relation in PT_n to $C(\sigma) \times C(\sigma)$.

THEOREM 3.4. Let $\sigma \in S_n$ and let $\alpha, \beta \in C(\sigma)$. Then $\alpha \mathcal{R} \beta$ (in $C(\sigma)$) if and only if ker $\alpha = \ker \beta$.

Proof. If $\alpha \mathcal{R} \beta$ in $C(\sigma)$, then $\alpha \mathcal{R} \beta$ in PT_n and so ker $\alpha = \ker \beta$ by (2) of Lemma 3.1. Conversely, suppose ker $\alpha = \ker \beta$. We shall construct $\gamma \in C(\sigma)$ such that $\alpha \gamma = \beta$. First, we set dom $\gamma = \operatorname{ran} \alpha$. To define the values of γ , let

48

 $b = (y_0y_1 \dots y_{m-1}) \in \operatorname{ran} t_{\alpha}$ and let $a = (x_0x_1 \dots x_{k-1})$ be a cycle in dom t_{α} such that $at_{\alpha} = b$. By Theorem 2.1, *m* divides *k* and for some index *j*,

$$x_0\alpha = y_j, \qquad x_1\alpha = y_{j+1}, \qquad x_2\alpha = y_{j+2}, \ldots,$$

where the subscripts on *y*s are calculated modulo *m*. Since ker $\alpha = \ker \beta$, we have ker $t_{\alpha} = \ker t_{\beta}$ by (2) of Lemma 3.2, which implies dom $t_{\alpha} = \operatorname{dom} t_{\beta}$. Thus $a \in \operatorname{dom} t_{\beta}$ and let $c = (z_0 z_1 \dots z_{p-1}) = a t_{\beta}$. By Theorem 2.1, *p* divides *k* and for some index *i*,

$$x_0\beta = z_i, \qquad x_1\beta = z_{i+1}, \qquad x_2\beta = z_{i+2}, \dots,$$

where the subscripts on zs are calculated modulo p. Note that ker $\alpha = \ker \beta$ implies m = p. (Indeed, if, say, m < p, then $x_0\alpha = x_m\alpha = y_j$, implying $z_i = x_0\beta = x_m\beta = z_{(i+m)_*}$, which is a contradiction since for m < p, $z_i \neq z_{(i+m)_*}$.) Thus we may define

$$y_j \gamma = z_i, \qquad y_{j+1} \gamma = z_{i+1}, \qquad y_{j+2} \gamma = z_{i+2}, \ldots,$$

where the subscripts on ys and on zs are calculated modulo m (= p). By the construction of γ and Theorem 2.1, $\gamma \in C(\sigma)$. It remains to show that $\alpha \gamma = \beta$. Since dom $\gamma = \operatorname{ran} \alpha$ and dom $\alpha = \operatorname{dom} \beta$, we have dom $(\alpha \gamma) = \operatorname{dom} \beta$. Let $w \in \operatorname{dom} (\alpha \gamma)$ $= \operatorname{dom} \beta$. Then there is $d = (w_0 w_1 \dots w_{q-1}) \in \operatorname{dom} t_\alpha$ such that $w = w_s$ for some index s. Let $b = (y_0 y_1 \dots y_{m-1}) = dt_\alpha$, $a = (x_0 x_1 \dots x_{k-1})$, and $c = (z_0 z_1 \dots z_{p-1})$ be the cycles used in the construction of γ . Let $y_v = w_s \alpha$ ($v \in \{0, 1, \dots, m-1\}$) and let ube the unique number in $\{0, 1, \dots, m-1\}$ such that $v = (j+u)_m$. Then $w_s(\alpha \gamma) = y_v \gamma = z_{(i+u)_m}$. Note that $x_u \alpha = y_{(j+u)_m} = y_v = w_s \alpha$. This and the fact that ker $\alpha = \ker \beta$ give $w_s \beta = x_u \beta = z_{(i+u)_m}$, which shows that $\alpha \gamma = \beta$. By a similar construction, we obtain $\delta \in C(\sigma)$ such that $\beta \delta = \alpha$, which concludes the proof. \Box

COROLLARY 3.5. Let $\sigma \in S_n$ and let $\alpha, \beta \in C(\sigma)$. Then, $\alpha \mathcal{H} \beta$ (in $C(\sigma)$) if and only if ran $t_{\alpha} = \operatorname{ran} t_{\beta}$, ker $\alpha = \ker \beta$, and (2) of Theorem 3.3 is satisfied.

Proof. Follows from Theorem 3.3, Theorem 3.4, and the fact that $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$. \Box

The next theorem characterizes Green's \mathcal{D} relation in $C(\sigma)$.

THEOREM 3.6. Let $\sigma \in S_n$ and let $\alpha, \beta \in C(\sigma)$. Then, $\alpha \mathcal{D}\beta$ (in $C(\sigma)$) if and only if the following conditions are satisfied.

(1) rank t_{α} = rank t_{β} .

(2) The sets ran t_{α} and ran t_{β} can be ordered, say,

ran t_{α} : $c_1, c_2, ..., c_u$, ran t_{β} : $d_1, d_2, ..., d_u$,

in such a way that for each $i, 1 \leq i \leq u, \ell(c_i) = \ell(d_i)$ and:

- (a) if $a \in t_{\alpha}^{-1}(c_i)$, then there exists $b \in t_{\beta}^{-1}(d_i)$ such that $\ell(b)$ divides $\ell(a)$;
- (b) if $a \in t_{\beta}^{-1}(d_i)$, then there exists $b \in t_{\alpha}^{-1}(c_i)$ such that $\ell(b)$ divides $\ell(a)$.

Proof. Suppose $\alpha \mathcal{D}\beta$. Since $\mathcal{D} = \mathcal{R} \circ \mathcal{L}$, there is $\delta \in C(\sigma)$ such that $\alpha \mathcal{R}\delta$ and $\delta \mathcal{L}\beta$. Then ker $t_{\alpha} = \ker t_{\delta}$ (by Theorem 3.4 and (2) of Lemma 3.2) and ran $t_{\delta} = \operatorname{ran} t_{\beta}$ (by Theorem 3.3), which implies rank $t_{\alpha} = \operatorname{rank} t_{\delta} = \operatorname{rank} t_{\beta}$. Select an ordering of

ran
$$t_{\alpha}$$
 : $c_1, c_2, ..., c_u$.

Since $\alpha \mathcal{R}\delta$, $\alpha \gamma = \delta$ for some $\gamma \in C(\sigma)$, which gives $t_{\alpha}t_{\gamma} = t_{\delta}$ by (1) of Lemma 2.2. Moreover, by the proof of Theorem 3.4, γ can be selected in such a way that dom $t_{\gamma} = \operatorname{ran} t_{\alpha}$, ran $t_{\gamma} = \operatorname{ran} t_{\delta}$, and for each $c_i \in \operatorname{dom} t_{\gamma} = \operatorname{ran} t_{\alpha}$, the cycle $c_i t_{\gamma}$ has the same length as c_i . Since t_{γ} maps ran t_{α} onto ran t_{δ} and $|\operatorname{ran} t_{\alpha}| = |\operatorname{ran} t_{\delta}|$, we also have that t_{γ} is one-one. Therefore, setting $d_i = c_i t_{\gamma}$ ($1 \le i \le u$), we obtain the corresponding ordering of

$$\operatorname{ran} t_{\beta} = \operatorname{ran} t_{\delta} = \operatorname{ran} t_{\gamma} : d_1, d_2, \dots, d_u,$$

with $\ell(c_i) = \ell(d_i)$ for each *i*. Let $i \in \{1, ..., u\}$. Then, for every cycle *a* in σ ,

 $a \in t_{\alpha}^{-1}(c_i) \iff at_{\alpha} = c_i$ $\iff (at_{\alpha})t_{\gamma} = d_i \text{ (since } c_it_{\gamma} = d_i \text{ and } t_{\gamma} \text{ is one-one)}$ $\iff at_{\delta} = d_i \text{ (since } t_{\delta} = t_{\alpha}t_{\gamma})$ $\iff a \in t_{\delta}^{-1}(d_i).$

Thus $t_{\alpha}^{-1}(c_i) = t_{\delta}^{-1}(d_i)$ and so (2) is satisfied by the fact that $\delta \mathcal{L}\beta$ and Theorem 3.3.

Conversely, suppose that (1) and (2) are satisfied. For $i \in \{1, ..., u\}$, let $c_i = (x_{i0}x_{i1}...x_{i,r_i-1})$ and $d_i = (y_{i0}y_{i1}...y_{i,r_i-1})$. Let $\gamma, \gamma' \in PT_n$ be transformations with dom $\gamma = \operatorname{ran} \alpha$, dom $\gamma' = \operatorname{ran} \beta$, and values determined by $x_{ij}\gamma = y_{ij}$ and $y_{ij}\gamma' = x_{ij}$ ($1 \le i \le u, 0 \le j \le r_{i-1}$). Then, by Theorem 2.1, $\gamma, \gamma' \in C(\sigma)$. Setting $\delta = \alpha \gamma$, we have $\delta \gamma' = \alpha \gamma \gamma' = \alpha$, which gives $\alpha \mathcal{R} \delta$. By the definitions of γ and δ , we have that $\operatorname{ran} t_{\delta} = \{d_1, \ldots, d_u\} = \operatorname{ran} t_{\beta}$ and that for each $i, 1 \le i \le u, t_{\alpha}^{-1}(c_i) = t_{\delta}^{-1}(d_i)$. This, (2), and Theorem 3.3 imply $\delta \mathcal{L} \beta$, which, coupled with $\alpha \mathcal{R} \delta$, gives $\alpha \mathcal{D} \beta$. \Box

Recall the example given after Theorem 3.3: $\sigma = abcd = (1\ 2)(3\ 4\ 5)(6)(7) \in S_7$, $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 6 & 7 & 7 & 7 & 6 & 6 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 7 & 6 & 6 & 6 & 7 & - \end{pmatrix}$ in $C(\sigma)$. Calculating $t_{\alpha} = \begin{pmatrix} a & b & c & d \\ c & d & c & c \end{pmatrix}$ and $t_{\beta} = \begin{pmatrix} a & b & c & d \\ d & c & d & - \end{pmatrix}$, we have rank $t_{\alpha} = \operatorname{rank} t_{\beta} = 2$. Moreover, ordering ran $t_{\alpha} : c, d$ and ran $t_{\beta} : d, c$ we see that (2) of Theorem 3.6 is also satisfied. Hence $\alpha \mathcal{D}\beta$ in $C(\sigma)$.

In a finite semigroup S, the D-classes are partially ordered by the following relation:

$$D_a \leq D_b \Longleftrightarrow S^1 a S^1 \subseteq S^1 b S^1,$$

where $a, b \in S$. The relation \leq is a partial ordering since in a finite semigroup $\mathcal{D} = \mathcal{J}$. When studying the structure of a finite semigroup, it is important to determine not only the $\mathcal{L}, \mathcal{R}, \mathcal{H}$, and \mathcal{D} -classes, but also the partial ordering of \mathcal{D} -classes.

The next theorem determines the partial ordering of \mathcal{D} -classes in $C(\sigma)$.

THEOREM 3.7. Let $\sigma \in S_n$ and let $\alpha, \beta \in C(\sigma)$ with ran $t_{\alpha} = \{c_1, c_2, \dots, c_u\}$. Then, $D_{\alpha} \leq D_{\beta}$ if and only if to each sequence

$$s: a_1 \in t_{\alpha}^{-1}(c_1), a_2 \in t_{\alpha}^{-1}(c_2), \dots, a_u \in t_{\alpha}^{-1}(c_u),$$
(1)

we can assign a sequence of elements of ran t_{β} :

$$d^{s}: d_{1}^{s}, d_{2}^{s}, \dots, d_{u}^{s},$$
 (2)

in such a way that for all sequences s and t as in (1) and for all $i, j \in \{1, ..., u\}$:

- (i) $\ell(c_i)$ divides $\ell(d_i^s)$;
- (ii) there is $b_i \in t_{\beta}^{-1}(d_i^s)$ such that $\ell(b_i)$ divides $\ell(a_i)$;
- (iii) if $d_i^s = d_j^t$, then i = j.

Proof. Suppose $D_{\alpha} \leq D_{\beta}$, i.e., $\alpha = \delta \beta \gamma$ for some $\delta, \gamma \in C(\sigma)$. By (1) of Lemma 2.2, $t_{\alpha} = t_{\delta} t_{\beta} t_{\gamma}$. Consider a sequence *s* as in (1) and let $i \in \{1, ..., u\}$. Since $a_i t_{\alpha} = c_i$ and $t_{\alpha} = t_{\delta} t_{\beta} t_{\gamma}$, there are cycles b_i and d_i^s in σ such that $a_i t_{\delta} = b_i$, $b_i t_{\beta} = d_i^s$, and $d_i^s t_{\gamma} = c_i$. Then $b_i \in t_{\beta}^{-1}(d_i^s)$ and, by (2) of Lemma 2.2, $\ell(c_i)$ divides $\ell(d_i^s)$ and $\ell(b_i)$ divides $\ell(a_i)$. Thus, assigning d_1^s , d_2^s , ..., d_u^s to *s*, we have that (i) and (ii) are satisfied. To show (iii), assume that *s* and *t* are sequences as in (1) and that $i, j \in \{1, ..., u\}$. Then,

$$d_i^s = d_j^t \Rightarrow d_i^s t_\gamma = d_j^t t_\gamma \Rightarrow c_i = c_j \Rightarrow i = j.$$

Conversely, suppose that to each sequence (1) we can assign a sequence (2) in such a way that the conditions (i)–(iii) are satisfied. We shall construct $\delta, \gamma \in C(\sigma)$ such that $\alpha = \delta \beta \gamma$. First, we define dom γ to be the set of all elements that occur in any cycle d in σ such that $d = d_v^s$ for some sequence s as in (1) and some $v \in \{1, \ldots, u\}$. To define the values of γ , let $d = d_v^s = (w_0 w_1 \dots w_{q-1})$ and let $c_v = (z_0 z_1 \dots z_{p-1})$. By (i), p divides q, and so we may define

$$w_0\gamma = z_0, \qquad w_1\gamma = z_1, \qquad w_2\gamma = z_2, \ldots,$$

where the subscripts on *zs* are calculated modulo *p*. By (iii), γ is well-defined. Next, we set dom $\delta = \text{dom } \alpha$. To define the values of δ , let $a = (x_0x_1...x_{k-1}) \in \text{dom } t_{\alpha}$. Then $a \in t_{\alpha}^{-1}(c_v)$ for some $v \in \{1,...,u\}$. Select a sequence *s* as in (1) with $a_v = a$, and let $d_v^s = (w_0w_1...w_{q-1})$ and $c_v = (z_0z_1...z_{p-1})$ be as in the construction of γ . By (ii), there is $b_v = (y_0y_1...y_{m-1}) \in t_{\beta}^{-1}(d_v^s)$ such that *m* divides *k*. By Theorem 2.1, *p* divides *q*, *q* divides *m*, and for some indices $i \in \{0, 1, ..., p-1\}$ and $j \in \{0, 1, ..., q-1\}$,

$$x_0 \alpha = z_i, x_1 \alpha = z_{i+1}, x_2 \alpha = z_{i+2}, \dots, \text{ and } y_0 \beta = w_j, y_1 \beta = w_{j+1}, y_2 \beta = w_{j+2}, \dots,$$

where the subscripts on *z*s are calculated modulo *p* and the subscripts on *w*s are calculated modulo *q*. Let $r \in \{0,1,\ldots,m-1\}$ be an index such that $y_r\beta = w_i$. Since *m* divides *k*, we may define

$$x_0\delta = y_r, \qquad x_1\delta = y_{r+1}, \qquad x_2\delta = y_{r+2}, \dots,$$

where the subscripts on *y*s are calculated modulo *m*. By the constructions of γ and δ and Theorem 2.1, we have $\delta, \gamma \in C(\sigma)$ and $\alpha = \delta \beta \gamma$. This concludes the proof. \Box

Note that taking s = t in (iii), we get that $d_1^s, d_2^s, \ldots, d_u^s$ are pairwise distinct. This, coupled with (i), shows that if $D_{\alpha} \leq D_{\beta}$, then rank $t_{\alpha} \leq \text{rank } t_{\beta}$ and rank $\alpha \leq \text{rank } \beta$.

To illustrate Theorem 3.7, consider $\sigma = abcde = (1 \ 2)(3 \ 4)(5 \ 6 \ 7)(8)(9) \in S_9$, and $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 8 & - & - & 8 & 8 & 8 & - & 9 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & - & - & 7 & 5 & 6 & - & 8 \end{pmatrix}$ in $C(\sigma)$. Since $t_{\alpha} =$

JANUSZ KONIECZNY

52

 $\binom{a \ b \ c \ d \ e}{d \ - \ d \ - \ e}$, we have ran $t_{\alpha} = \{d, e\}$ and two sequences of type (1): s : a, e and t : c, e. Since $t_{\beta} = \binom{a \ b \ c \ d \ e}{b \ - \ c \ - \ d}$ with ran $t_{\beta} = \{b, c, d\}$, we can construct the corresponding sequences of type (2): $d^s : b, d$ and $d^t : c, d$ that satisfy (i)–(iii). Therefore, $D_{\alpha} \le D_{\beta}$. Note that it is impossible to construct a sequence d_1, d_2 of elements of ran t_{β} that would work for both s and t.

4. Regularity. An element *a* of a semigroup *S* is called *regular* if a = axa for some *x* in *S*. If all elements of *S* are regular, we say that *S* is a *regular semigroup*. An element *a'* in *S* is called an *inverse* of *a* in *S* if a = aa'a and a' = a'aa'. Since regular elements are precisely those that have inverses (if a = axa, then a' = xax is an inverse of *a*), we may define a regular semigroup as a semigroup in which every element has an inverse.

If a \mathcal{D} -class D in S contains a regular element, then every element in D is regular, and we call D a *regular* \mathcal{D} -class. In a regular \mathcal{D} -class, every \mathcal{L} -class and every \mathcal{R} -class contains an idempotent (an element e with e = ee). If an \mathcal{H} -class H contains an idempotent, then H is a maximal subgroup of S.

If every element of a semigroup S has exactly one inverse, then S is called an *inverse semigroup*. An alternative definition is that S is an inverse semigroup if it is regular and its idempotents commute. If every element of S is in some subgroup of S, then S is called a *union of groups*. In other words, unions of groups are semigroups in which every \mathcal{H} -class is a group. (Unions of groups are also called completely regular semigroups [2, Proposition 4.1.1].) Both inverse semigroups and unions of groups are regular semigroups.

The following lemma describes regular elements in $C(\sigma)$.

LEMMA 4.1. Let $\sigma \in S_n$. Then a transformation $\alpha \in C(\sigma)$ is regular if and only if for every $b \in \operatorname{ran} t_{\alpha}$, there is $a \in t_{\alpha}^{-1}(b)$ such that $\ell(a) = \ell(b)$.

Proof. Suppose $\alpha \in C(\sigma)$ is regular, i.e., $\alpha = \alpha\beta\alpha$ for some $\beta \in C(\sigma)$. Let $b \in \operatorname{ran} t_{\alpha}$ and select $c \in t_{\alpha}^{-1}(b)$. Since $t_{\alpha} = t_{\alpha}t_{\beta}t_{\alpha}$ (by (1) of Lemma 2.2) and $ct_{\alpha} = b$, there is a cycle *a* in σ such that $ct_{\alpha} = b$, $bt_{\beta} = a$, and $at_{\alpha} = b$. Then $a \in t_{\alpha}^{-1}(b)$ and, by (2) of Lemma 2.2, $\ell(c) \geq \ell(b) \geq \ell(a) \geq \ell(b)$, implying $\ell(a) = \ell(b)$.

Conversely, suppose that the given condition is satisfied. We shall define $\beta \in C(\sigma)$ such that $\alpha = \alpha \beta \alpha$. First, set dom $\beta = \operatorname{ran} \alpha$. To define the values of β , let $b = (y_0y_1...y_{m-1}) \in \operatorname{ran} t_{\alpha}$. Then, by the assumption, we can find a cycle $a = (x_0x_1...x_{k-1})$ in dom t_{α} such that $at_{\alpha} = b$ and k = m. By Theorem 2.1, for some index *j*,

$$x_0\alpha = y_j, \qquad x_1\alpha = y_{j+1}, \qquad x_2\alpha = y_{j+2}, \ldots,$$

where the subscripts on ys are calculated modulo m. Since k = m, we may define

$$y_j\beta = x_0, \qquad y_{j+1}\beta = x_1, \qquad y_{j+2}\beta = x_2, \dots,$$

where the subscripts on *y*s and on *x*s are calculated modulo $m \ (= k)$. By the construction of β and Theorem 2.1, we have $\beta \in C(\sigma)$ and $\alpha = \alpha \beta \alpha$. This concludes the proof. \Box

Using Lemma 4.1, we characterize the permutations $\sigma \in S_n$ for which $C(\sigma)$ is a regular semigroup.

GREEN'S RELATIONS

THEOREM 4.2. Let $\sigma \in S_n$. Then $C(\sigma)$ is a regular semigroup if and only if

for all cycles
$$a, b \in C(\sigma)$$
: $\ell(b)$ divides $\ell(a) \Rightarrow \ell(b) = \ell(a)$. (3)

Proof. Suppose $C(\sigma)$ is a regular semigroup. Let $a = (x_0x_1...x_{k-1})$ and $b = (y_0y_1...y_{m-1})$ be cycles in σ such that m divides k. Consider $\alpha \in PT_n$ with dom $\alpha = \{x_0, x_1, ..., x_{k-1}\}$ and with values defined by

$$x_0\alpha = y_0, \qquad x_1\alpha = y_1, \qquad x_2\alpha = y_2, \ldots,$$

where the subscripts on ys are calculated modulo m. By Theorem 2.1, $\alpha \in C(\sigma)$. Since dom $t_{\alpha} = \{a\}$ and ran $t_{\alpha} = \{b\}$, we have m = k by the fact that α is regular and Lemma 4.1.

Conversely, suppose (3) holds. Let $\alpha \in C(\sigma)$ and let $b \in \operatorname{ran} t_{\alpha}$. Select an $a \in t_{\alpha}^{-1}(b)$. By (2) of Lemma 2.2 and (3), we have $\ell(b) = \ell(a)$. It follows by Lemma 4.1 that α is regular. \Box

For example, for $\sigma = (1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8)$ and $\rho = (1 \ 2)(3 \ 4)(5 \ 6 \ 7 \ 8)$ in S_8 , the centralizer $C(\sigma)$ is a regular semigroup whereas $C(\rho)$ is nonregular. Note that for any permutation $\sigma \in S_n$ (other than the identity) with at least one 1-cycle, $C(\sigma)$ is nonregular.

In an inverse semigroup, only one \mathcal{H} -class in each \mathcal{L} -class (\mathcal{R} -class) is a group. In contrast, in a union of groups, every \mathcal{H} -class is a group. We note that in the class of centralizers of permutations, inverse semigroups and unions of groups coincide.

THEOREM 4.3. For any $\sigma \in S_n$, the following conditions are equivalent: (a) $C(\sigma)$ is an inverse semigroup;

(b) $C(\sigma)$ is a union of groups;

(c) for all cycles a,b in σ , if $\ell(b)$ divides $\ell(a)$ then b = a.

Proof. To show (a) \Rightarrow (c), suppose $C(\sigma)$ is an inverse semigroup and let $a = (x_0x_1...x_{k-1})$ and $b = (y_0y_1...y_{m-1})$ be cycles in σ such that m divides k. By Theorem 4.2, m = k. Suppose $a \neq b$. Define $\varepsilon, \xi \in PT_n$ by: dom $\varepsilon = \{x_0,...,x_{k-1},y_0,...,y_{k-1}\}$, dom $\xi = \{y_0,...,y_{k-1}\}$, $x_i\varepsilon = y_i$, $y_i\varepsilon = y_i$, and $y_i\xi = y_i$ ($0 \le i \le k - 1$). By the construction and Theorem 2.1, ε and ξ are idempotents in $C(\sigma)$ with $\varepsilon\xi = \varepsilon \neq \xi = \xi\varepsilon$, which is a contradiction (since idempotents commute in an inverse semigroup). Hence b = a.

To show (b) \Rightarrow (c), suppose $C(\sigma)$ is a union of groups and let a and b be cycles in σ as above. Again, k = m and suppose $a \neq b$. Define $\alpha \in PT_n$ by: dom $\alpha = \{x_0, \ldots, x_{k-1}\}$ and $x_i\alpha = y_i$ ($0 \le i \le k-1$). By the construction and Theorem 2.1, $\alpha \in C(\sigma)$ and $\alpha^2 = 0$, where 0 is the zero (empty) transformation. Since H_{α} is a group, we have $\alpha^2 \in H_{\alpha}$ and so $\alpha \mathcal{H}0$. This is a contradiction (by Corollary 3.5). Hence b = a.

Suppose (c) holds. Then, by Theorem 2.1, for every $\alpha \in C(\sigma)$, α is a permutation on its domain and t_{α} fixes each element of its domain. It follows that for some integer $p \ge 1$, $\alpha^p = \varepsilon$ is an idempotent such that dom $\varepsilon = \text{dom } \alpha$, $x\varepsilon = x$ for each $x \in \text{dom } \varepsilon$, and $t_{\varepsilon} = t_{\alpha}$. By Corollary 3.5, $\alpha \mathcal{H}\varepsilon$, which shows that $C(\sigma)$ is a union of groups. Further, the fact that elements of $C(\sigma)$ are permutations on their domains implies that idempotents in $C(\sigma)$ are one-one. Since one-one idempotents in PT_n commute, we have that $C(\sigma)$ is also an inverse semigroup. \Box

JANUSZ KONIECZNY

5. Example. In this section, we shall use the results of Section 3 and Section 4 to present the structure of the centralizer $C(\sigma)$ for

$$\sigma = abc = (1\ 2)(3\ 4)(5\ 6\ 7\ 8). \tag{4}$$

We shall visualize each \mathcal{D} -class as an egg-box diagram, with each \mathcal{R} -class R_{α} (row) labelled by ker α (see Theorem 3.4) and each \mathcal{L} -class L_{α} (column) labelled by ran t_{α} (see Theorem 3.3). In each \mathcal{H} -class H (cell), we shall place a representative α of H together with t_{α} , with α being an idempotent if H is a group. Idempotents will be indicated by asterisks.

To simplify notation, we shall write both $\alpha \in C(\sigma)$ and t_{α} as sequences of images. For example, for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & - & - & 3 & 4 & 3 & 4 \end{pmatrix}$ and $t_{\alpha} = \begin{pmatrix} a & b & c \\ a & - & b \end{pmatrix}$, we shall write $\alpha = 1 \ 2 - -3 \ 4 \ 3 \ 4$ and $t_{\alpha} = a - b$.

If $\alpha \in C(\sigma)$ with rank $\alpha = k$ and rank $t_{\alpha} = m$, we say that the \mathcal{D} -class D_{α} is of rank (k, m). This definition is justified by Theorem 3.6, which implies that if $\alpha \mathcal{D}\beta$, then rank $\alpha = \operatorname{rank} \beta$ and rank $t_{\alpha} = \operatorname{rank} t_{\beta}$.

By Theorem 2.1, the possible ranks of \mathcal{D} -classes in $C(\sigma)$ for the permutation (4) are: (8,3), (6,2), (4,2), (4,1), (2, 1), and (0,0).

Rank (8, 3). There is one \mathcal{D} -class of this rank, say D_1 , namely the group of units of $C(\sigma)$ (see Fig. 1). Every member of D_1 maps either *a* onto *a*, *b* onto *b*, and *c* onto *c* or *a* onto *b*, *b* onto *a*, and *c* onto *c*. We have $2 \cdot 2 \cdot 4 = 16$ possibilities for the former case and the same number for the latter, giving the total of 32 elements in D_1 .

Figure 1. D_1 (group of units, 32 elements).

Rank (6, 2). There is one \mathcal{D} -class of this rank, say D_2 (see Fig. 2). Look at the \mathcal{H} -class in the lower right-hand corner. Each member of this \mathcal{H} -class maps b onto b and c onto c. This can be done in $2 \cdot 4 = 8$ ways. Since all \mathcal{H} -classes in the same \mathcal{D} -class have the same cardinality, D_2 has $8 \cdot 8 = 64$ elements.

	ac	bc
13 24 5 6 7 8	12125678* a a c	34345678* bbc
14 23 5 6 7 8	12215678* a a c	43345678* bbc
1 2 5 6 7 8	125678^* a - c	345678 $b - c$
3 4 5 6 7 8	$ 125678 \\ - ac$	345678^{*} -bc

Figure 2. D_2 (regular, 64 elements).

GREEN'S RELATIONS

Rank (4, 2). There are two \mathcal{D} -classes of this rank, say D_3 and D_4 , one regular and one nonregular (see Figs 3 and 4). Each \mathcal{H} -class in D_3 has 8 elements and each \mathcal{H} -class in D_4 has 4 elements.

Figure 3. D_3 (regular, 40 elements).

	ab	ab
13 24 57 68	12123434 a a b	3 4 3 4 1 2 1 2 b b a
14 23 57 68	12214343 <i>a a b</i>	43341212 bba
1 2 57 68	12 3434 a - b	341212 $b - a$
3 4 57 68	$ 341212 \\ - ba$	123434-ab

Figure 4. D_4 (nonregular, 32 elements).

Rank (4, 1). There is one \mathcal{D} -class of this rank, say D_5 , with a single \mathcal{H} -class (see Fig. 5).

$$\begin{array}{c} c \\ |5|6|7|8| & --- 5678^* \\ & --c \end{array}$$

Figure 5. D_5 (regular, 4 elements).

,

	a	b
1357 2468	12121212* a a a	3 4 3 4 3 4 3 4* b b b
1457 2368	12211212* a a a	4 3 3 4 4 3 4 3* b b b
1368 2457	12122121* a a a	3 4 3 4 4 3 4 3* b b b
1468 2357	12212121* a a a	3 4 4 3 3 4 3 4* b b b
157 268	121212^* a - a	$\begin{array}{r} 3\ 4\ -\ -\ 3\ 4\ 3\ 4\\ b\ -\ b\end{array}$
168 257	122121^* a - a	344343 b - b
357 468	$ 121212 \\ - a a$	$ \begin{array}{r} \ 3 \ 4 \ 3 \ 4 \ 3 \ 4^{*} \\ - \ b \ b \end{array} $
368 457	$ 122121 \\ - a a$	$ \begin{array}{r} & 3 & 4 & 3 & 4 & 3 & 4 & 3 & * \\ & - & b & b & \end{array} $
13 24	1 2 1 2 * a a -	3 4 3 4 * b b -
14 23	1 2 2 1 * a a -	4 3 3 4 * b b -
1 2	12* a	$\begin{array}{c} 3 4$
3 4	12	34* -b-

Figure 6. D_6 (regular, 48 elements).

	a	b
57 68	1212	3434
	a	b

Figure 7. D_7 (nonregular, 4 elements).

Rank (2, 1). There are two \mathcal{D} -classes of this rank, say D_6 and D_7 , one regular and one nonregular (see Figs 6 and 7). Each \mathcal{H} -class in each of these two \mathcal{D} -classes has 2 elements.

Rank (0, 0). There is one \mathcal{D} -class of this rank, containing the zero transformation as the only element.

Thus the semigroup $C(\sigma)$ has 225 elements (189 regular and 36 nonregular) and 8 \mathcal{D} -classes (6 regular and 2 nonregular). Using Theorem 3.7, we can determine the partial ordering of \mathcal{D} -classes (see Fig. 8). Regular \mathcal{D} -classes are marked with asterisks.

Figure 8. Global structure of $C(\sigma)$.

REFERENCES

1. P. M. Higgins, Digraphs and the semigroup of all functions on a finite set, *Glasgow Math. J.* 30 (1988), 41–57.

2. J. M. Howie, Fundamentals of semigroup theory (Oxford University Press, 1995).

3. J. Konieczny and S. Lipscomb, Centralizers in the semigroup of partial transformations, *Math. Japon.* (to appear).

4. S. L. Lipscomb, The structure of the centralizer of a permutation, *Semigroup Forum* **37** (1988), 301–312.

5. S. L. Lipscomb, Centralizers in symmetric inverse semigroups: structure and order, *Semigroup Forum* 44 (1992), 347–355.

6. S. Lipscomb, Symmetric Inverse Semigroups, *Mathematical Surveys and Mono*graphs, **46** (American Mathematical Society, Providence, RI, 1996).

7. S. Lipscomb and J. Konieczny, Centralizers of permutations in the partial transformation semigroup, *Pure Math. Appl.* 6 (1995), 349–354.

8. M. Suzuki, Group theory I (Springer-Verlag, 1982).