
TPLP 20 (4): 435–455, 2020. c© The Author(s), 2020. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/S1471068420000022 First published online 26 February 2020

435

selp: A Single-Shot Epistemic Logic Program Solver∗

MANUEL BICHLER, MICHAEL MORAK, and STEFAN WOLTRAN
TU Wien, Vienna, Austria

(e-mails: bichler@dbai.tuwien.ac.at, michael.morak@aau.at, woltran@dbai.tuwien.ac.at)

submitted 30 September 2019; revised 26 December 2019; accepted 6 January 2020

Abstract

Epistemic logic programs (ELPs) are an extension of answer set programming (ASP) with
epistemic operators that allow for a form of meta-reasoning, that is, reasoning over multiple
possible worlds. Existing ELP solving approaches generally rely on making multiple calls to
an ASP solver in order to evaluate the ELP. However, in this paper, we show that there also
exists a direct translation from ELPs into non-ground ASP with bounded arity. The resulting
ASP program can thus be solved in a single shot. We then implement this encoding method,
using recently proposed techniques to handle large, non-ground ASP rules, into the prototype
ELP solving system “selp,” which we present in this paper. This solver exhibits competitive
performance on a set of ELP benchmark instances.

KEYWORDS: logic programming methodology and applications, knowledge representation and
nonmonotonic reasoning, technical notes and rapid communications

1 Introduction

Epistemic logic programs (ELPs), as defined in Shen and Eiter (2016), are an extension

of the well-established formalism of answer set programming (ASP). ASP is a generic,

fully declarative logic programming language that allows us to encode problems in such

a way that the resulting answers (called answer sets) directly correspond to solutions

of the encoded problem (Brewka et al . 2011). Negation in ASP is generally interpreted

according to the stable model semantics (Gelfond and Lifschitz 1988), that is, as negation-

as-failure or default negation. The default negation ¬a of an atom a is true if there is

no justification for a in the same answer set, making it a “local” operator in the sense

that it is defined relative to the same answer set. ELPs, on the other hand, extend ASP

with the epistemic negation operator not that allows for a form of meta-reasoning, that

is, reasoning over multiple answer sets. Intuitively, an epistemically negated atom not a

expresses that a cannot be proven true, that is, it is false in at least one answer set.

Thus, epistemic negation is defined relative to a collection of answer sets, referred to as

a world view. The main reasoning task for ELPs, checking that a world view exists, is

Σ3
P -complete (Shen and Eiter 2016).

Epistemic negation has long been recognized as a desired construct for ASP (Gel-

fond 1991, 1994). In these works, Michael Gelfond introduced the modal operators K

∗ This work was funded by the Austrian Science Fund (FWF) under grant numbers Y698 and P30930.

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068420000022
https://orcid.org/0000-0002-2077-7672
mailto:bichler@dbai.tuwien.ac.at
mailto:michael.morak@aau.at
mailto:woltran@dbai.tuwien.ac.at
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068420000022&domain=pdf
https://doi.org/10.1017/S1471068420000022

436 M. Bichler et al.

(“known” or “provably true”) and M (“possible” or “not provably false”), in order to

address this need. Given an atom a, Ka and Ma stand for ¬not a and not¬a, respec-
tively.

Example 1

A classical example for the use of epistemic negation is the presumption of innocence

rule

innocent(X)← not guilty(X),

namely, a person is innocent if they cannot be proven guilty.

Renewed interest in recent years has revealed several flaws in the original semantics,

and several approaches (Gelfond 2011; Truszczynski 2011; Kahl 2014; del Cerro et al .

2015; Shen and Eiter 2016) aimed to refine them in such a way that unintended world

views are eliminated. In this work, we will settle on the semantics proposed in Shen

and Eiter (2016). The flurry of new research also led to the development of ELP solv-

ing systems (Kahl et al . 2015; Son et al . 2017). Such solvers employ readily available,

highly efficient ASP systems like clingo (Gebser et al . 2012; 2014) and WASP (Alviano

et al . 2013), especially making use of the former solver’s multi-shot solving functionality

(Gebser et al . 2019). However, these ELP solving systems rely on ground ASP programs

when calling the ASP solver, which, for complexity-theoretic reasons, generally requires

multiple calls in order to check for world view existence. The main aim of our paper is

to present techniques and a system for solving ELPs that is able to utilize an ASP solver

in such a way that the ELP can be solved in a single shot.

Contributions. Our contributions in this paper are twofold:

• We propose a novel translation from ELPs to ASP programs using large non-ground

ASP rules, such that the ELP can be solved by an ASP solving system in a sin-

gle shot. This is done via a recently proposed encoding technique (Bichler et al .

2016b) that uses large ASP rules to formulate complex checks. This technique builds

on a result from (Eiter et al . 2007) that states that evaluating non-ground ASP

programs with bounded predicate arity is Σ3
P -complete, which matches the com-

plexity of evaluating ELPs. Our proposed translation is therefore optimal from a

complexity-theoretic point of view. From a practical point of view, such an encoding

avoids multiple calls to the ASP solver. State-of-the-art systems use sophisticated

heuristics and learning, and multiple calls might result in a loss of knowledge about

the problem instance, which the solver has already learned.

• We further discuss how our encoding needs to be constructed in order to be useful

in practice. In particular, in current ASP systems, non-ground ASP programs first

need to be grounded, that is, all variables need to be replaced by all allowed com-

binations of constants. Since our encoding makes use of large non-ground rules, a

naive grounding will often not terminate, since there may be hundreds or thousands

of variables in a rule. However, as proposed in Bichler et al . (2016b), we make use of

the lpopt rule decomposition tool (Bichler et al . 2016a) that splits such large rules

into smaller ones that are more easily grounded, by making use of the concept of

treewidth and tree decompositions (Bodlaender 1993). To use this tool to its full

potential, the large rules we use in our encoding must be constructed carefully, in

order for lpopt to split them up optimally.

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 437

• Finally, we present a prototype implementation of our ELP-to-ASP rewriting ap-

proach and combine it with the state-of-the-art ASP solving system clingo (Gebser

et al . 2014) in order to evaluate its performance. We compare our system against

EP-ASP (Son et al . 2017) on different benchmarks found in the literature. Our

system shows competitive performance on these benchmarks, in particular on in-

stances with good structural properties.

The remainder of the paper is structured as follows: in Section 2, we introduce

the formal background of ASP, ELPs, and tree decompositions; Section 3 states our

reduction from ELPs to ASP, including practical considerations and a discussion of

related work; Section 4 presents how quantified boolean formula (QBF) formulas can

be encoded as ELP programs; Section 5 introduces our ELP solver; Section 6 presents

our benchmark results, making use of results from Section 4; and finally Section 7 closes

with some concluding remarks.

This paper is extended versions of Bichler et al. (2018a, 2018b). Additional material

includes a full correctness proof for our reduction in Section 3 and a formalized and

detailed description of the adaptations needed to make the reduction workable in practice.

Furthermore, Section 4 describes in detail how our QBF benchmarks, used in Section 6,

are constructed.

2 Preliminaries

Answer set programming (ASP). A ground logic program (also called answer set program,

ASP program, or simply program) is a pair Π = (A ,R), where A is a set of propositional

(i.e., ground) atoms and R is a set of rules of the form

a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an; (1)

where the comma symbol stands for conjunction, n ≥ m ≥ l ≥ 0 and ai ∈ A for all

1 ≤ i ≤ n. Each rule r ∈ R of form (1) consists of a head H (r) = {a1, . . . , al} and

a body given by B+(r) = {al+1, . . . , am} and B−(r) = {am+1, . . . , an}. A literal � is

either an atom a or its (default) negation ¬a. A literal � is true in a set of atoms I ⊆ A

if � = a and a ∈ I, or � = ¬a and a 	∈ I; otherwise � is false in I. A set M ⊆ A

is a called a model of r if B+(r) ⊆ M together with B−(r) ∩ M = ∅ implies that

H (r) ∩M 	= ∅. We denote the set of models of r by models(r), and the models of a

logic program Π = (A ,R) are given by models(Π) =
⋂

r∈R models(r). The GL-reduct

ΠI of a ground logic program Π with respect to a set of atoms I ⊆ A is the program

ΠI = (A , {H (r)← B+(r) | r ∈ R,B−(r) ∩ I = ∅}).
Definition 2

Gelfond and Lifschitz (1988, 1991) M ⊆ A is an answer set of a program Π if (1)

M ∈ models(Π) and (2) there is no subset N ⊂M such that N ∈ models(ΠM).

The set of answer sets of a program Π is denoted AS (Π). The consistency problem of

ASP (decide whether, given Π, AS (Π) 	= ∅) is Σ2
P -complete (Eiter and Gottlob 1995).

General non-ground logic programs differ from ground logic programs in that variables

may occur in rules. Such rules are ∀-quantified first-order implications of the form H1 ∨
· · · ∨Hk ← P1, . . . , Pn,¬N1, . . . ,¬Nm, where Hi, Pi, and Ni are (non-ground) atoms. A

non-ground atom A is of the form p(t) and consists of a predicate name p, as well as a

sequence of terms t, where each term t ∈ t is either a variable or a constant from a domain

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

438 M. Bichler et al.

Δ, with |t| being the arity of p. Let var(A) denote the set of variables X in a non-ground

atom A. This notation naturally extends to sets. We will denote variables by capital

letters, constants, and predicates by lower-case words. A non-ground rule can be seen

as an abbreviation for all possible instantiations of the variables with domain elements

from Δ. This step is usually explicitly performed by a grounder that transforms a (non-

ground) logic program into a set of ground rules of the form (1). Note that, in general,

such a ground program may be exponential in the size of the non-ground program. For

non-ground programs of bounded arity, the consistency problem is Σ3
P -complete (Eiter

et al . 2007).

Epistemic logic programs. A ground ELP is a pair Π = (A ,R), where A is a set or

propositional atoms and R is a set of rules of the following form:

a1 ∨ · · · ∨ ak ← �1, . . . , �m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn,
where each ai is an atom, each �i is a literal, and each ξi is an epistemic literal, that is, a

formula not �, where not is the epistemic negation operator, and � is a literal. W.l.o.g. we

assume that no atom appears twice in a rule1. Let elit(r) denote the set of all epistemic

literals occurring in a rule r ∈ R. This notation naturally extends to programs. Let

H (r) = {a1, . . . , ak}. Let B(r) = {�1, . . . , �m, ξ1, . . . , ξj ,¬ξj+1, . . . ,¬ξn}, that is, the set

of elements appearing in the rule body.

In order to define the main reasoning tasks for ELPs, we recall the notion of the

epistemic reduct (Shen and Eiter 2016). Let Φ ⊆ elit(Π) (called a guess). The epistemic

reduct ΠΦ of the program Π = (A ,R) w.r.t. Φ consists of the rules {r¬ | r ∈ R}, where
r¬ is defined as the rule r with all epistemic literals not � in Φ (resp. in elit(Π) \ Φ)
replaced by � (respectively, ¬�). Note that ΠΦ is a logic program without epistemic

negation2. This leads to the following central definition.

Definition 3

Let Φ be a guess. The set M = AS (ΠΦ) is called a candidate world view of Π iff

1. M 	= ∅,
2. for each epistemic literal not � ∈ Φ, there exists an answer set M ∈ M wherein �

is false, and

3. for each epistemic literal not � ∈ elit(Π) \ Φ, it holds that � is true in each answer

set M ∈M .

Example 4

Let Π be the following ELP, with R = {r1, r2}:
r1 : p← not q

r2 : q ← not p

ELP Π has two candidate world views: (1) Φ = {not q} with AS (ΠΦ)= {{p}}; (2)

Φ = {not p} with AS (ΠΦ)= {{q}}.

1 This can be achieved by introducing auxiliary atoms whenever an atom appears twice in a rule, and
add two rules that ensure that the original and auxiliary atom must be equivalent.

2 We interpret double negation according to Faber et al . (2011).

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 439

The main reasoning task we treat in this paper is the world view existence problem

(or ELP consistency), that is, given an ELP Π, decide whether a candidate world view

exists. This problem is known to be ΣP
3 -complete (Shen and Eiter 2016).

Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair T = (T, χ),

where T is a rooted tree and χ is a labelling function over nodes t, with χ(t) ⊆ V , such

that the following holds: (i) for each v ∈ V there is a node t in T such that v ∈ χ(t);

(ii) for each {v, w} ∈ E there is a node t in T such that {v, w} ⊆ χ(t); and (iii) for all

nodes r, s, and t in T , where s lies on the path from r to t, χ(r) ∩ χ(t) ⊆ χ(s). The

width of a tree decomposition T is defined as the maximum cardinality of χ(t) minus

one, over all nodes t of T . The treewidth of a graph G is the minimum width over all

tree decompositions of G. Trees have treewidth 1, and cliques of size k have treewidth

k. Finding a tree decomposition of minimal width is non-deterministic polynomial time

(NP)-hard in general.

3 Single-Shot ELP solving

In this section, we provide our novel translation for solving ELPs via a single call to

an ASP solving system. The goal is to transform a given ELP Π to a non-ground ASP

program Π′ with predicates of bounded arity, such that Π is consistent (i.e., it has a

candidate world view) iff Π′ has at least one answer set. A standard ASP solver can then

decide the consistency problem for the ELP Π in a single call, by solving Π′.

3.1 Reducing ELPs to ASP programs

The reduction is based on an encoding technique proposed in Bichler et al . (2016b),

which uses large, non-ground rules. Given an ELP Π, the ASP program Π′ will roughly
be constructed as follows. Π′ contains a guess part that chooses a set of epistemic literals

from elit(Π), representing a guess Φ for Π. Then, the check part verifies that, for Φ, a

candidate world exists. In all, the ASP program Π′ consists of five parts:

Π′ = Π′
facts ∪Π′

guess ∪Π′
check1

∪Π′
check2

∪Π′
check3

,

where the subprogram Π′
facts is a set of facts representing the ELP Π, and Π′

checki
rep-

resents the part of the program that checks Condition i of Definition 3. We now proceed

to the construction of the program Π′. Let Π = (A ,R) be the ELP to reduce from. To

ease notation, let A = {a1, . . . , an}.

The set of facts Π′
facts . Π′

facts represents basic knowledge about the ELP Π, plus some

auxiliary facts and is given as:

• atom(a), for each atom a ∈ A ;

• elit(�), for each epistemic literal not � ∈ elit(Π)3;

• leq(0, 0), leq(0, 1), and leq(1, 1), representing the less or equal relation for Boolean

values; and

• or(0, 0, 0), or(0, 1, 1), or(1, 0, 1), and or(1, 1, 1), representing the Boolean rela-

tion or.

3 Note that we use the literal � as an ASP constant.

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

440 M. Bichler et al.

Subprogram Π′
guess . This part of the program consists of a single, non-ground rule that

guesses a subset of the epistemic literals (stored in predicate g) as follows:

g(L, 1) ∨ g(L, 0)← elit(L).

Shorthands. Before defining the three check parts of the program, we will introduce some

useful shorthands which will be used at several occasions. To this end, we use a context

identifier C . We first define the following:

HC
val(A) ≡ vC (A, 1) ∨ vC (A, 0),

that is, HC
val(A) guesses a truth assignment for some variable A and stores it in relation

vC . We will often use variables X = {X1, . . . ,Xn} or Y = {Y1, . . . ,Yn} to represent a

subset M of A , where assigning Xi to 1 characterizes ai ∈M , and Xi = 0 otherwise. Let

BC
val(X) ≡

∧
ai∈A

vC (ai,Xi),

that is, BC
val(X) extracts the truth assignment from relation vC into the variables X

as described above. Finally, for some rule r in Π, we define a formula Br
sat(X,Y,S)

that checks whether the rule r is satisfied in the epistemic reduct ΠΦ w.r.t. the guess Φ

encoded in the relation g , when the negative body (respectively, positive body and head)

is evaluated over the set of atoms encoded by X (respectively, Y). If the rule is satisfied,

Br
sat(X,Y, 1) should hold, and Br

sat(X,Y, 0) otherwise. This is done as follows. Let r

contain the atoms {ai1 , . . . , aim} (recall that no atom appears twice in a rule), where

i1, . . . , im ∈ {1, . . . , n}. For ease of notation, we will use a four-ary or relation, which can

easily be split into two of our three-ary or atoms using a helper variable T :

or(W ,X ,Y ,Z)← or(W ,X ,T), or(T ,Y ,Z).

The following is the central building block of our reduction:

Br
sat(X,Y,Rm) ≡ R0 = 0,

∧
aij

∈H (r)

or(Rj−1,Yij ,Rj),

∧
aij

∈B(r)

or(Rj−1, 1−Yij ,Rj),
∧

¬aij
∈B(r)

or(Rj−1,Xij ,Rj),

∧
not aij

∈B(r)

g(aij ,Nj), or(Nj , 1−Xij ,Tj), or(Rj−1, 1−Tj ,Rj),

∧
not¬aij

∈B(r)

g(¬aij ,Nj), or(Nj ,Yij ,Tj), or(Rj−1, 1−Tj ,Rj),

∧
¬not aij

∈B(r)

g(aij ,Nj), or(Rj−1,Nj , 1−Yij ,Rj),

∧
¬not¬aij

∈B(r)

g(¬aij ,Nj), or(Rj−1,Nj ,Xij ,Rj).

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 441

For a rule r, each big conjunction in the above formula encodes a reason for r to be

satisfied. For example, the fifth line encodes the fact that rule r is true if the disjunct

¬not aij is not satisfied, that is, if the epistemic literal not aij is part of the guess Φ,

or the atom aij is false (represented by 1−Yij). Each disjunct of rule r is evaluated in

this way, and the results are connected via the or relation (with the result of the first i

disjuncts stored in variable Ri). Therefore, Rm will be 1 if r is satisfied, and 0 otherwise,

as desired (recall that r has m disjuncts). The following example illustrates how this

shorthand is constructed for a concrete input program.

Example 5

Recall program Π = (A ,R) from Example 4. Let A = {a1, a2}, where a1 = p and

a2 = q. Let rule r2 ∈ R contain the atoms {ai1 , ai2}, where i1 = 2 and i2 = 1. We give

the core construct, Br
sat(·, ·, ·) for rule r2:

Br2
sat(X1,X2,Y1,Y2, R2) ≡ or(0,Y2,R1), g(p,N2), or(N2, 1−X1,T2), or(R1, 1−T2,R2).

Finally, we define Bss(X,Y), which makes sure that the variables Y identify a strict

subset of the atoms identified by X. Let Bss(X,Y) ≡
N0 = 0,Nn = 1,

∧
ai∈A

leq(Yi,Xi), or(Ni−1,Xi−Yi,Ni).

We can now proceed with the remainder of our reduction.

Subprogram Π′
check1

. This part of the program needs to check that, given the guess Φ

made in Π′
guess , there exists at least one answer set of the epistemic reduct ΠΦ, as per

Definition 3(1). Therefore, according to Definition 2, we need to find a set M ⊆ A , such

that (1) M is a model of ΠΦ, and (2) there is no proper subset of M that is a model of

the GL-reduct (ΠΦ)M . Π′
check1

contains the following rules:

• H
check1
val (A)← atom(A);

• ⊥ ← B
check1
val (X), Br

sat (X,X, 0), for each r ∈ R; and

• ⊥ ← B
check1
red .

The first rule guesses a truth assignment for all atoms. The second rule verifies that

there is no rule in ΠΦ that is violated by the candidate answer set M , represented by the

variables X, and guessed by the first rule. BC
red checks whether a subset of M is a model

of the GL-reduct (ΠΦ)M . To this end, let

BC
red ≡ BC

val(X), Bss(X,Y),
∧
r∈R

Br
sat(X,Y, 1).

The last big conjunction in BC
red makes sure that the subset N ⊂M identified by the

variables Y is indeed a model of every rule in the GL-reduct (ΠΦ)M . This completes

Π′
check1

.

Subprogram Π′
check2

. This part needs to check that, for every epistemic literal not � ∈ Φ,

the epistemic reduct ΠΦ has some answer set wherein � is false. Π′
check2

contains the

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

442 M. Bichler et al.

following rules and facts, for each epistemic literal not � ∈ elit(Π) (used as the context

C so guesses are independent):

• H�
val(A)← atom(A), g(�, 1);

• v�(a, η), where η = 1 if � = ¬a, or η = 0 if � = a;

• ⊥ ← B�
val(X), Br

sat (X,X, 0), for each r ∈ R; and

• ⊥ ← B�
red .

These rules guess, for each epistemic literal not � ∈ Φ, a candidate answer set M

wherein � is false and then verify thatM is indeed an answer set, using the same technique

as in Π′
check1

. This ensures Condition 2 of Definition 3.

Subprogram Π′
check3

. Finally, this part needs to check that, for every epistemic literal

not � ∈ elit(Π) \Φ, every answer set of ΠΦ satisfies �. The construction makes use of the

technique of saturation (Eiter and Gottlob 1995):

• H
check3
val (A)← atom(A);

• vcheck3(A, 0)← sat , atom(A);

• vcheck3(A, 1)← sat , atom(A); and

• ⊥ ← ¬sat .
This setup checks that, for every candidate answer set M guessed in the first rule, the

atom sat is derived. Since we are only interested in answer sets, we first check that M is

indeed one, using the following rules, similarly to Π′
check1

:

• sat ← B
check3
val (X), Br

sat (X,X, 0), for each r ∈ R; and

• sat ← B
check3
red .

It now remains to check that in each answer set M (that is, where sat has not been

derived yet) all epistemic literals not � are either in Φ, or otherwise � is true in M . This

is done by adding the following rule to Π′
check3

:

sat ←
∧

not a∈elit(Π)

g(a,Na), vcheck3(a,Xa), or(Na,Xa, 1),

∧
not¬a∈elit(Π)

g(¬a,N ¬
a), vcheck3(a,X

¬
a), or(N ¬

a , 1−X¬
a , 1).

This completes the reduction. We will now show that this reduction indeed accom-

plishes our goals. The correctness of our reduction can be intuitively seen from the ob-

servation that each of the three check parts of the constructed ASP program Π′ ensures
precisely one of the three conditions that define a candidate world view. Each answer

set A of Π′ is a witness for the fact that a guess Φ ⊆ elit(Π) encoded in A indeed gives

rise to a candidate world view. The next theorem formally states that our reduction is

correct.

Theorem 6

Let Π = (A ,R) be an ELP and let Π′ be the ASP program obtained from Π via the

above reduction. Then, Π has a candidate world view if and only if Π′ has an answer set.

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 443

Proof

We will begin with the “if” direction. To this end, assume that there is a guess Φ ⊆ elit(Π)

for Π that gives rise to a candidate world view M = AS (ΠΦ). We will show that Π′ has
an answer set M . Clearly, M contains all the facts from Π′

facts . Furthermore, let M

contain the fact g(�, 1) for each epistemic literal not � ∈ Φ and the fact g(�, 0) for each

epistemic literal not � ∈ elit(Π) \ Φ. This clearly satisfies subprogram Π′
guess .

Now, let M ′ ∈ M be any answer set of ΠΦ (such an answer set exists, since, by

assumption, M is a candidate world view for Φ and by Definition 3, M is non-empty).

Let M contain the fact vcheck1(a, 1) for each a ∈ M ′ and the fact vcheck1(a, 0) for each

a ∈ A \M ′. This satisfies subprogram Π′
check1

as follows. Clearly, M satisfies the first

line of the subprogram. Since the atoms with relation vcheck1 encode precisely the answer

set M ′ of ΠΦ, and since M ′ is a model of ΠΦ, also the second line of the subprogram is

satisfied, which, by construction, checks that the assignment encoded in relation vcheck1
satisfies all the rules of ΠΦ. Finally, the third line, by construction, checks that the same

assignment is also minimal w.r.t. the GL-reduct [ΠΦ]M
′
. Since M ′ is an answer set of

ΠΦ, also this line of the subprogram Π′
check1

is satisfied.

The argument for satisfaction of Π′
check2

is similar to the one for Π′
check1

. Since M

is a candidate world view for guess Φ, it contains, for each epistemic literal not � ∈ Φ,

an answer set M� ∈ M such that � is false in M�. Thus, the argument for subprogram

Π′
check1

can be analogously applied for each not � ∈ Φ, taking the answer set M� instead

of M ′.
Finally, we need to verify that M also satisfies the rules in Π′

check3
. To this end, let M

contain the facts Mcheck3
consisting of the fact sat , as well as the fact vcheck3(a, b) for

each a ∈ A and b ∈ {0, 1}. It is easy to verify that all the rules in Π′
check3

are classically

satisfied. However, since the negative literal ¬sat appears in line 4, in order to verify

that M is indeed an answer set, we also need to look at minimality w.r.t. GL-reduct.

Since line 4 is removed in the GL-reduct of Π′
check3

, it may be the case that some subset

of Mcheck3
\ {sat} may indeed satisfy the GL-reduct. However, we will show that every

such subset requires sat to be true via lines 5, 6, or 7 of Π′
check3

(i.e., those rules of

Π′
check3

with atom sat in the head) and can therefore not exist. Indeed, every subset of

Mcheck3
\ {sat} that does not encode an answer set of ΠΦ in relation vcheck3 derives sat

via lines 5 or 6, by construction (the argument to see this is analogous to the one for the

previous two subprograms). It remains to show that all other remaining subsets (i.e., the

subsets of Mcheck3
\ {sat} that encode answer sets of ΠΦ) also derive sat . However, since

every answer set M ′ ∈M , by Definition 3, has to satisfy precisely the condition encoded

by line 7 of Π′
check3

, this is easy to see. We thus have that M , as constructed above, is

indeed an answer set of Π′.
The “only if” direction can be seen via similar arguments to the above. By construction,

any answer set M of Π′ will encode a guess Φ for Π. Since any such answer set M , to

be an answer set, must satisfy the three check subprograms of Π′ in the way described

above, and these three check subprograms, by construction, correspond directly to the

three conditions of Definition 3, we have that M encodes a guess Φ for Π that leads to

a candidate world view.

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

444 M. Bichler et al.

As we have seen, our reduction works as intended: the ASP program Π′ derived from

the input ELP Π has an answer set precisely when Π has a candidate world view. The

next interesting observation is that our reduction is, in fact, a polynomial-time reduction,

as stated below.

Theorem 7

Given an ELP Π, the reduction above runs in time O(e ·n), where n is the size of Π and

e = |elit(Π)|, and uses predicates of arity at most three.

Proof

Predicates of arity at most three are used if the four-ary or relation is not materialized

as an actual relation in ASP but viewed as a shorthand for two connected ternary or

relations (cf. the paragraph on shorthands of our reduction). The reduction’s runtime

(and output size) can be seen to be in O(e ·n) by noting the fact that the construct Bred

is of size linear in n (it precisely encodes each rule using the or predicates). Bred is then

used once for each epistemic literal in Π (cf. Π′
check2

).

Note that the above theorem shows that our reduction is indeed worst-case optimal

as claimed in Section 1: checking consistency of non-ground, fixed-arity ASP programs

is Σ3
P -complete, as is checking world view existence for ELPs.

3.2 Using the reduction in practice

As we have seen, using the construction in the previous subsection, we can solve the

consistency problem for a given ELP via a single call to an ASP solving system. However,

when trying this in practice, the performance is less than optimal, mainly for the following

reason. At several points in the construction, large non-ground rules are used (i.e., where

BC
red appears in a rule body). As noted in Section 2, these rules need to be grounded

but may contain hundreds or thousands of variables, which need to be replaced by all

possible combinations of constants; a hopeless task for ASP grounders, as the resulting

ground program, is exponential in the number of variables.

However, as noted in Bichler et al . (2016b), such large rules can often be decomposed

into smaller, more manageable rules, using the lpopt tool (Bichler et al . 2016a). This tool

roughly works as follows: (1) compute a rule graph Gr for each non-ground rule r, where

there is a vertex for each variable V in r, and there is an edge between V1 and V2, if the

two variables appear together in an atom of r; then (2) compute a tree decomposition of

Gr of minimal width; and finally, (3) in a bottom-up manner, output a rule for each node

in the tree decomposition. The resulting rules each contain only as many variables as the

treewidth of Gr (plus one), and, together, are equivalent to the original rule r. After

this rule decomposition step, grounding now becomes much easier, since the number of

variables in each rule is reduced. Note that, since finding optimal tree decompositions is

NP-hard, lpopt employs heuristics to find good decompositions.

In our construction, BC
red stands for a long rule body that effectively encodes the entire

input ELP Π. Each atom ai in Π is represented by the two variables Xi and Yi. If we

represent Π as a graph GΠ, where each atom ai is a vertex, and there is an edge between

two atoms if they appear together in a rule in Π, then this graph structure can be found

(as a minor) in the rule graph of BC
red . However, in addition, BC

red also adds a series of

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 445

Fig. 1. Creating a grid from chains.

or(·, ·, ·) atoms (via Bss(X,Y)) that introduce additional connections in the rule graph of

BC
red . These connections may increase the treewidth substantially. In fact, even if GΠ has

a treewidth of 1, by introducing the additional connections in a bad way, the treewidth

may increase arbitrarily: imagine that GΠ is a chain, depicted in black in Figure 1, and

imagine the or(·, ·, ·)-chain from Bss(X,Y) is inserted into GΠ, illustrated in pink. The

treewidth now depends on the chain’s length (and thereby on the size of Π), and lpopt

can no longer split the rule well.

In the following, we will formalize the problem described above and present an exten-

sion to our reduction presented in the previous subsection that will alleviate the problem.

First, we define the primal graph of an ELP Π, a standard notion in topics of satisfiability,

constraint programming, and logic programming; cf. standard textbooks, for example,

(Ebbinghaus and Flum 1995).

Definition 8

The primal graph of an ELP Π = (A ,R) is the graph GΠ = (V,E), where V = A , and

there is an edge (ai, aj) ∈ E iff the atoms ai and aj occur together in a rule in R.

Then, we define the rule graph for a non-ground ASP rule r.

Definition 9

The rule graph of a non-ground ASP rule r is the graph Gr = (V,E), such that V =

var(r), and there is an edge between two variables X and Y in E iff X and Y occur

together in an atom in r.

From the construction, it is not difficult to see that any rule r containing BC
red reflects

the structure of the input ELP Π, or, more formally, the graph GΠ is contained (as a

minor) in the graph Gr. Thus, by well-known graph-theoretic results, the treewidth of

Gr is at least the treewidth of GΠ. Since this is an integral part of our construction,

we cannot hope for lpopt to split up rule r any better than the structure of Π allows.

However, as noted in the intuitive problem description above, Gr contains additional

connections between variables. These are introduced by the subformula Bss(·, ·) that

effectively links all the variables in a rule r into a chain in Gr. In the worst case, as

illustrated in Figure 1, these additional connections in Gr may increase the treewidth

arbitrarily, making it almost impossible for lpopt to split up the rule well. It is therefore

important to introduce these additional connections carefully. We will now introduce a

more involved construction of Bss(·, ·) that preserves the treewidth of GΠ in Gr (i.e., does

not arbitrarily increase it). In this modified version, Bss(·, ·) is constructed as follows:

1. First, compute a tree decomposition TΠ of GΠ with minimal width.

2. Secondly, construct Bss(·, ·) in a bottom-up (i.e., post-order traversal) fashion along

this tree decomposition in the following way, for each node type. To this end, let

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

446 M. Bichler et al.

A = {a1, . . . , an}, and, for a node t of TΠ, let χ(t) contain the set of atoms

{ai1 , . . . , aim}, with ij ∈ {1, . . . , n}.
Leaf node t: For a leaf node t of TΠ, let Bss(X,Y) contain the following con-

junction of atoms:

N t
0 = 0,N t = N t

m,
∧

aij
∈χ(t)

leq(Yij ,Xij), or(N
t
j−1,Xij−Yij ,N

t
j),

that is, N t contains 1, if the proper subset condition between X and Y is

already fulfilled in node t, and 0 otherwise.

Inner node t: For an inner node t of TΠ with children t1, . . . , tk, let Bss(X,Y)

contain the same conjunction as for a leaf node, but where the equality atom

N t = N t
m is replaced by the following disjunction:

or(N t
m,N t1 , . . . ,N tk ,N t),

where the k + 2-ary or atom can be split into 3-ary or atoms in the same

way as with the 4-ary or atom in our main construction. Intuitively, we now

have that N t is set to 1 if the proper subset condition is already fulfilled

somewhere in the subtree rooted at t.

Root node troot : Finally, for the root node troot , we add the same conjunction

of atoms to Bss(X,Y) as for an inner node, but, in addition, we add the

final condition N troot = 1, that makes sure that, at the root node, the proper

subset condition is fulfilled.

If constructed in the way described above, it is not difficult to see that Bss(X,Y)

still ensures the same condition as in our original construction from Section 3.1, namely,

that the variables Y identify a proper subset of the atoms identified by the variables X.

However, the treewidth of a rule containing Bss(·, ·) is now not increased arbitrarily. In

fact, it can be verified that the treewidth of GΠ is preserved up to a constant additive

factor, for any rule containing BC
red , when using the alternative construction for Bss(·, ·)

provided above. In practice, this means that lpopt is able to split the rule up as well as

possible, that is, as well as the structure of Π allows.

3.3 Discussion and related work

As we have seen, the reduction proposed above allows us to solve ELPs via a single

call to an ASP solving system. However, our encoding also has several other interesting

practical properties, which make it very flexible for use with, for example, different ASP

semantics, or harder problems. A brief discussion follows.

Other ASP semantics. Apart from the original semantics for ASP (called stable model

semantics, (Gelfond and Lifschitz 1988,1991), several different semantics have been pro-

posed that investigate how to interpret more advanced constructs in ASP, like double

negation, aggregates, optimization, and more (Lifschitz et al . 1999; Pearce 2006; Pelov

et al . 2007; Ferraris et al . 2011; Faber et al . 2011; Shen et al . 2014). Epistemic reducts

may contain double negation, and we have opted to use the FLP semantics of (Faber

et al . 2011), as used in Shen and Eiter (2016), to interpret this. The actual interpretation

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 447

of double negation is encoded in the Br
sat(·, ·) shorthand defined in our reduction. This

construction is very flexible and can easily be modified to use different ASP semantics

(e.g., (Lifschitz et al . 1999)).

Enumeration of world views. Modern ASP systems like clasp (Gebser et al . 2012) contain

several useful features not included in the ASP base language. One such feature is an

advanced implementation of projection, as presented in Gebser et al . (2009): given a set of

atoms (or relations), the solver will output answer sets where all other atoms are projected

away and will also guarantee that there are no repetitions (even if multiple answer sets

with the same assignment on the projected atoms exist), while still maintaining efficiency.

This can be used to enumerate candidate world views by projecting away all relations in

our encoding, except for g(·) and vcheck1(·). When enumerating all projected answer sets

in this way, our encoding yields all guesses together with their candidate world views

(when grouped by g(·)).

Comparison to related work. Classic ELP solvers generally work by first establishing a

candidate epistemic guess Φ and then use an answer set solver to verify that the epistemic

guess indeed yields an epistemic reduct whose answer sets form a candidate world view

of the original ELP w.r.t. Φ. Different approaches are used to find promising epistemic

guesses and also to verify that they lead to candidate world views, but, generally, these

systems have in common that an underlying ASP solver is used, and called multiple

times, to solve the ELP. Notable recent ELP solvers that follow this approach include

EP-ASP (Son et al . 2017), GISolver (Zhang et al . 2015) and a later, probabilistic, variant

called PelpSolver, and ELPsolve (Kahl et al . 2016). A comprehensive survey of recent

ELP solving systems (including the one presented in the present paper) can be found in

Leclerc and Kahl (2018).

We are not aware of another single-shot ELP solver that only needs to call an under-

lying ASP system once. However, the idea of our approach is similar to the one used in

Bichler et al . (2016b), where a single-shot ASP encoding for disjunctive ASP, which is

rewritten into non-ground normal ASP with fixed arity, is presented. That is, a solving

system for normal ASP would be able to solve a disjunctive ASP program in a single call.

However, this approach was not implemented and only presented as an example to show

how long non-ground rules with fixed arity can be used to solve hard problems. In order to

use such encodings (including our own presented herein), (Bichler et al . 2016b) make use

of rule decomposition, where large non-ground ASP rules are split up into smaller parts

based on tree decompositions (Morak and Woltran 2012). This rule decomposition ap-

proach was implemented as a stand-alone tool called lpopt (Bichler et al . 2016a) but has

also recently been integrated into ASP solving systems like I-DLV (Calimeri et al . 2017).

4 Application: QBF solving

In this section, we illustrate the power of ELPs by illustrating a way to solve QBF

formulas with at most three quantifier alternations (3-QBF) by encoding them as ELPs.

This provides an alternative way to show the Σ3
P lower bound for ELP consistency but

relies on the existence of a reduction from the so-called restricted 3-QBF formulas. Shen

and Eiter (2016) present such a reduction from restricted 3-QBF formulas to ELP world

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

448 M. Bichler et al.

view existence. Our aim is to generalize this by presenting a reduction from (general)

3-QBF formulas to restricted 3-QBF formulas. We will use this result to benchmark our

ELP solver presented in Section 5. Let us begin by first recalling the definition of such

3-QBF formulas.

Definition 10

A 3,∃-QBF in conjunctive normal form (CNF) form (or QBF, for short) is a formula of

the form

∃X∀Y∃Zϕ
where X, Y, and Z are sets (or sequences) of distinct (propositional) atoms (also called

variables), and ϕ =
∧k

i=1 Ci is a CNF over the atoms X∪Y ∪Z, that is, Ci =
∨ki

j=0 Li,j

is a clause of size ki and Li,j is either an atom a or its negation ¬a.
W.l.o.g. we can assume that the clause size ki = 3 for each 0 < i ≤ k, that is, that

ϕ is given in 3-CNF form, where each clause has at most three elements. In Shen and

Eiter (2016), the authors make use of a version of QBFs called restricted QBFs. These

are QBFs that evaluate to true under all interpretations of the existentially quantified

variables if all universally quantified variables are replaced by � (i.e., if they are set to

true).

Definition 11

A restricted QBF is a QBF where ϕ[y/� | y ∈ Y] is a tautology.

The hardness proof of Theorem 5 of Shen and Eiter (2016) is a reduction from the

validity problem of restricted QBFs to the consistency problem of ELPs. While the

actual construction of the reduction is not needed for our purposes in this section, we

nevertheless report it here, for completeness sake.

Proposition 12

(Shen and Eiter 2016, Proof of Theorem 5) Let Θ = ∃X∀Y∃Zϕ be a restricted QBF.

Then, there exists an ELP Π such that Π has a candidate world view iff Θ is satisfiable.

Proof

The ELP Π consists of the following rules:

• For each variable X ∈ X:

X ← notX ,

X ← notX .

• For each variable Y ∈ Y:

Y ← ¬Y ,

Y ← ¬Y .

• For each variable Z ∈ Z:

Z ∨ Z .

• For each clause Ci, 0 < i ≤ k:

U ← L∗
i,1, L

∗
i,2, L

∗
i,3,

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 449

where ∗ is an operator that converts a positive literal W into W , and a negative

literal ¬W into W .

• For each Z ∈ Z:

Z ← U,

Z ← U.

• And, finally, the rule

V ← notV,not¬U.
As reported in Shen and Eiter (2016), the above ELP has a (candidate) world view iff

∃X∀Y∃Zϕ is satisfiable.

We now show a more general reduction that also works for the nonrestricted case. To

this end, we will combine the (Shen and Eiter 2016) reduction with our own reduction of

QBF formulas to restricted QBF formulas. To achieve our goal, we are going to introduce

one new atom vi in each clause Ci and ∀-quantify these new atoms together with the Y

atoms.

Definition 13

Given a QBF Θ = ∃X∀Y∃Zϕ with ϕ being constructed as in Definition 10, let its

extension, denoted Θ↑, be the QBF

Θ↑ = ∃X∀(Y ∪V)∃Zϕ′,

where

ϕ′ =
k∧

i=1

⎛
⎝vi ∨

ki∨
j=0

Li,j

⎞
⎠ ,

and V = {v1, . . . , vk} is a list of fresh atoms.

It is easy to see that any extension Θ↑ of a QBF Θ is a restricted QBF.

Proposition 14

Let Θ be a QBF. Its extension Θ↑ is a restricted QBF.

We will now show that validity-equivalence between a QBF and its extension is pre-

served. For the proof, we establish the following terminology: given a subset of atoms

σ ⊆ S, we define its out-set σ = {¬a | a ∈ S \ σ} and its literal-set σ̂ = σ ∪ σ.

Proposition 15

Θ and Θ↑ are validity-equivalent.

Proof

(⇒) Assume Θ is valid, that is, there exists an interpretation σX ⊆ X, such that for any

interpretation σY ⊆ Y, there exists an interpretation σZ ⊆ Z such that (σ̂X ∪ σ̂Y ∪ σ̂Z)∩
Ci 	= ∅ for all i ∈ {1, . . . , k}. By monotonicity of non-emptiness of set intersections, also

(σ̂X ∪ σ̂Y ∪ σ̂V ∪ σ̂Z) ∩ (Ci ∪ {vi}) 	= ∅ for any interpretation σV ⊆ V of a list of new

atoms V = {v1, . . . , vk}. But this is proof of the validity of Θ↑.
(⇐) For the other direction, assume Θ↑ is valid, that is, there exists an interpretation

σX ⊆ X such that for any interpretations σY ⊆ Y and σV ⊆ V, there exists an inter-

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

450 M. Bichler et al.

pretation σZ ⊆ Z such that (σ̂X ∪ σ̂Y ∪ σ̂V ∪ σ̂Z) ∩ (Ci ∪ {vi}) 	= ∅ for all i ∈ {1, . . . , k}.
By setting σV = ∅, we especially get that there exists an interpretation σX ⊆ X such

that for any interpretation σY ⊆ Y there exists an interpretation σZ ⊆ Z such that

(σ̂X ∪ σ̂Y ∪{¬v1, . . . ,¬vk}∪ σ̂Z)∩ (Ci∪{vi}) 	= ∅ for all i ∈ {1, . . . , k}. Since the only lit-

erals containing a vi variable on the left-hand side of the ∩ are negative and the only ones

on the right-hand side are positive, we get (σ̂X ∪ σ̂Y ∪ σ̂Z)∩Ci 	= ∅ for all i ∈ {1, . . . , k},
which establishes validity of Θ.

Now it is straightforward to generalize the reduction from Shen and Eiter (2016):

let Θ be a QBF and apply the reduction from Shen and Eiter (2016) to the restricted

QBF Θ↑.

Theorem 16

Let Θ be a QBF. Let the ELP ΠΘ be obtained by applying the reduction from Shen and

Eiter (2016) to the restricted QBF Θ↑. It holds that Θ is valid iff ΠΘ is consistent, that

is, ΠΘ has at least one candidate world view.

Correctness of this theorem follows from immediately from Propositions 12 and 15.

5 The selp system

We implemented the reduction in Section 3 as part of the single-shot ELP solving tool-

box selp, available at https://dbai.tuwien.ac.at/proj/selp. In addition, the toolbox

features a grounder for ELPs and a grouping script which groups answer sets of the reduc-

tion into candidate world views (allowing for enumeration). The tools are implemented

in python and depend on the parser generator LARK 4, the rule decomposition tool

lpopt (Bichler et al . 2016a), the tree decomposition tool htd main (Abseher et al . 2017),

and the ASP grounder gringo (Gebser et al . 2011).

Input formats. The selp solver reads the EASP-not file format, which is a restriction of

the ASP input language of gringo to plain ground logic programs as defined in Section 2,

extended with the not operator for epistemic negation. This allows us to encode ELPs

as defined in Section 2. selp also supports EASP-KM, defined by adding the operators K$

and M$ instead of not. By allowing variables in body elements, both formats also have

a non-ground version. The toolbox offers scripts to translate between the two formats.

Toolbox. We briefly present the main building blocks of selp.

easpGrounder.py takes as input a non-ground EASP-not program and outputs its

equivalent ground form by rewriting it into an ASP program that the gringo grounder can

understand and ground. This is done by encoding epistemic negation as predicate names

and, after grounding, re-introducing epistemic negation where a placeholder predicate

appears. Our grounding component, easpGrounder.py , supports arithmetics and the sorts

format (Kahl et al . 2015) as input.

easp2asp.py is selp’s key component. It takes a ground EASP-not program, performs

the reduction given in Section 3.1 (with some modifications to account for the extended

language of ASP used by today’s ASP systems and some straightforward optimizations),

4 Available here: https://github.com/erezsh/lark

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://dbai.tuwien.ac.at/proj/selp
https://github.com/erezsh/lark
https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 451

also adhering to the practical considerations presented in Section 3.2, and it finally

outputs the resulting non-ground logic program in the syntax of gringo. Optionally,

additional clasp directives are generated to allow for enumeration (cf. Section 3.3).

For concrete implementation details, please consult the freely available source code at

https://dbai.tuwien.ac.at/proj/selp.

groupWorldViews.py takes clasp’s output in JSON format, groups the answer sets

into candidate world views according to their g(·) atoms, and outputs them in a human-

readable format.

Usage. As a typical use case, suppose the file problem.easp contains a non-ground ELP

encoding of a problem of interest and the file instance.easp contains a problem instance.

In order to output all candidate world views, one would use the following command: flags

-pas and --project enable projection of answer sets onto relevant predicates only. -n0

tells clasp to compute all answer sets, and --outf=2 to print in JSON format. lpopt is

used to decompose long rule bodies. The --sat-prepro=3 flag is recommended by lpopt):

cat problem.easp instance.easp |

easpGrounder.py -sELP | easp2asp.py -pas |

lpopt | gringo | clasp -n0 --outf=2 --project --sat-prepro=3 |

groupWorldViews.py

6 Experimental evaluation

We tested our system selp against the state-of-the-art ELP solver, EP-ASP (Son et al .

2017), using three test sets. For every test set, we measured the time it took to solve the

consistency problem. For selp, clasp was stopped after finding the first answer set. For

EP-ASP, search was terminated after finding the first candidate world view5. Note that

a single answer set of the selp system is enough to establish consistency of an input ELP.

EP-ASP needs to compute a full candidate world view to be able to prove consistency.

Experiments were run on a 2.1GHz AMDOpteron 6272 system with 224 GB of memory.

Each process was assigned a maximum of 14 GB of RAM. For EP-ASP, we used the

required clingo 4.5.3, since newer versions are incompatible with the solver. For selp, we

used clingo 5.2.2, htd main 1.2.0, and lpopt 2.2. The time it took EP-ASP to rewrite

the input to its own internal format was not measured. EP-ASP was called with the

preprocessing option for brave and cautious consequences on, since it always ran faster

this way. The selp time is the sum of running times of its components.

Benchmark instances. We used three types of benchmarks, two coming from the ELP lit-

erature and one from the quantified boolean satisfiability domain that contains structures

of low treewidth6.

Scholarship eligibility (SE). This set of non-ground ELP programs is shipped together

with EP-ASP. Its instances encode the SE problem for 1 to 25 students.

5 Note that to have a fair comparison we disabled the subset-maximality check on the guess that EP-ASP
performs by default.

6 Benchmark archive: https://dbai.tuwien.ac.at/proj/selp

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://dbai.tuwien.ac.at/proj/selp
https://dbai.tuwien.ac.at/proj/selp
https://doi.org/10.1017/S1471068420000022

452 M. Bichler et al.

(a) (b)

Fig. 2. Benchmark results. Missing points indicate timeouts.

Yale shooting (YS). This test set consists of 25 non-ground ELP programs encoding a

simple version of the YS problem, a conformant planning problem: the only uncertainty

is whether the gun is initially loaded or not, and the only fluents are the gun’s load state

and whether the turkey is alive. Instances differ in the time horizon. We follow the ELP

encoding from Kahl et al . (2015).

Tree QBFs (TQ). The hardness proof for ELP consistency (Shen and Eiter 2016) relies

on a reduction from the validity problem for restricted quantified boolean formulas with

three quantifier blocks (i.e., 3-QBFs), which can be generalized to arbitrary 3-QBFs as

discussed in Section 4. We apply this extended reduction to the 14 “Tree” instances

of QBFEVAL’16 (Pulina 2016), available at http://www.qbflib.org/family_detail.

php?idFamily=56, splitting each instance’s variables into three random quantifier

blocks.

Results. The results for the first two sets are shown in Figure 2. selp solves all instances

from (SE) within 30 s, while EP-ASP only solves 17 within the time limit of 8 h. For YS,

on the other hand, selp is able to solve only 6 instances within the time limit of 30 min,

whereas EP-ASP can solve 17. Finally, for (TQ), selp can solve 6 of the 14 instances

within the time limit of 12 h, whereas EP-ASP was unable to solve any instances at all.

These results confirm that selp is highly competitive on well-structured problems: in

the SE instances, knowledge about students is not interrelated, and hence the graph GΠ

of the ground ELP Π consists of one component for each student, thus having constant

treewidth. The TQ instances keep their constant treewidth thanks to the fact that both

the reductions from QBF to ELP (cf. Section 4) and from ELP to non-ground ASP (cf.

Section 3.2) preserve the low treewidth of the original QBF instance. Different from selp,

EP-ASP is not designed to exploit such structural information of ELPs and, consequently,

performs worse than selp in these benchmarks. On the other hand, YS contains instances

of high treewidth, even though it does not depend on the horizon. EP-ASP is therefore

able to outperform selp on such instances. A similar observation can be made for the

“Bomb in the Toilet” problem, as benchmarked in Son et al . (2017), which inherently

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

http:// www.qbflib.org/family_detail.php?idFamily=56
http:// www.qbflib.org/family_detail.php?idFamily=56
https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 453

contains a huge clique structure. selp is not designed to solve such instances and is

therefore most suited to solve ELPs of low treewidth, where it is able to efficiently

exploit the problem structure.

7 Conclusions

In this paper, we have seen that ELPs can be encoded into ASP programs using long

non-ground rules, such that a single call to an ASP solver is sufficient to evaluate them.

A prototype ELP solver implementation, selp, performs particularly well on problems

whose internal structure is of low treewidth. A combined solver that either calls selp or

another state-of-the-art solver based on the treewidth of the input may therefore lead to

even better overall performance.

Another topic for future work is that, under the FLP semantics, checking whether a

given atom a is true in all candidate world views with a subset-maximal guess Φ is known

to be Σ4
P -complete (Shen and Eiter 2016). To solve this problem, advanced optimization

features of state-of-the-art ASP solvers could allow us to encode this subset-maximality

condition, while leaving the core of our encoding unchanged.

Finally, an interesting question is program optimization. Recently, a practical, easily

applicable notion of strong equivalence for ELPs has been defined Faber et al . (2019). It

would be interesting to investigate if and how parts of ELPs can be replaced in such a way

that the solving performance of selp improves, seeing that selp is sensitive to treewidth.

This could lead to an encoding technique for ELPs that tries to minimize the treewidth,

similar to the class of connection-guarded ASP (Bliem et al . 2017), which was recently

proposed in order to write ASP programs in such a way as to keep the treewidth of the

resulting ground program low.

References

Abseher, M., Musliu, N. and Woltran, S. 2017. htd - A free, open-source framework for
(customized) tree decompositions and beyond. In Proc. CPAIOR, 376–386.

Alviano, M., Dodaro, C., Faber, W., Leone, N. and Ricca, F. 2013. WASP: A native ASP
solver based on constraint learning. In Proc. LPNMR, 54–66.

Bichler, M., Morak, M. and Woltran, S. 2016a. lpopt: A rule optimization tool for answer
set programming. In Proc. LOPSTR, 114–130.

Bichler, M., Morak, M. and Woltran, S. 2016b. The power of non-ground rules in answer
set programming. TPLP 16, 5–6, 552–569.

Bichler, M.,Morak, M. andWoltran, S. 2018a. Single-shot epistemic logic program solving.
In Proceedings of IJCAI, 1714–1720.

Bichler, M., Morak, M. and Woltran, S. 2018b. Single-shot epistemic logic program solv-
ing. In Proceedings of ASPOCP.

Bliem, B., Moldovan, M., Morak, M. and Woltran, S. 2017. The impact of treewidth on
ASP grounding and solving. In Proceedings of IJCAI, 852–858.

Bodlaender, H. L. 1993. A tourist guide through treewidth. Acta Cybernetica 11, 1–2, 1–21.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Calimeri, F., Fuscà, D., Perri, S. and Zangari, J. 2017. I-DLV: The new intelligent
grounder of DLV. Intelligenza Artificiale 11, 1, 5–20.

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

454 M. Bichler et al.

del Cerro, L. F., Herzig, A. and Su, E. I. 2015. Epistemic equilibrium logic. In Proceedings
of IJCAI, 2964–2970.

Ebbinghaus, H.-D. and Flum, J. 1995. Finite Model Theory. Springer Monographs in Math-
ematics. Springer, Berlin, Heidelberg.

Eiter, T., Faber, W., Fink, M. and Woltran, S. 2007. Complexity results for answer set
programming with bounded predicate arities and implications. Annals of Mathematics and
Artificial Intelligence 51, 2–4, 123–165.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15, 3–4, 289–323.

Faber, W., Morak, M. and Woltran, S. 2019. Strong equivalence for epistemic logic pro-
grams made easy. In Proceedings of AAAI.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175, 1, 278–298.

Ferraris, P., Lee, J. and Lifschitz, V. 2011. Stable models and circumscription. Artificial
Intelligence 175, 1, 236–263.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in
Practice. Morgan & Claypool.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2014. clingo = ASP + control:
Preliminary report. In ICLP Technical Communications

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2019. Multi-shot ASP solving
with clingo. TPLP 19, 1, 27–82.

Gebser, M., Kaminski, R., König, A. and Schaub, T. 2011. Advances in gringo series 3. In
Proceedings of LPNMR, 345–351.

Gebser, M., Kaufmann, B. and Schaub, T. 2009. Solution enumeration for projected boolean
search problems. In Proceedings of CPAIOR, 71–86.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52–89.

Gelfond, M. 1991. Strong introspection. In Proc. AAAI, Vol. 1, 386–391.

Gelfond, M. 1994. Logic programming and reasoning with incomplete information. Annals of
Mathematics and Artificial Intelligence 12, 1–2, 89–116.

Gelfond, M. 2011. New semantics for epistemic specifications. In Proceedings of LPNMR,
260–265.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Proceedings of ICLP/SLP, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3/4, 365–386.

Kahl, P. T. 2014. Refining the semantics for epistemic logic programs. Ph.D. thesis, Texas
Tech University, Texas, USA.

Kahl, P. T., Leclerc, A. P. and Son, T. C. 2016. A parallel memory-efficient epistemic logic
program solver: Harder, better, faster. In Proceedings of ASPOCP.

Kahl, P. T., Watson, R., Balai, E., Gelfond, M. and Zhang, Y. 2015. The language of
epistemic specifications (refined) including a prototype solver. Journal of Logic and Compu-
tation, exv065.

Leclerc, A. P. and Kahl, P. T. 2018. A survey of advances in epistemic logic program solvers.
CoRR abs/1809.07141.

Lifschitz, V., Tang, L. R. and Turner, H. 1999. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence 25, 3–4, 369–389.

Morak, M. and Woltran, S. 2012. Preprocessing of complex non-ground rules in answer set
programming. In ICLP Technical Communications, 247–258.

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

selp: A Single-Shot Epistemic Logic Program Solver 455

Pearce, D. 2006. Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47, 1–2,
3–41.

Pelov, N., Denecker, M. and Bruynooghe, M. 2007. Well-founded and stable semantics of
logic programs with aggregates. TPLP 7, 3, 301–353.

Pulina, L. 2016. The ninth QBF solvers evaluation – preliminary report. In Proc. QBF. CEUR
Workshop Proceedings, vol. 1719. CEUR-WS.org, 1–13.

Shen, Y. and Eiter, T. 2016. Evaluating epistemic negation in answer set programming.
Artificial Intelligence 237, 115–135.

Shen, Y., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T. and Deng, J. 2014.
FLP answer set semantics without circular justifications for general logic programs. Artificial
Intelligence 213, 1–41.

Son, T. C., Le, T., Kahl, P. T. and Leclerc, A. P. 2017. On computing world views of
epistemic logic programs. In Proc. IJCAI, 1269–1275.

Truszczynski, M. 2011. Revisiting epistemic specifications. In Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning – Essays Dedicated to Michael Gelfond on the
Occasion of His 65th Birthday, 315–333.

Zhang, Z., Wang, B. and Zhang, S. 2015. Logic programming with graded introspection. In
Proceedings of ASPOCP.

https://doi.org/10.1017/S1471068420000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000022

	Introduction
	Preliminaries
	Single-Shot ELP solving
	Reducing ELPs to ASP programs
	Using the reduction in practice
	Discussion and related work

	Application: QBF solving
	The selp system
	Experimental evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

