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1. Introduction
Train algebras were first introduced by Etherington in (1) and proved very

useful in dealing with problems in mathematical genetics. The types of algebras
which arose were commutative, non-associative and finite-dimensional. It
proved convenient in the general theory to regard them as defined over the
complex numbers. We remind the reader of some basic definitions. A baric
algebra is one which admits a non-trivial homomorphism into its coefficient
field K. A (principal) train algebra is baric and has a rank equation in which
the coefficients of a general element x depend only on its baric value, generally
called the weight of x. A special train algebra (STA) is a baric algebra in which
the nilideal is nilpotent and all its right powers are ideals; the nilideal being the
set of elements of A of weight zero. In (2) Etherington showed that in a baric
algebra one can always take a very simple basis consisting of a distinguished
element of unit weight and all other basis elements of weight zero. Finally
we have the concept of a genetic algebra as defined by Schafer (4). A com-
mutative baric algebra A is genetic if for any

T = <xl +f(RXl, RX2, ..., RXn) aeK,XieA,

where /is the identity, then the characteristic function of Tin so far as it depends
on xt, ..., xn depends only on their weights. Rx represents a right linear trans-
formation of A, a-*ax, ae A.

Two unsolved problems in the theory of genetic algebras, which we settle
afiirmatively, are the following:

1. Are commutative train algebras of rank 3 necessarily special train
algebras ?

2. Are there commutative train algebras over fields of characteristic zero
which are not genetic algebras ?

For question 2 we give an example of a train algebra of rank 4 which is not
a genetic algebra.

The historical origin and background to both these problems is interesting.
In 1939 in (2) Etherington investigated very fully the properties of commutative
train algebras of ranks 2 and 3. He showed that train algebras of rank 2 were
STA; at the end of the paper he stated a canonical form for the multiplication
table of train algebras of rank 3; this in fact was incorrect as he pointed out in
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his Corrigendum (2) in 1945. Had it been correct it would have disposed of
question 1 and vindicated a statement in (1) that train algebras of rank 3 were
special if A # \, where A is a principal train root. In his approach he assumed
that A ^ \—this is enough to ensure the existence of an idempotent element in
the algebra. In fact, we do not require this assumption in our proof.

In 1949 Schafer in his paper gave an example of a train algebra over a field
of characteristic 2 which was not a genetic algebra. He stated that this was not
the most satisfying example. Ideally what was needed was a construction
based on a commutative nilalgebra which was not nilpotent. The definition of
a nilalgebra needs some clarification since the powers of an element z in A
are in general not well-defined. For our purposes if zk = zk~1z = 0 for all
z e A, for some integer k independent of z, where k is minimal in this respect,
then we say that A is a nilalgebra of nilindex k. However, the more general
definition of a nilalgebra given in (3) is that every product of k factors each
equal to z, in whatever association, vanishes. Clearly the former implies the
latter as noted in (4) but then the nilindex is different.

For k = 3, however, the definitions coincide in the commutative case.
A train algebra can then be obtained by adjoining an identity, and it will not
be a genetic algebra since nilpotence of the nilideal is a necessary condition.

This raised a fundamental question of whether such nilalgebras existed.
This question was taken up by Gerstenhaber in 1959 who made an exhaustive
study of such algebras in a series of three papers. In (3) he proved that if
dim A ^ 3 for a nilalgebra A then it was nilpotent, A being of characteristic
zero. This led him to his conjecture that a finite-dimensional commutative
nilalgebra of characteristic zero is nilpotent. This was only recently disproved
by a counter-example by Suttles (6) in 1972. Suttles gave an example of a
nilalgebra of nilindex 4 which was not nilpotent. We make use of this result
for our counter-example. In this connection we also extend these results by
showing that nilindex 3 automatically implies nilpotence, and hence that 4 is
the minimum nilindex of a nilalgebra which fails to be nilpotent.

2. Train algebras of rank 3
Theorem 1. A commutative finite-dimensional non-associative nilalgebra

A of characteristic zero and nilindex 3 is nilpotent.

The analogous result is clearly true for nilindex 2 but fails for nilindex 4
by Suttles' counter-example.

Proof. We linearise the identity.

z 3 = 0 , zeA. (1)

Put z = 61zl + d2z2 + 93z3 in (1), expand and collect homogeneous terms.
We get

(z2z3)z1-t-(z3z1)z2 = 0, (2)
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a Jacobi identity, and
0. (3)

Now compare (3) to the defining relations of a commutative alternative algebra

(xy)x = x2y.

Apart from a change of sign and a constant these define exactly the same
multiplicative properties. We now can make use of a well-known theorem,
Schafer (5), that an alternative nilalgebra of finite dimension is nilpotent. A
similar proof holds for our algebra—in fact, it is much simplified since we have
commutativity. In the proof we need to show that

RJ = RzJ = 0 forj = 3.

This result can be proved as in Schafer ((5), p. 30), but we give an alternative
proof due to Gerstenhaber. If A is a commutative nilalgebra of bounded index
t over a field of characteristic zero, then R2t~z = 0 for all a e A. Here we have
t = 3, giving Rl = 0.

Hence we can establish that A is nilpotent.
We note that the Jacobi identity (2) can be non-trivially satisfied. In other

words, there exist nilalgebras such that z3 = 0 and A3 # 0.

Example. Take A = (cu c2, ..., c7) with

c2c3 = icA, c2cs = ivc7, c3c6 =

all other products being zero. Take n+v + p = 0, then

A2 = (c4, cs, c6, c7),

4 3 = (c7), A* = 0 and z3 = 0 zeA.
Theorem 2. A commutative train algebra of rank 3 over a field of characteristic

zero is necessarily a special train algebra.

Proof. Suppose that the train equation is

x3 - (1 + X)P(x)x2 + A{/J(x)}2x = 0,

where j?(x) is the weight of x.
Then X = x/fi(x) is normalised, i.e. has weight 1, (/J(x) # 0) and the train

equation is

or

(1, A) are called the principal train roots.

We can therefore for simplicity take the train equation to be
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where x is a general normalised element in A, and we do not assume that an
idempotent necessarily exists.

Let us take a canonical basis for the baric algebra such that c0 has weight 1
and all other basis elements are of weight zero. These then constitute the nil-
ideal Z.

Then A = {co}uZ.

Suppose c% — co+zo, then
co = co + zo + cozo = co + zo + z'o.

Lower case elements z belong to Z above and in the subsequent proof. We
linearise the train equation. Consider x = co + 6z then

x2 =

x3 =

Now x3 — (\+X)x2+Xx = 0, and equating coefficients of homogeneous terms
in 9 we obtain

z3 = 0. (4)

2(coz)z + z2c0 - (1 + X)z2 = 0. (5)

zoz + 2(coz)co - (2k+l)coz+Xz = 0. (6)

zoc0-Azo = 0. (7)
Now we linearise (5).
Put z = 0iz1 + 92Z2 and equate the coefficients of homogeneous terms in

0^2 to zero, then

2(coz1)z2 + 2(c0z2)z1+2(z1z2)co-2(l+A)z1z2 = 0 (8)

and since cozteZ we have co(z1z2)eZ2 all zlt z2, thus proving that Z2 is an
ideal. It follows, by induction, that Z" = Z"~1Z is an ideal in A for all n.

Take zt e Z " ' 1 , z2eZ and suppose Z""1 is an ideal in A. It is sufficient
to show that c0Z

n<=Z'>. Now ( c o Z ^ e Z " , ( c ^ z ^ e Z", z1z2eZ" and so
£o(ziz2) e ^ " from (8). Thus c0Z"c:Zn, and therefore Z" is an ideal in A.

By Theorem 1, since z3 = 0, we have that Z is nilpotent. Hence A is a
special train algebra.

We note that there exist train algebras of rank 3 without non-trivial idem-
potents. For example if c% = co + &cu coct — %cu c\ = 0 and a =£ 0, there is
no non-trivial idempotent in the algebra A = (c0, Ci) and the train equation
for a normalised element x is x(x—l)(x—$) = 0.

3. A counterexample

Suttles (6) gave the following counter-example to the conjecture of Gersten-
haber mentioned in Section 1.
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Consider the commutative algebra Z = (cl5 c2, ..., cs) such that
c lC2 = C3, ClCi = CA, C!C5=~C3, C2C3 = CS, C2C4 = C3,

all other products being zero.
Then Z is a commutative (power-associative) nilalgebra of nilindex 4 which

is not nilpotent but is solvable, since

z4 = 0
and

Z 2 = (c3, c4, cs)

Z3 = Z2

but
Z2.Z2 = 0.

Adjoin an identity to Z and consider the algebra A = {1}UZ. Then if
x = P(x). 1 +ZjCjCi the train equation of A is

x(x-/?(x))4 = 0.

For normalised x this gives x(x— I)4 = 0. This equation is clearly minimal
with respect to degree for linear dependence of the principal powers of a general,
normalised element. Hence A is a train algebra with principal train root 1
(multiplicity 4), and rank 5.

However, A is not a genetic algebra since Z is not nilpotent. Now, we can
decrease the rank of A by 1 if, instead of an identity, we adjoin an element
c0 to Z such that

c0 = CO> c 0 c i = 2 c i l = 1» •• •» 5 .

If X = CO+X1C1

X2 — X =

Then
(x2-x)x = (iA3

hence
(x 2 -x) (x- | )

since A4x2 — A5xt = 0,
(X2-X)(x~i)x =

Hence x(x— l)(x—i)2 = 0. This equation is clearly minimal with respect to
degree for linear dependence of the principal powers of a general, normalised
element. Therefore the algebra A = {co}vZ is a train algebra of rank 4 which
is not a genetic algebra.
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Thus we can conclude that for finite-dimensional commutative not necessarily
associative algebras over a field of characteristic zero:

1. Nilalgebras of nilindex ^ 3 are nilpotent.

2. Train algebras of rank ^ 3 are special train algebras.

3. Train algebras of rank >3 are not necessarily genetic algebras.
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