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Abstract

For a Borel set A and a homogeneous Poisson point process η in R
d of intensity λ > 0,

define the Poisson–Voronoi approximation Aη of A as a union of all Voronoi cells with
nuclei from η lying in A. If A has a finite volume and perimeter, we find an exact
asymptotic of E Vol(A�Aη) as λ → ∞, where Vol is the Lebesgue measure. Estimates
for all moments of Vol(Aη) and Vol(A�Aη) together with their asymptotics for large λ

are obtained as well.
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1. Introduction

Let A be a Borel set in R
d , and let η be a Poisson point process in R

d . Assume that we
observe η and that the only information about A at our disposal is which points of η lie in A,
i.e. we have the partition of the process η into η ∩ A and η \ A. We try to reconstruct the set
A just by the information contained in these two point sets. To this end, we approximate A by
the set Aη of all points in R

d which are closer to η ∩ A than to η \ A.
More formally, let η be a homogeneous Poisson point process of intensity λ > 0, and denote

by υη(x) = {z ∈ R
d : ‖z − x‖ ≤ ‖z − y‖ for all y ∈ η} the Voronoi cell generated by η with

nucleus x ∈ η. Then the set Aη is just the union of the Poisson–Voronoi cells with nuclei lying
in A, i.e.

Aη =
⋃

x∈η∩A

υη(x).

We call this set the Poisson–Voronoi approximation of the set A. It was first introduced by
Khmaladze and Toronjadze [8]. They proposed Aη to be an estimator for A when λ is large
(potential applications are listed in [7, Section 1]). They conjectured that, for an arbitrary
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bounded Borel set A ⊂ R
d , d ≥ 1, it holds that

Vol(Aη) → Vol(A) as λ → ∞,

Vol(A�Aη) → 0 as λ → ∞, (1)

almost surely, where Vol(·) stands for the Lebesgue measure (volume) and � is the operation
of the symmetric difference of sets. This conjecture was proved in [8] for d = 1. The case of
general d was treated by Einmahl and Khmaladze [5] with some technical assumption on the
boundary of A, and then generalized by Penrose [11] to an arbitrary bounded Borel set A.

It can be easily shown (see Section 3 for details) that, for any Borel set A, it holds that

E Vol(Aη) = Vol(A).

Thus, Vol(Aη) is an unbiased estimator for the volume of A. In this paper we also consider the
nth moment of Vol(Aη) and approximate it by the nth degree of the volume of the original set
Voln(A) asymptotically as λ → ∞ (Theorem 2). For the case when n = 2 and A is a convex
compact, similar estimates were obtained in [7].

It might be suggested from (1) that

E Vol(A�Aη) → 0 as λ → ∞, (2)

although it is not a direct corollary. The more interesting problem is to find an exact asymptotic
of E Vol(A�Aη). This problem was initially considered by Heveling and Reitzner [7]. They
proved that, for any compact convex set A with (d − 1)-dimensional Hausdorff measure
Hd−1(∂A) of the boundary ∂A of A, it holds that

E Vol(A�Aη) = cdHd−1(∂A)λ−1/d(1 + O(λ−1/d)) as λ → ∞,

where the constant cd is independent of λ and A was calculated by them in an explicit form
(see Section 2 for details). Here we obtain a similar asymptotic formula (Theorem 1) for a
much wider class of sets. Namely, we consider Borel sets with finite volume Vol(A) and
perimeter Per(A) (see Section 3 for the precise definition). Our methods are completely different
from those of Heveling and Reitzner. The key observations are the connection between the
Poisson–Voronoi approximation and the covariogram of A, and the connection between the
covariogram and the perimeter of a set recently established by Galerne [6]. As a by-product of
our calculations, we prove that (2) holds for any Borel set A with finite volume (Corollary 3).

We also consider higher moments of Vol(A�Aη). For an arbitrary Borel set A, we approxi-
mate E Voln(A�Aη) by the nth degree of E Vol(A�Aη) asymptotically as λ → ∞ (Theorem 3).
Thus, assuming that Vol(A), Per(A) < ∞ and using the asymptotic for E Vol(A�Aη) from
Theorem 1, we obtain the asymptotic for E Voln(A�Aη) (Corollary 1).

The paper is organized as follows. Our main results are stated in Section 2. In Section 3
we introduce the necessary background and notation, in particular the perimeter and the
covariogram of a set A. Proofs are given in Section 4.

2. Main results

Our first result yields the asymptotic of the average volume of A�Aη with increasing
intensity λ. To formulate it, we need to define the notion of a perimeter of a Borel set.
The definition is somewhat technical, so we postpone it till Section 3. If A is a compact
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set with Lipschitz boundary (e.g. a convex body), then Per(A) equals the (d − 1)-dimensional
Hausdorff measure Hd−1(∂A) of the boundary ∂A of A. In the general case it holds that
Per(A) ≤ Hd−1(∂A) (see, e.g. [2, Proposition 3.62]). Therefore, Per(A) could be replaced by
Hd−1(∂A) in the assumptions of the theorem.

Theorem 1. If A ⊂ R
d is a Borel set with Vol(A) < ∞ and Per(A) < ∞, then

E Vol(A�Aη) = cdPer(A)λ−1/d(1 + o(1)) as λ → ∞, (3)

where cd = 2d−2�(1/d)κd−1κ
−1−1/d
d and κn is the volume of the unit n-dimensional ball.

The probabilistic intuition behind this asymptotic is the following. The set difference
A�Aη is formed out of the Poisson–Voronoi cells with nuclei lying almost on ∂A. Thus,
its volume behaves asymptotically like the volume of a small tube neighbourhood B(∂A) of
the boundary ∂A. The size of the boundary is given by the perimeter of A. Since the volume of
a typical Poisson–Voronoi cell is λ−1, the width of this tube neighbourhood should have order
λ−1/d , and so the volume of the tube neighbourhood has the order Per(A)λ−1/d .

In the following, when we say that some inequality holds asymptotically as λ → ∞, we
mean that it holds for sufficiently large λ ≥ λ0. The choice of λ0 might depend on A. Thus,
all estimates are not uniform with respect to A (including those of Theorem 1).

Theorem 2. If A ⊂ R
d is a Borel set with Vol(A) < ∞ then

|EVoln(Aη) − Voln(A)| ≤ Cn,dVoln−1(A)λ−1 as λ → ∞,

where Cn,d is some constant independent of λ and A.

Remark 1. In fact, we show that the following nonasymptotic inequality holds: for any λ > 0,

|EVoln(Aη) − Voln(A)| ≤ Cn,d

n−1∑
k=1

Voln−k(A)λ−k.

Theorem 3. If A ⊂ R
d is a Borel set with Vol(A) < ∞ and Per(A) < ∞, then

|EVoln(A�Aη) − (E Vol(A�Aη))
n| ≤ C′

n,dPer(A)n−1λ−1−(n−1)/d as λ → ∞,

where C′
n,d is some constant independent of λ and A.

Remark 2. We conjecture that the following limit theorems can be proven by the method of
moments (see, e.g. [4, Theorems 30.1, 30.2]):

λ1/2(1+1/d)(Vol(Aη) − Vol(A)) → N(0, σ1Per(A)), (4)

λ1/2(1+1/d)(Vol(A�Aη) − cdPer(A)λ−1/d) → N(0, σ2Per(A))

in distribution as λ → ∞, σ1, σ2 > 0.

Recently, (4) was proved by Schulte [13] for convex sets A using a central limit theorem for
Wiener–Itô chaos expansions. In his Remark 4 Schulte points out that the result can be extended
to all sets where the volume of a small tube neighbourhood B(∂A) of ∂A can be bounded in a
nice way. Yet the general conjecture seems to be open.
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Corollary 1. If A ⊂ R
d is a Borel set with Vol(A) < ∞ and Per(A) < ∞, then

E Voln(A�Aη) = (E Vol(A�Aη))
n(1 + O(λ−1+1/d)) as λ → ∞,

and, for d ≥ 2,

E Voln(A�Aη) = (cdPer(A))nλ−n/d(1 + o(1)) as λ → ∞.

The asymptotic order of the variance of Aη and A�Aη as λ → ∞ was first studied in [7]
for convex sets A. We extend these results to arbitrary Borel sets.

Corollary 2. If A ⊂ R
d is a Borel set with Vol(A) < ∞ and Per(A) < ∞, then

varVol(Aη) ≤ CdPer(A)λ−1−1/d as λ → ∞
and

varVol(A�Aη) ≤ CdPer(A)λ−1−1/d as λ → ∞,

where Cd is some constant independent of λ and A.

The second inequality follows immediately from Theorem 3. The first inequality will be
proved in Section 4.2.

The probabilistic heuristic explaining the asymptotic behaviour of the variances is the
following. The symmetric difference A�Aη consists of parts υ̃η(x) of almost independent
Poisson–Voronoi cells υη(x). Their nuclei x ∈ B(∂A) are asymptotically contained in a small
tube neighbourhood B(∂A) of ∂A already mentioned in the heuristic intuition after Theorem 1.
We use the formula for the variance of the compound Poisson distribution,

varVol(A�Aη) = var

( ∑
x∈η∩B(∂A)

Vol(υ̃η(x))

)
≈ var

( N∑
i=1

Yi

)
,

where the random variables Yi
d= Vol(υ̃η(x)) are independent and identically distributed and

N
d= card(η ∩ B(∂A)) ∼ Pois(λVol(B(∂A)))

is independent of Yi . Here ‘
d=’ denotes equality in distribution and card(B) is the cardinality

of a set B. Then

var

( N∑
i=1

Yi

)
= E NvarY1 + varN(E Y1)

2

= λVol(B(∂A)) E Y 2
1

≤ λVol(B(∂A))(E Vol(υη(x)))2

= O(λPer(A)λ−1/dλ−2)

= Per(A)O(λ−1−1/d)

since υ̃η(x) ⊂ υη(x) for any x, the second moment of the volume of a typical Poisson–Voronoi
cell is of order λ−2, and the volume of B(∂A) is of order Per(A)λ−1/d .
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The results of Corollary 2 can also be obtained by using the Poincaré inequality which gives
an upper bound on the variance of a functional of a Poisson point process. Let N be the set of all
locally finite configurations on R

d . Consider a nonnegative measurable function F : N → R.
If E F 2(η) < ∞ then

var F(η) ≤ λ E
∫

Rd

(F (η ∪ {y}) − F(η))2 dy, (5)

where we have added a point y to the Poisson point process η. Putting F(η) = Vol(Aη) in (5),
we obtain

varVol(Aη) ≤ λ

∫
Rd

E(Vol(Aη∪{y}) − Vol(Aη))
2 dy,

where the right-hand side can be estimated from above to obtain the upper bound in Corollary 2.
The reasoning for the symmetric difference A�Aη is similar.

In full generality, inequality (5) was proved by Wu [15]. As was shown by Last and Penrose
[9, Theorem 1.2], it is a consequence of an even more general inequality following from the
Fock space representation of Poisson point processes.

3. Preliminaries

For basic facts from integral geometry, stochastic geometry, and Voronoi tessellations which
are not explained in the following, we refer the reader to [10], [12], and [14].

Define the perimeter of a Borel set A as

Per(A) = sup

{∫
A

divϕ(x) dx : ϕ ∈ C1
c (Rd), ‖ϕ‖∞ ≤ 1

}
,

cf. [2], where

divϕ(x) =
d∑

i=1

∂ϕi

∂xi

and ‖ϕ‖∞ = max
i=1,...,d

sup
x∈Rd

|ϕi(x)|

for ϕ = (ϕ1, . . . , ϕd). The class C1
c (Rd) consists of all continuously differentiable vector-

valued functions from R
d to R

d with compact support. It is well known that if A is a compact
set with Lipschitz boundary (e.g. a convex body), then Per(A) equals the (d − 1)-dimensional
Hausdorff measure Hd−1(∂A) of the boundary ∂A of A. Therefore, in most applications,
Per(A) could be replaced by Hd−1(∂A). In the general case,

Per(A) ≤ Hd−1(∂A)

(see, e.g. [2, Proposition 3.62]). More detailed information about the perimeter of a set and its
connection to the Hausdorff measure of the boundary is given in [1] where, e.g. it is proved [1,
Theorem 3] that the perimeter equals the Hausdorff measure of the essential boundary of the
set if the perimeter is finite.

Let A be a Borel set with finite volume. Then

gA(x) = Vol((A + x) ∩ A), x ∈ R
d ,

is a covariogram of A. For the history on the covariogram problem, see the references in [6]
and also the recent breakthrough by Averkov and Bianchi [3].
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In the proof of Theorem 1 we use the result obtained by Galerne [6, Theorem 14]. The
following assertions are equivalent:

(a) Per(A) < ∞;

(b) there exists a finite limit

lim
r→+0

gA(ru) − gA(0)

r
= ∂gA

∂u
(0) (6)

for all u ∈ S
d−1;

(c) gA is Lipschitz.

In addition, the Lipschitz constant of gA satisfies

Lip(gA) ≤ 1
2 Per(A) (7)

and it holds that ∫
Sd−1

∂gA

∂u
(0)Hd−1(du) = −κd−1Per(A). (8)

Another tool we need is the refined Campbell–Mecke formula for stationary point processes
(cf., e.g. [14]). Using Slivnyak’s theorem, we give its particular case for the Poisson point
process.

As above, let η be a homogeneous Poisson point process of intensity λ > 0, and let N be the
set of all locally finite point configurations on R

d . Consider a nonnegative measurable function
f : N × (Rd)m → R. Then

E
∑

(y1,...,ym)∈ηm�=

f (η, y1, . . . , ym) = λm

∫
(Rd )m

E f (η ∪ ȳm, y1, . . . , ym) dy1 · · · dym, (9)

where ηm�= denotes the set of all m-tuples of pairwise distinct points from η, and η ∪ ȳm is the
process η with added point set ȳm = {y1, . . . , ym}.

As a simple corollary we get two identities which are crucial for us in the sequel.

Proposition 1. If A ⊂ R
d is a Borel set with Vol(A) < ∞ then

E Vol(Aη) = λ

∫
Rd

∫
A

e−λκd‖y−x‖d

dy dx = Vol(A) (10)

and

E Vol(A�Aη) = 2λ

∫
Rd\A

∫
A

e−λκd‖y−x‖d

dy dx. (11)

Proof. By Fubini’s theorem and the Slivnyak–Mecke formula (9), we have

E Vol(Aη) = E
∫

Rd

1(x ∈ Aη) dx

=
∫

Rd

E
∑

y∈η∩A

1(x ∈ υη(y)) dx

= λ

∫
Rd

∫
A

P(x ∈ υη∪{y}(y)) dy dx

= λ

∫
Rd

∫
A

e−λκd‖x−y‖d

dy dx.
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Similarly, we obtain

E Vol(A \ Aη) = λ

∫
A

∫
Rd\A

e−λκd‖x−y‖d

dy dx

and

E Vol(Aη \ A) = λ

∫
Rd\A

∫
A

e−λκd‖x−y‖d

dy dx.

By definition, Vol(A�Aη) = Vol(A\Aη)+Vol(Aη \A), which completes the proof of (11).
To prove the second part of (10), we have to apply Fubini’s theorem and then use the formula∫

Rd

e−c‖x−y‖d

dx = κd

c
, c > 0, (12)

which could be easily proved by introducing spherical coordinates.

Note that we have also proved that

E Vol(A \ Aη) = E Vol(Aη \ A).

However, Vol(A \ Aη) and Vol(Aη \ A) are not equidistributed since the first random variable
is bounded, and the second is not. As a direct corollary of identity (10), we obtain

varVol(Aη) = E(Vol(A \ Aη) − Vol(Aη \ A))2, (13)

which we shall use in the following.

4. Proofs

4.1. Asymptotics of the mean volume of the symmetric difference

In this section we give the proof of Theorem 1. The key step to prove it is the following
relation between the Poisson–Voronoi approximation and the covariogram of a set A.

Lemma 1. Let gA(x) be the covariogram of a Borel set A with Vol(A) < ∞. Then

E Vol(A�Aη) = −2
∫ ∞

0
rd−1e−κd rd

g̃A(λ−1/dr) dr, (14)

where

g̃A(r) =
∫

Sd−1
(gA(ru) − gA(0))Hd−1(du).

Proof. Replacing y in (11) by x − λ−1/dz we obtain

E Vol(A�Aη) = 2λ

∫
Rd

∫
Rd

e−λκd‖y−x‖d

1(y ∈ A, x ∈ Ac) dy dx

= 2
∫

Rd

e−κd‖z‖d

∫
Rd

1(x ∈ (A + λ−1/dz) ∩ Ac) dz dx

= 2
∫

Rd

e−κd‖z‖d

Vol((A + λ−1/dz) ∩ Ac) dz.

By the definition of the covariogram,

Vol((A + λ−1/dz) ∩ Ac) = gA(0) − gA(λ−1/dz).
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We introduce spherical coordinates z = ru, where r ∈ R
+ and u ∈ S

d−1. This yields

E Vol(A�Aη) = −2
∫ ∞

0
rd−1e−κd rd

[∫
Sd−1

(gA(λ−1/dru) − gA(0))Hd−1(du)

]
dr.

Corollary 3. For any measurable A with Vol(A) < ∞, it holds that

E Vol(A�Aη) → 0 as λ → ∞.

Proof. The proof immediately follows from (14) and the continuity of the set covariogram.

Proof of Theorem 1. Using Lemma 1 and substituting t for κdrd, we obtain

E Vol(A�Aη) = − 2

dκd

∫ ∞

0
e−t g̃A((λκd)−1/d t1/d) dt.

It follows from (7) and the definition of g̃A that

|g̃A(r)| ≤ 1
2Hd−1(S

d−1)Per(A)r.

Therefore, Lebesgue’s dominated convergence theorem, (6), and (8) yield

lim
λ→∞ E Vol(A�Aη)λ

1/d = − 2

d
κ

−1−1/d
d lim

λ→∞

∫ ∞

0
e−t t1/d g̃A((λκd)−1/d t1/d)

(λκd)−1/d t1/d
dt

= − 2

d
κ

−1−1/d
d

∫ ∞

0
e−t t1/d dt

∫
Sd−1

∂gA

∂u
(0)Hd−1(du)

= 2

d
κd−1κ

−1−1/d
d Per(A)

∫ ∞

0
e−t t1/d dt

= 2

d
κd−1κ

−1−1/d
d �

(
1 + 1

d

)
Per(A).

4.2. Asymptotics of higher moments

To prove Theorem 2 and Theorem 3, we need a number of lemmas. In this section, C is
always some constant independent of λ and A. Our first statement is the following version of
Hölder’s inequality.

Lemma 2. For any events A1, . . . , Am, it holds that

P

( m⋂
r=1

Ar

)
≤

m∏
r=1

(P(Ar))
1/m.

Lemma 3. Let x0, y0 ∈ R
d . For any ε > 0 and m ∈ N, the following inequality holds:

∫
(Rd )m

(P (x0, x1, . . . , xm ∈ υη∪{y0}(y0)))
ε dx1 · · · dxm

≤ exp

(
−ελκd‖x0 − y0‖d

m + 1

)(
m + 1

ελ

)m

.
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Proof. By Lemma 2, we have
∫

(Rd )m
(P(x0, x1, . . . , xm ∈ υη∪{y0}(y0)))

ε dx1 · · · dxm

≤ (P(x0 ∈ υη∪{y0}(y0)))
ε/(m+1)

∫
(Rd )m

m∏
i=1

(P(xi ∈ υη∪{y0}(y0)))
ε/(m+1) dx1 · · · dxm

= exp

(−ελκd‖x0 − y0‖d

m + 1

)[ ∫
Rd

exp

(−ελκd‖x − y0‖d

m + 1

)
dx

]m

.

Using (12) completes the proof.

Lemma 4. For any a > 0,
∫

Rd

∫
A

e−aλ‖y−x‖d

dy dx = κdVol(A)

aλ
(15)

and ∫
Rd\A

∫
A

e−aλ‖y−x‖d

dy dx ≤ C
Per(A)

λ1+1/d
as λ → ∞. (16)

Proof. The first equation follows from (10) after replacing λ by λ′a/κd . The second estimate
follows from (11) after replacing λ by λ′a/κd and then applying Theorem 1.

Introduce the notation Bx
r for the closed ball with centre x ∈ R

d and radius r > 0 in the
Euclidean metric.

Lemma 5. Let x1, x2, y1, y2 ∈ R
d . If B

x1‖x1−y1‖ ∩ B
x2‖x2−y2‖ �= ∅ then

P(B
x1‖x1−y1‖ ∩ η = ∅, B

x2‖x2−y2‖ ∩ η = ∅) ≤ 2 exp

(
− λκd

22d+1 (‖x1 − y2‖d + ‖x2 − y1‖d)

)
.

Proof. Since B
x1‖x1−y1‖ ∩ B

x2‖x2−y2‖ �= ∅, it follows from the triangle inequality that

‖x1 − y2‖
4

,
‖x2 − y1‖

4
≤ max(‖x1 − y1‖, ‖x2 − y2‖).

Therefore, by Lemma 2 and the stationarity of η, we have

P(B
x1‖x1−y1‖ ∩ η = ∅, B

x2‖x2−y2‖ ∩ η = ∅)

≤ P(B
x1‖x1−y2‖/4 ∩ η = ∅, B

x1‖x2−y1‖/4 ∩ η = ∅

or B
x2‖x1−y2‖/4 ∩ η = ∅, B

x2‖x2−y1‖/4 ∩ η = ∅)

≤
2∑

i=1

P(B
xi‖x1−y2‖/4 ∩ η = ∅, B

xi‖x2−y1‖/4 ∩ η = ∅)

≤
2∑

i=1

(P(B
xi‖x1−y2‖/4 ∩ η = ∅) P(B

xi‖x2−y1‖/4 ∩ η = ∅))1/2

= 2 exp

(
− λκd

22d+1 (‖x1 − y2‖d + ‖x2 − y1‖d)

)
.
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Lemma 6. For any x1, y1, . . . , xn, yn ∈ R
d , it holds that

P(B
xr‖xr−yr‖ ∩ η = ∅, r = 1, . . . , n)

≤ exp

(
−λκd

n∑
r=1

‖xr − yr‖d

)

+ 2
∑
s<t

exp

(
− λκd

n + 1

n∑
r=1

‖xr − yr‖d

)

× exp

(
− λκd

22d+1(n + 1)
(‖xs − yt‖d + ‖xt − ys‖d)

)
.

Proof. If the balls B
xr‖xr−yr‖, r = 1, . . . , n, are pairwise disjoint then we obviously have

P(B
xr‖xr−yr‖ ∩ η = ∅, r = 1, . . . , n) = exp

(
−λκd

n∑
r=1

‖xr − yr‖d

)
.

Suppose that, for some indices s �= t, it holds that B
xs‖xs−ys‖ ∩ B

xt‖xt−yt‖ �= ∅. Applying
Lemma 2, we obtain

P(B
xr‖xr−yr‖ ∩ η = ∅, r = 1, . . . , n)

≤ (P(B
xs‖xs−ys‖ ∩ η = ∅, B

xt‖xt−yt‖ ∩ η = ∅))1/(n+1)
n∏

r=1

(P(B
xr‖xr−yr‖ ∩ η = ∅))1/(n+1)

= exp

(
− λκd

n + 1

n∑
r=1

‖xr − yr‖d

)
(P(B

xs‖xs−ys‖ ∩ η = ∅, B
xt‖xt−yt‖ ∩ η = ∅))1/(n+1).

It remains to apply Lemma 5 to complete the proof.

Proof of Theorem 2. We have

E Voln(Aη) = E
∫

(Rd )n
1(there exists (y1, . . . , yn) ∈ (η ∩ A)n : xi ∈ υη(yi), i = 1, . . . n)

× dx1 · · · dxn

=
n∑

i=1

∑
m1+···+mi=n

Bn,i,m1,...,mi
βi,m1,...,mi

, (17)

where

βi,m1,...,mi
=

∫
(Rd )n

E
∑

(y1,...,yi )∈(η∩A)i�=

1(x1, . . . , xm1 ∈ υη(y1), . . . , xn−mi+1, . . . , xn ∈ υη(yi))

× dx1 · · · dxn

and Bn,i,m1,...,mi
denotes the number of ways to divide the set {1, 2, . . . , n} into i subsets of

size m1, . . . , mi . It is clear that
Bn,n,1,...,1 = 1. (18)
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Fix some i and m1, . . . , mi . Using the Slivnyak–Mecke formula (9), we obtain

βi,m1,...,mi
= λi

∫
(Rd )n

∫
Ai

P(x1, . . . , xm1 ∈ υη∪ỹi
(y1), . . . , xn−mi+1, . . . , xn ∈ υη∪ỹi

(yi))

× dy1 · · · dyi dx1 · · · dxn,

where ỹi = {y1, . . . , yi}. Taking into account the fact that υη∪ỹi
(yr ) ⊂ υη∪{yr }(yr), and using

Fubini’s theorem, Lemma 2, and Lemma 3, we obtain

βi,m1,...,mi
≤ λi

∫
Ai

i∏
r=1

∫
(Rd )mr

(P(x1, . . . , xmr ∈ υη∪{yr }(yr)))
1/i dx1 · · · dxmr dy1 · · · dyi

≤ λi

∫
Ai

i∏
r=1

(
imr

λ

)mr−1 ∫
Rd

(
exp

(−λκd‖x1 − yr‖d

imr

))
dx1 dy1 · · · dyi.

By (15) we obtain

βi,m1,...,mi
≤ CVoli (A)λi−∑i

r=1 mr = CVoli (A)λi−n.

The maximum order of λ is achieved for i = n, which together with (17) and (18) implies
that

E Voln(Aη) ≤ λn

∫
(Rd )n

∫
An

P(xr ∈ υη∪ỹn
(yr ), r = 1, . . . , n) dy1 · · · dyn dx1 · · · dxn

+ C(Vol(A))n−1λ−1 as λ → ∞.

It is clear that

P(xr ∈ υη∪ỹn
(yr ), r = 1, . . . , n) ≤ P(B

xr‖xr−yr‖ ∩ η = ∅, r = 1, . . . , n).

Therefore, by Lemma 6,

E Voln(Aη) ≤ vn + 2
∑
s<t

vn,s,t + C(Vol(A))n−1λ−1 as λ → ∞, (19)

where

vn = λn

∫
(Rd )n

∫
An

exp

(
−λκd

n∑
r=1

‖xr − yr‖d

)
dy1 · · · dyn dx1 · · · dxn

and

vn,s,t = λn

∫
(Rd )n

∫
An

exp

(
− λκd

n + 1

n∑
r=1

‖xr − yr‖d

)

× exp

(
− λκd

22d+1(n + 1)
(‖xs − yt‖d + ‖xt − ys‖d)

)

× dy1 · · · dyn dx1 · · · dxn.

By (10),
vn = Voln(A). (20)
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Let us estimate vn,s,t . Using Fubini’s theorem, it follows from (15) that

vn,s,t ≤ CVoln−2(A)λ2
∫

Rd

∫
Rd

∫
A

∫
A

exp

(
− λκd

n + 1
(‖xs − ys‖d + ‖xt − yt‖d)

)

× exp

(
− λκd

22d+1(n + 1)
(‖xs − yt‖d + ‖xt − ys‖d)

)

× dyt dys dxt dxs

≤ CVoln−2(A)λ2
∫

Rd

∫
A

exp

(
− λκd

n + 1
(‖xs − ys‖d)

)

×
∫

Rd

∫
Rd

exp

(
− λκd

22d+1(n + 1)
(‖xs − yt‖d + ‖xt − ys‖d)

)

× dyt dxt dys dxs.

Furthermore, by (12),

vn,s,t ≤ CVoln−2(A)

∫
Rd

∫
A

exp

(
− λκd

n + 1
‖xs − ys‖d

)
dys dxs,

and applying (15) again, we obtain

vn,s,t ≤ CVoln−1(A)λ−1.

Combining this with estimate (19) and (20), we obtain

E Voln(Aη) ≤ Voln(A) + CVoln−1(A)λ−1 as λ → ∞.

The application of Lyapunov’s inequality

E Voln(Aη) ≥ (E Vol(Aη))
n = Voln(A)

completes the proof.

Proof of Theorem 3. We have

E Voln(A�Aη) = E(Vol(A \ Aη) + Vol(Aη \ A))n =
n∑

k=0

(
n

k

)
uk, (21)

where

uk = E
∫

An−k

∫
(Rd\A)k

1(x1, . . . , xk ∈ Aη, xk+1, . . . , xn �∈ Aη) dx1 · · · dxn.

Fix some k. We have

uk = E
∫

An−k

∫
(Rd\A)k

1(there exist (y1, . . . , yk) ∈ (η ∩ A)k,

(yk+1, . . . , yn) ∈ (η \ A)n−k : xi ∈ υη(yi), i = 1, . . . , n) dx1 · · · dxn

=
k∑

i=1

n−k∑
j=1

∑
m1+···+mi=k

∑
l1+···+lj =n−k

Bk,i,m1,...,mi
Bn−k,j,l1,...,lj βi,j,m1,...,mi ,l1,...,lj , (22)
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where

βi,j,m1,...,mi ,l1,...,lj

=
∫

An−k

∫
(Rd\A)k

E
∑

(y1,...,yi )∈(η∩A)i�=

∑
(yi+1,...,yi+j )∈(η\A)

j
�=

1(x1, . . . , xm1 ∈ υη(y1), . . . ,

xn−lj +1, . . . , xn ∈ υη(yi+j ))

× dx1 · · · dxn

and Bk,i,m1,...,mi
, Bn−k,j,l1,...,lj are the same combinatorial coefficients as in the proof of

Theorem 2.
Fix some i, j , and m1, . . . , mi, l1, . . . , lj . Using the Slivnyak–Mecke formula (9) twice, we

obtain
βi,j,m1,...,mi ,l1,...,lj

= λi+j

∫
An−k

∫
(Rd\A)k

∫
(Rd\A)j

∫
Ai

P(x1, . . . , xm1 ∈ υη∪ỹi+j
(y1), . . . ,

xn−lj +1, . . . , xn ∈ υη∪ỹi+j
(yi+j ))

× dy1 · · · dyi+j dx1 · · · dxn,

where ỹi+j = {y1, . . . , yi+j }. By Fubini’s theorem and Lemma 2,

βi,j,m1,...,mi ,l1,...,lj

≤ λi+j

∫
(Rd\A)j

∫
Ai

i∏
r=1

∫
(Rd\A)mr

(P(x1, . . . , xmr ∈ υη∪{yr }(yr)))
1/(i+j) dx1 · · · dxmr

×
j∏

r=1

∫
Alr

(P(x1, . . . , xlr ∈ υη∪{yi+r }(yi+r )))
1/(i+j) dx1 · · · dxlr

× dy1 · · · dyi+j .

Using Lemma 3 and (16), we obtain, asymptotically as λ → ∞,

βi,j,m1,...,mi ,l1,...,lj ≤ CPer(A)i+j λi+j+∑i
r=1(−mr−1/d)+∑j

r=1(−lr−1/d)

= CPer(A)i+j λ−n+i+j−(i+j)/d .

The maximum order of λ is achieved for i = k, j = n−k, and the next term of maximum order
is achieved for i + j = n − 1, which together with (22) and (18) implies that, asymptotically
as λ → ∞,

uk ≤ λn

∫
An−k

∫
(Rd\A)k

∫
(Rd\A)n−k

∫
Ak

P(xr ∈ υη∪ỹn
(yr ), r = 1, . . . , n)

× dy1 · · · dyn dx1 · · · dxn

+ CPer(A)n−1λ−1−(n−1)/d .
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It is clear that

P(xr ∈ υη∪ỹn
(yr ), r = 1, . . . , n) ≤ P(B

xr‖xr−yr‖ ∩ η = ∅, r = 1, . . . , n).

Therefore, by Lemma 6, asymptotically as λ → ∞,

uk ≤ vk + 2
∑
s<t

vk,s,t + CPer(A)n−1λ−1−(n−1)/d , (23)

where

vk = λn

∫
An−k

∫
(Rd\A)k

∫
(Rd\A)n−k

∫
Ak

exp

(
−λκd

n∑
r=1

‖xr − yr‖d

)
dy1 · · · dyn dx1 · · · dxn

and

vk,s,t = λn

∫
An−k

∫
(Rd\A)k

∫
(Rd\A)n−k

∫
Ak

exp

(
− λκd

n + 1

n∑
r=1

‖xr − yr‖d

)

× exp

(
− λκd

22d+1(n + 1)
(‖xs − yt‖d + ‖xt − ys‖d)

)

× dy1 · · · dyn dx1 · · · dxn.

By identity (11),

vk = 2−n(E Vol(A�Aη))
n. (24)

Let us estimate vk,s,t . For instance, we assume that s ≤ k and t ≥ k +1 (other cases are treated
in the same way). In the same way as in the proof of Theorem 2, we obtain, by inequality (16),

vk,s,t ≤ CPer(A)n−2λ2−(n−2)/d

×
∫

Rd

∫
Rd\A

∫
Rd

∫
A

exp

(
− λκd

n + 1
(‖xs − ys‖d)

)

× exp

(
− λκd

22d+1(n + 1)
(‖xs − yt‖d + ‖xt − ys‖d)

)

× dys dyt dxs dxt

as λ → ∞. Furthermore, by (12),

vk,s,t ≤ CPer(A)n−2λ−(n−2)/d

∫
Rd\A

∫
A

exp

(
− λκd

n + 1
‖xs − ys‖d

)
dys dxs as λ → ∞,

and applying (16) again, we obtain

vk,s,t ≤ CPer(A)n−1λ−1−(n−1)/d as λ → ∞.
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Combining this with (23) and (24), we obtain

uk ≤ 2−n(E Vol(A�Aη))
n + CPer(A)n−1λ−1−(n−1)/d as λ → ∞. (25)

Inserting this into (21) we obtain

E Voln(A�Aη) ≤ (E Vol(A�Aη))
n + CPer(A)n−1λ−1−(n−1)/d as λ → ∞.

The application of Lyapunov’s inequality

E Voln(A�Aη) ≥ (E Vol(A�Aη))
n

completes the proof.

Proof of Corollary 2. As mentioned above, the second inequality immediately follows from
Theorem 3. To prove the first inequality, let us again combine (21) and (25) now for n = 2 and
k = 0, 1, 2. We obtain, for sufficiently large λ,

E Vol2(A \ Aη) + E Vol2(Aη \ A) ≤ 1
2 (E Vol(A�Aη))

2 + 2CPer(A)λ−1−1/d

and
2 E(Vol(A \ Aη)Vol(Aη \ A)) ≤ 1

2 (E Vol(A�Aη))
2 + 2CPer(A)λ−1−1/d .

Combining this with Lyapunov’s inequality

E Vol2(A \ Aη) + E Vol2(Aη \ A) + 2 E(Vol(A \ Aη)Vol(Aη \ A)) ≥ (E Vol(A�Aη))
2,

we obtain, for sufficiently large λ,

E Vol2(A \ Aη) + E Vol2(Aη \ A) − 2 E(Vol(A \ Aη)Vol(Aη \ A)) ≤ 4CPer(A)λ−1−1/d ,

which together with (13) completes the proof.
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