ON THE DETERMINISTIC AND ASYMPTOTIC σ-ALGEBRAS OF A MARKOV OPERATOR

BY
ULRICH KRENGEL AND MICHAEL LIN

Abstract

Let P be a Markov operator on $L_{\infty}(X, \Sigma, m)$ which does not disappear (i.e., $P 1_{A} \equiv 0 \Rightarrow 1_{A} \equiv 0$). We study the relationship between the σ-algebras $$
\Sigma_{n}(P)=\left\{A \in \Sigma: \exists B_{n} \text { with } P^{n} 1_{A}=1_{B_{n}}\right\}, \Sigma_{d}(P)=\bigcap_{n=1}^{\infty} \Sigma_{n}(P)
$$ (the deterministic σ-algebra), and the asymptotic σ-algebra $$
\Sigma_{t}(P)=\left\{A \in \Sigma: \forall n \exists 0 \leqq f_{n} \leqq 1 \text { with } P^{n} f_{n}=1_{A}\right\}
$$

When m is a σ-finite invariant measure, $f \in L_{p}(m)(1 \leqq p<\infty)$ is $\Sigma_{n}(P)$ measurable iff $P^{* n} P^{n} f=f$, and also iff $P^{n} f$ has the same distribution as f. The case of a convolution operator on a locally compact group is considered.

0 . Introduction. Let (X, Σ, m) be a σ-finite measure space, and P a Markovoperator in $L_{\infty}(X, \Sigma, m)$, i.e., a linear operator in L_{∞} of norm $\leqq 1$ (called a contraction), which satisfies:
(i) $0 \leqq f \in L_{\infty} \Rightarrow 0 \leqq P f$;
(ii) $P 1=1$
(iii) $0 \leqq f_{n} \leqq 1$ in L_{∞} and $f_{n} \downarrow 0 \Rightarrow P f_{n} \downarrow 0$.

The measure m is called invariant if $\int P f d m=\int f d m$ holds for all f. In that case, P is also a contraction in $L_{1}(m)$, and therefore in all spaces $L_{p}(m), 1 \leqq p \leqq \infty$; see e.g. [K, p.65].

If f is any function and we write $f=1_{B}$, we assert the existence of a set B with $f=1_{B}$. We do not distinguish measurable functions or sets from their equivalence classes mod nullsets.

The deterministic σ-algebra $\Sigma_{d}=\left\{A: P^{n} 1_{A}=1_{B_{n}} \forall n\right\}$ was introduced for the study of limit theorems of $P^{n} f$, when m is invariant for P. We quote the general results, proved in [F1]:

Theorem A. $I \equiv\left\{f \in L_{2}(m):\left\|P^{n} f\right\|_{2}=\|f\|_{2} \forall n\right\}=\left\{f \in L_{2}(m): P^{* n} P^{n}=\right.$ $f \forall n\}=L_{2}\left(X, \Sigma_{d}(P), m\right)$

Theorem B. (i) I is invariant for P, and $P_{\mid I}$ is an isometry.
Received by the editors February 17, 1987 and, in revised form, April 6, 1988
AMS Subject Classification (1980): Primary 60J05, 60J15: Secondary 47A35
© Canadian Mathematical Society 1987.
(ii) If $f \perp I$, then $P^{n} f \rightarrow 0$ weakly in $L_{2}(m)$.

Using this approach, Foguel [F1] (p.96-98) succeeded in obtaining a proof of the Jamison-Orey theorem: If Σ_{d} is trivial for an aperiodic Harris operator with finite invariant measure, and $f \in L_{1}$ satifies $\int f d m=0$, then $\left\|P^{n} f\right\|_{1} \rightarrow 0$.
M. Rosenblatt $[R, p .113-115]$ showed that in general we cannot have strong convergence in Theorem $\mathrm{B}(\mathrm{ii})$, even if the invariant measure is finite, and Σ_{d} is trivial. A different example was recently given in [AB].

In [L1] it is shown that for the predual T of P, acting in $L_{1}(m)$, we have (without requiring an invariant measure)

$$
\left\|T^{n} u\right\|_{1} \rightarrow 0 \Leftrightarrow \int u g d m=0 \quad \forall g \in \bigcap_{n=1}^{\infty} P^{n}\left\{f \in L_{\infty}: 0 \leqq f \leqq 1\right\} .
$$

(see also [D] for more discussion).
Hence, it is a natural question to ask if it is enough to check only against $g \epsilon \Sigma_{t}=$ $\Sigma_{t}(P)$, the set of indicator functions in the above intersection, (as is suggested by the result for P obtained from a non-singular point transformation).

If m is a σ-finite invariant measure for T, theorem 2.1 below asserts $\Sigma_{d}(T)=\Sigma_{t}(P)$. Together with Rosenblatt's example, this implies that the answer to the above question is negative even for P with an invariant probability.

We also study $\Sigma_{n}(T)=\left\{A \epsilon \Sigma: \exists B_{n}\right.$ with $\left.T^{n} 1_{A}=1_{B_{n}}\right\}$. E.g., we show that f is $\Sigma_{n}(T)$-measurable iff $f, T f, \ldots, T^{n} f$ have the same distribution with respect to the σ-finite invariant measure m.

In the particular case of irreducible convolution operators on a locally compact group we identify $\Sigma_{d}=\Sigma_{t}$.
P is called non-disappearing if $P 1_{A}=0$ implies $1_{A}=0$. (Equivalently, $f \geqq 0, P f=$ $0 \Rightarrow f=0$). Clearly, Markovian operators having a σ-finite invariant measure and conservative operators are non-disappearing.

The following lemma is included here since the reference may not be readily accessible:

Lemma 0 [F2]. (i) If P is Markovian, $P 1_{B_{1}}=1_{A_{1}}$ and $P 1_{B_{2}}=1_{A_{2}}$, then $P\left(1_{B_{1} \cup B_{2}}\right)=$ $1_{A_{1} \cup A_{2}}$.
(ii) If, in addition, P is non-disappearing, then $P g=1_{A}$ with $0 \leqq g \leqq 1$ implies the existence of a unique $B \epsilon \Sigma$ with $g=1_{B}$.

Proof. (i) $P\left(1_{B_{1} \cup B_{2}}\right)=P\left(1_{B_{1}}+1_{B_{1}^{c} \cap B_{2}}\right)=P 1_{B_{1}}+P 1_{B_{1}^{c} \cap B_{2}}=P 1_{B_{1}} \vee P 1_{B_{1}^{c} \cup B_{2}}$ (since $\left.P 1_{B_{1}^{c}}=1_{A_{1}^{c}}\right) \leqq P 1_{B_{1}} \vee P 1_{B_{2}}$. The reverse inequality is clear.
(ii) $P(1-g)=1_{A^{c}}$ and hence $P(g \wedge(1-g)) \leqq 1_{A} \wedge 1_{A^{c}}=0$. Hence $g \wedge(1-g)=0$ and $g=1_{B}$. If also $P 1_{C}=1_{A}$, then $P\left(1_{B} \wedge 1_{C^{c}}\right) \leqq P 1_{B} \wedge P 1_{C^{c}}=1_{A} \wedge 1_{A^{c}}=0$. Hence $B \subset C$, and by symmetry $B=C$.

1. The deterministic and asymptotic σ-algebras. Let $\Sigma_{n}=\left\{A \in \Sigma: P^{n} 1_{A}=\right.$ $\left.1_{B}\right\}$. Then, since P^{n} is a Markov operator, Lemma 0 easily yields that Σ_{n} is a σ -
algebra, and that $\Sigma_{n+1} \subset \Sigma_{n}$ if P is non-disappearing. We shall assume throughout that P is non-disappearing. Then

$$
\Sigma_{d}:=\bigcap_{n=1}^{\infty} \Sigma_{n}
$$

is the determinisitic σ-algebra.
Theorem 1.1. $f \in L_{\infty}\left(\Sigma_{n}\right) \Leftrightarrow P^{n}(f g)=\left(P^{n} f\right)\left(P^{n} g\right) \forall g \in L_{\infty}$.
Proof. We may assume $n=1$.
Let $L=\left\{f \in L_{\infty}: P(f g)=(P f)(P g) \forall g \in L_{\infty}\right\}$. It is easy to check that L is an algebra, and w^{*}-closed. Let $S=\left\{A \in \Sigma: 1_{A} \in L\right\}$. It was proved in [L3] that S is a σ-algebra, and that $L=L_{\infty}(X, S, m)$. For $A \in S$ we have $P\left(1_{A}\right)=\left(P 1_{A}\right)^{2}$, so $A \in \Sigma_{1}$. Thus $S \subset \Sigma_{1}$.

Let $A \in \Sigma_{1}$. Then $P 1_{A}=1_{B}$. For $0 \leqq g \in L_{\infty}$ we have $P\left(1_{A} g\right) \leqq\|g\|_{\infty} P 1_{A}=$ $\|g\|_{\infty} 1_{B}$. Hence $P\left(1_{A} g\right)=0$ a.e. on B^{c}. Hence, applying the argument to $A^{c}, P\left(1_{A^{c}} g\right)=$ 0 a.e. on B. Hence $1_{B} P g=\left[P\left(1_{A} g\right)+P\left(1_{A^{c}} g\right)\right] 1_{B}=1_{B} P\left(1_{A} g\right)$.

Since $P\left(1_{A} g\right)=0$ on $B^{c}, P\left(1_{A} g\right)=1_{B} P g=\left(P 1_{A}\right)(P g)$. It follows easily that $A \in S$. Hence $S=\Sigma_{1}$.

Corollary 1.2. $f \in L_{\infty}\left(\Sigma_{d}\right) \Leftrightarrow P^{n}(f g)=\left(P^{n} f\right)\left(P^{n} g\right) \forall g \in L_{\infty}, \forall n$.
Corollary 1.3. P maps $L_{\infty}\left(\Sigma_{d}\right)$ into $L_{\infty}\left(\Sigma_{d}\right)$. The restriction of P to $L_{\infty}\left(\Sigma_{d}\right)$ is multiplicative and induces a homomorphism of Σ_{d}.

This result corresponds to theorem A in the introduction, without assuming the existence of an invariant measure.

Definition $\Sigma_{t}=\left\{A \in \Sigma:\right.$ for $\forall n$ there is $0 \leqq f_{n} \leqq 1$ with $\left.P^{n} f_{n}=1_{A}\right\}$.
Proposition 1.4. Let P be non-disappearing. If $A \in \Sigma_{t}$, then each $0 \leqq f_{n} \leqq 1$ satisfying $P^{n} f_{n}=1_{A}$ is uniquely determined, $f_{n}=1_{A_{n}}, A_{n} \in \Sigma_{t}$, and $P 1_{A_{n+1}}=1_{A_{n}}$.

Proof. As P^{n} is non-disappearing, the uniqueness and $f_{n}=1_{A_{n}}$ follow from Lemma 0. Moreover, $1_{A}=P^{n} P^{m} 1_{A_{n+m}}$ and $1_{A}=P^{n} 1_{A_{n}}$ yield $P^{m} 1_{A_{n+m}}=1_{A_{n}}$. As m was arbitrary $A_{n} \in \Sigma_{t}$.

Theorem 1.5. Σ_{t} is a σ-algebra.
Proof. Let $A, B \in \Sigma_{t}$. Then $P^{n} 1_{A_{n}}=1_{A}, P^{n} 1_{B_{n}}=1_{B}$, with $A_{n}, B_{n} \in \Sigma_{t}$. Hence, adding

$$
P^{n}\left(1_{A_{n} \cap B_{n}^{c}}\right) \leqq P^{n} 1_{A_{n}} \wedge P^{n} 1_{B_{n}^{c}}=1_{A} \wedge 1_{B^{c}}=1_{A \cap B^{c}}
$$

and

$$
P^{n}\left(1_{A_{n} \cap B_{n}}\right) \leqq 1_{A \cap B},
$$

we have $P^{n} 1_{A_{n}} \leqq 1_{A}$. Since $P^{n} 1_{A_{n}}=1_{A}, P^{n}\left(1_{A_{n} \cap B_{n}}\right)=1_{A \cap B}$. Hence Σ_{t} is closed under intersections and complements.

The above also shows that $A \subset B \Rightarrow A_{n} \subset B_{n}$ for every n. Hence, if $B_{k} \uparrow A$, $B_{k} \in \Sigma_{t}$, then the $B_{n, k}$ which satisfy $P^{n} 1_{b_{n, k}}=1_{B_{k}}$ will satisfy $B_{n, k} \subset B_{n, k+1}$. Let

$$
A_{n}=\bigcup_{k=1}^{\infty} B_{n, k} .
$$

Then $P^{n} 1_{A_{n}}=\lim _{k} P^{n} 1_{B_{n, k}}=\lim _{k} 1_{B_{k}}=1_{A}$ and $A \in \Sigma_{t}$. Thus Σ_{t} is an σ-algebra.
Remark. Σ_{t} is called the asymptotic σ-algebra. When $\operatorname{Pf}(x)=f(\theta x)$ for some nonsingular θ,

$$
\Sigma_{t}=\bigcap_{n=1}^{\infty} \theta^{-n} \Sigma .
$$

In that case Σ_{t} is also called tail- σ-algebra.
Definition For $A \in \Sigma_{t}$, define $\Psi(A)=A_{1}$, which is well-defined by proposition 1.4, and maps Σ_{t} into Σ_{t}. The proof of theorem 1.5 shows that Ψ is a homomorphism of the σ-algebra. We have $\Psi^{n}(A)=A_{n}$ (when $P^{n} 1_{A_{n}}-1_{A}$), and it is easily verified that $\Psi^{n}\left(\Sigma_{t}\right)=\Sigma_{t} \cap \Sigma_{n}$.

Remember that P induces a homomorphism of Σ_{d}, and denote $P(A)=B$ when $P 1_{A}=1_{B}$. Then $P^{n}(A)=B_{n} . P^{n}\left(\Sigma_{d}\right)$ is a σ-algebra, and $P^{n+1}\left(\Sigma_{d}\right) \subset P^{n}\left(\Sigma_{d}\right)$.

Theorem 1.6.

$$
\bigcap_{n=0}^{\infty} \Psi^{n}\left(\Sigma_{t}\right)=\Sigma_{t} \cap \Sigma_{d}=\bigcap_{n=0}^{\infty} P^{n}\left(\Sigma_{d}\right) .
$$

Proof. The first equality follows from the above relations $\Psi^{n}\left(\Sigma_{t}\right)=\Sigma_{t} \cap \Sigma_{n}$. Denote $\bigcap_{n=0}^{\infty} P^{n}\left(\Sigma_{d}\right)$ by Σ_{a}, so $\Sigma_{a} \subset \Sigma_{d}$. Let $A \in \Sigma_{a}$. Then there exist $A_{n} \in \Sigma_{d}$ with $P^{n} 1_{A_{n}}=1_{A}$. Hence $\Sigma_{a} \subset \Sigma_{t} \cap \Sigma_{d}$.

Let $A \in \Sigma_{t} \cap \Sigma_{d} . A \in \Sigma_{d} \Rightarrow P^{n} 1_{A}=1_{B_{n}} . A \in \Sigma_{t}$ implies that there are $A_{k} \in \Sigma_{t}$, with $P 1_{A_{k+1}}=1_{A_{k}}, A_{0}=A$. Then, for $k>n$ we have $P^{k} 1_{A_{n}}=P^{k-n} 1_{A}=1_{B_{k-n}}$. Since $P^{k} 1_{A_{n}}=1_{A_{n-k}}$ for $k \leqq n$, we have that $A_{n} \in \Sigma_{d}$, and $1_{A} \in P^{n}\left(\Sigma_{d}\right)$ for every n. Hence $\Sigma_{t} \cap \Sigma_{d} \subset \Sigma_{a}$, and equality holds.

Remark. P and Ψ are automorphisms of Σ_{a}, with $P^{-1}=\Psi . \Sigma_{a}$ is called the automorphic σ-algebra [F2].

It was proved in [L3, lemma C$]$ that if P is conservative and ergodic, the eigenfunctions corresponding to unimodular eigenvalues are Σ_{a}-measurable.
2. Results for P having a σ-finite invariant measure. If m is invariant for P, then P is also a contraction of $L_{1}(m)$ which preserves integrals. Hence P^{*} is also a Markov operator in $L_{\infty}(m), P^{*} 1=1$ (since P preserves integrals), and m is invariant for P^{*}. (See [F1] or [F2] for more details on the dual Markov operator.) We denote . $\int f g d m$ by $\langle f, g\rangle$, for $|f g| \in L_{1}(m)$.

Theorem 2.1. Let m be a σ-finite invariant measure for P, and P^{*} the dual Markov operator. Then $\Sigma_{d}(P)=\Sigma_{t}\left(P^{*}\right)$.

Proof. Let $A \in \Sigma_{d}(P)$. Then $P^{n} 1_{A}=1_{B_{n}}$. Fix n, and let $E_{k} \uparrow B_{n}^{c}$ with $m\left(E_{k}\right)<\infty$. Then

$$
\left\langle 1_{A}, P^{* n} 1_{E_{k}}\right\rangle=\left\langle P^{n} 1_{A}, 1_{E_{k}}\right\rangle=\left\langle 1_{B_{n}}, 1_{E_{k}}\right\rangle=0,
$$

and $P^{* n} 1_{E_{k}} \leqq 1_{A^{c}}$. Letting $k \rightarrow \infty$ we obtain $P^{* n} 1_{B_{n}^{c}} \leqq 1_{A^{c}}$. Hence also $P^{* n} 1_{B_{n}} \leqq 1_{A}$, and equality must hold. Hence $A \in \Sigma_{t}\left(P^{*}\right)$.

For the converse, let $A \in \Sigma_{t}\left(P^{*}\right)$. Then there are $A_{n} \in \Sigma_{t}\left(P^{*}\right)$ with $P^{* n} 1_{A_{n}}=1_{A}$. We prove $P^{n} 1_{A}=1_{A_{n}}$ using the technique above.

Remark. $\quad \Sigma_{d}(P)$ may be different from $\Sigma_{d}\left(P^{*}\right)=\Sigma_{t}(P)$.
Corollary 2.2. Under the above assumptions (i) $A \in \Sigma_{n}(P) \Leftrightarrow P^{* n} P^{n} 1_{A}=1_{A}$.
(ii) $P 1_{A}=1_{A} \Leftrightarrow P^{* n} 1_{A}=1_{A}$. (Note that $m(A)$ may be infinite.)

Proof. (i) If $P^{* n} P^{n} 1_{A}=1_{A}$, then $P^{n} 1_{A}$ is an indicator function by lemma 0 . If $A \in \Sigma_{n}(P), P^{n} 1_{A}=1_{A}=1_{B_{n}}$ implies by the previous proof $P^{* n} P^{n} 1_{A}=P^{* n} 1_{B_{n}}=1_{A}$.
(ii) $B_{n}=A$ in the above shows $P_{A}^{*}=1_{A}$ if $P 1_{A}=1_{A}$.

Remarks. 1. If m is finite, then $P^{* n} P^{n}$ has m as a finite invariant measure, and for $f \in L_{1}(X, \Sigma, m)$ we have $P^{* n} P^{n} f=f \Leftrightarrow f \in L_{1}\left(\Sigma_{n}(P), m\right)$, becasue $P^{* n} P^{n}$ is conservative [K, lemma 3.3.3].
2. If m is infinite, we have for $1 \leqq p<\infty$ that $I_{n, p}(P)=\left\{f \in L_{p}(\Sigma, m)\right.$: $\left.P^{* n} P^{n} f=f\right\}$ satisfies:
(i) $f \in I_{n, p}(P) \Rightarrow|f| \in I_{n, p}(P)$.
(ii) $f, g \in I_{n, p}(P) \Rightarrow f \vee g, f \wedge g \in I_{n, p}(P)$
(iii) $f \in I_{n, p}, \alpha>0 \Rightarrow f \wedge \alpha \in I_{n, p}(P)$.

For the proof of (iii) we proceed as in [F1]; ($p=2$ was not used): Let $h=f \wedge \alpha$. Then $P^{* n} P^{n} h \leqq P^{* n} P^{n} f \wedge \alpha=h$. Hence $P^{* n} P^{n}(f-h) \geqq f-h \geqq 0$, and since $P^{* n} P^{n}$ is a contraction of L_{p}, equality holds, and $h \in I_{n, p}(P)$.

It follows that if $f \in L_{p}^{+}$is in $I_{n, p}(P)$, then $1_{\{f>a\}}=\lim _{k} k(f-a)^{+} \wedge 1 \in I_{n, p}(P)$. Thus, $I_{n, p}(P)=L_{p}\left(\Sigma_{n}(P), m\right)$ for $1 \leqq p<\infty$.

Definition The distribution of $f \in L_{p}(m), 1 \leqq p<\infty$, is defined (when m is σ-finite) by $m\{f>t\}$ for $t>0, m\{f<t\}$ for $t<0$ (which are finite since $f \in L_{p}$.)

Theorem 2.3. Let m be a σ-finite invariant measure for P, and $f \in L_{p}(m), 1 \leqq p<$ ∞. Then the following are equivalent:
(i) $P^{* n} P^{n} f=f$
(ii) $f \in L_{p}(\Sigma(P), m)$
(iii) $P^{n} f$ has the same distribution as f.
(iv) $f, P f, \ldots, P^{n} f$ have the same distribution.

Proof. The equivalence of (i) and (ii) is discussed above.
(ii) \Rightarrow (iv). Since $\Sigma_{n}(P) \subset \Sigma_{n-1}(P) \ldots \subset \Sigma_{1}(P)$, it is enough to prove (iii) for $n=1$, then apply it to $P^{2}, P^{3}, \ldots, P^{n}$.

Let $f \in L_{p}\left(\Sigma_{1}(P), m\right)$ be a simple function: $f=\Sigma a_{i} 1_{A_{i}}$ with A_{i} disjoint in $\Sigma_{1}(P)$, and $m\left(A_{i}\right)<\infty$. Passing to complements in lemma 0 (i) yields $0=P 1_{A_{i} \cap A_{j}}=$ $P 1_{A_{i}} \wedge P 1_{A_{j}}$ for $i \neq j$ and $A_{i}, A_{j} \in \Sigma_{1}$. Hence, if $1_{B_{i}}=P 1_{A_{i}}$, we have $P f=\Sigma a_{i} 1_{B_{i}}$ with disjoint sets B_{i}. Since $m\left(B_{i}\right)=m\left(A_{i}\right)<\infty, P f$ has the distribution of f.

Let now $f=f^{+}-f^{-}$be in $L_{p}\left(\Sigma_{1}(P), m\right),(1 \leqq p<\infty)$. Let $0 \leqq f_{k}, g_{k}$ be simple functions in $L_{p}\left(\Sigma_{1}(P)\right)$ with $0 \leqq f_{k} \uparrow f^{+}, 0 \leqq g_{k} \uparrow f^{-}$. Then $P f_{k} \uparrow P f^{+}, P g_{k} \uparrow P f$. By theorem 1.1 we have $0=P\left(f_{k} g_{k}\right)=\left(P f_{k}\right)\left(P g_{k}\right) \underset{k \rightarrow \infty}{\rightarrow}\left(P f^{+}\right)\left(P f^{-}\right)$.

Hence $(P f)^{+}=P f^{+},(P f)^{-}=P f^{-}$. Thus, for $t>0$, we obtain, by the beginning of the proof,

$$
m\{P f>t\}=m\left\{P f^{+}>t\right\}=\lim _{k} m\left\{P f_{k}>t\right\}=\lim _{k} m\left\{f_{k}>t\right\}=m\{f>t\} .
$$

Similarly, $m\{P f<t\}=m\{f<t\}$ for $t<0$, and $P f$ and f have the same distribution.
(iv) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (ii) It is enoguh to prove only the case $n=1$. We note that for any $g \in L_{p}$, we have $(P g)^{+} \leqq P g^{+}$. This applies also to $g \in L_{\infty}$, and, more generally, to any g with $P g^{ \pm}$well defined. Thus, if $a \geqq 0$ and $f \in L_{p}$, since $P 1=1$, we have $(P f-a)^{+}=[P(f-a)]^{+} \leqq P(f-a)^{+}$. Since $0 \leqq(f-a)^{+} \leqq f^{+}$, we have $(f-a)^{+} \in L_{p}$. We now assume that f and $P f$ have the same distribution, i.e., the measures on $\mathbf{R} \mu_{i}(B)=m\{x: P f(x) \in B\}$ and $\mu(B)=m\{x: f(x) \in B\}$ are equal. Since P is a contraction in L_{p}, using the change of variable formula we obtain

$$
\begin{aligned}
\int\left[P(f-a)^{+}\right]^{p} d m & \geqq \int\left\{[P(f-a)]^{+}\right\}^{p} d m=\int\left[(P f-a)^{+}\right]^{p} d m \\
& =\int\left[(t-a)^{+}\right]^{p} d \mu_{1}(t)=\int\left[(t-a)^{+}\right]^{p} d \mu(t)=\int\left[(f-a)^{+}\right]^{p} d m \\
& =\left\|(f-a)^{+}\right\|_{p}^{p} \geqq\left\|P(f-a)^{+}\right\|_{p}^{p}
\end{aligned}
$$

Hence $[P(f-a)]^{+}=P(f-a)^{+}$, for $a \geqq 0$. Now

$$
\begin{aligned}
P 1_{\{f>a\}} & =\lim _{k \rightarrow \infty} P\left[k(f-a)^{+} \wedge 1\right] \\
& \leqq \lim _{k \rightarrow \infty}\left[k P(f-a)^{+}\right] \wedge 1 \\
& =\lim _{k \rightarrow \infty}\left[k(P f-a)^{+}\right] \wedge 1=1_{\{P f>a\}} .
\end{aligned}
$$

For $a>0, m\{f>a\}$ and $m\{P f>a\}$ are finite and equal. Hence

$$
\int P 1_{\{f>a\}} d m=\int 1_{\{f>a\}} d m=\int 1_{\{P f>a\}} d m
$$

shows that $P 1_{\{f>a\}}=1_{\{P f>a\}}$, and $1_{\{f>a\}} \in \Sigma_{1}$.
For $a<0$, we apply the above to $-f$. Hence f is Σ_{1} - measurable.

Corollary 2.4. If $f \in L_{p}(m), 1 \leqq p<\infty$, then $f \in L_{p}\left(\Sigma_{d}(P), m\right) \Leftrightarrow\left\{P^{n} f\right\}_{n=0}^{\infty}$ is identically distributed.

Remarks. 1. The above corollary is another justification for the term "deterministic".
2. Although $\left\{P^{n} f\right\}$ converges in distribution ([AB], [KL, theorem 3.3]), the example in $[\mathrm{R}]$ has a finite invariant measure $m, \Sigma_{d}(P)$ trivial, and $f \in L_{2}$ such that $P^{n} f$ converges in distribution to a non-constant function. Thus, the limiting distribution need not be that of a Σ_{d}-measurable function.
3. For $p=2$, the proof of (iii) \Rightarrow (ii) is greatly simplified by the fact that $\|P f\|_{2}=$ $\|f\|_{2}$, a property which is equivalent to $P^{*} P f=f$. For $p=1$ such a characterisation is false.
4. If m is not finite, m need not be σ-finite on Σ_{d}. We then define $X_{1}=e s s \sup \{A \in$ $\left.\Sigma_{d}: m(A)<\infty\right\}$, and m on $\Sigma_{d} \cap X_{1}$ is σ-finite. Our results then concern $f \in L_{p}\left(\Sigma_{d} \cap X_{1}\right)$. (since Σ_{d} is σ algebra, $X_{1} \in \Sigma_{d}$).
3. The deterministic σ-algebras of convolutions. In this section we discuss convolution operators in locally compact σ-compact groups. We collect the known results in theorems 3.1 and 3.2. They were part of the motivation for this research. Let Σ be the Baire σ-algebra of a locally compact σ-compact topological group G, and let m be the right Haar measure. If μ is a regular probability on Σ, we define the transition probability $P(x, A)=\mu\left(x^{-1} A\right)$ and the Markov operator $P f(x)=\int f(y) P(x, d y)=\int f(x y) d \mu(y)=\mu * f(x)$. Then m is a σ-finite invariant measure for P. It is finite if and only if G is compact. We denote by $T(x)$ the translation operator (by x).

Theorem 3.1. Let G be compact.
(i) If $f \in L_{2}(m)$, then $\| P^{n}\left(f-E\left(f \mid \Sigma_{d}(P)\right) \|_{2} \rightarrow 0\right.$
(ii) Σ_{d} is the σ-algebra generated by $\{g \in C(G): P g=\lambda g,|\lambda|=1\}$.

Proof. (i) The translation operators $[T(y) f](x)=f(x y)$ yield a strongly continuous representation of G in $L_{2}(m)$, i.e., $y \rightarrow T(y) f$ is a continuous map from G to $L_{2}(m)$. Hence $\{T(y) f: y \in G\}$ is strongly compact. By a theorem of Mazur, $\overline{c o}\{T(y) f$: $y \in G\}$ is also strongly compact. Since $P^{n} f \in \overline{c o}\{T(y) f: y \in G\},\left\{P^{n} f\right\}$ is strongly sequentially compact. By theorem B(ii), if $f \perp L_{2}\left(\sum_{d}(P), m\right), P^{n} f \rightarrow 0$ weakly. Since it is strongly sequentially compact $\left\|P^{n} f\right\|_{2} \rightarrow 0$.
(ii) We managed to prove (i) without using the Jacobs-Deleeuw-Glicksberg decomposition [K]. We now use it in $C(G)$. The map $y \rightarrow T(y) f$ is continuous from G into $C(G)$ when $f \in C(G)$. Hence, as above, $\left\{P^{n} f\right\}$ is strongly sequentially compact. By the decomposition theorem, $C(G)=C_{0} \oplus C_{1}$, where C_{1} is generated by $\{g \in C(G): P g=\lambda g,|\lambda|=1\}$, and, for $f \in C_{0}(G),\left\|p^{n} f\right\|_{\infty} \rightarrow 0$. By (i) we have $C_{1} \subset L_{2}\left(\Sigma_{d}(P)\right)$ and $C_{0} \perp L_{2}\left(\Sigma_{d}(P)\right)$. Some approximation arguments yield the result.

Theorem 3.2. Let G be Abelian.
(i) If $f \in L_{1}(m)$ with $\int_{A} f d m=0$ for $\forall A \in \Sigma_{d}$ then $\left\|P^{n} f\right\|_{1} \rightarrow 0$.
(ii) Σ_{d} is the σ-algebra generated by the continuous characters $\{\Upsilon \in \hat{G}:|\hat{\mu}(\Upsilon)|=$ 1\}.

This is the result of [DL]. (The details of the proof of (ii) appear in [L4]. It is also shown there that

$$
\bigcap_{n=1}^{\infty} P^{* n}\{0 \leqq f \leqq 1\}=\left\{0 \leqq f \leqq 1: P^{*} P f=f\right\}
$$

and that this set is contained in $L_{\infty}\left(\Sigma_{d}\right)$.)
We note that when G is Abelian, P and P^{*} commute. Hence $P^{* n} P^{n}=\left(P^{*} P\right)^{n}$ converges strongly (to a projection on the fixed points of $P^{*} P$). Thus, for $f \perp\{g \in$ $\left.L_{2}: P^{*} P g=g\right\}$ we have $P^{* n} P^{n} f \rightarrow 0$, hence $\left\|P^{n} f\right\|_{2} \rightarrow 0$.

Example. Bougerol [B] constructed an example of G (non-Abelian, of course), μ non-singular on G adapted (i.e., such that the support S of μ generates G as a topological group), S is not contained in a class of any compact normal subgroup, but for some $0 \leqq f$ continuous with compact support $\lim \left\|P^{n} f\right\|_{\infty}>0$. It can be proved that necessarily $\lim _{n}\left\|P^{n} f\right\|_{2}>0$.

Inspecting the example, we find that the closed group H generated by $S^{-1} S$ is normal. Suppose $0 \neq g \in L_{2}(m)$ satisfies $P^{*} P g=g$. Without loss of generality, $g \geqq 0$, and by regularization we may assume g continuous, vanishing at ∞, and $g(e) \neq 0$ (where e is the unit in G). Then $P^{*} P g=g$ implies $g(x y)=g(x)$ for every $y \in S^{-1} S$ (P^{*} is given by $\check{\mu}(A)=\mu\left(A^{-1}\right)$, and $P^{*} P$ by $\check{\mu} * \mu$, whose support is $\overline{S^{-1} S}$). Hence $G_{1}=\{y: g(x y)=g(x) \forall x\}$ is a closed subgroup containing $S^{-1} S$, so it is not compact. But $G_{1} \subset\{y: g(y)=g(e) \neq 0\}$, which is compact - a contradiction. Hence $P^{*} P g=g \in L_{2}$ implies $g \equiv 0$, and therefore the isometric part of P is trivial (Σ_{d} contains only sets of measure zero or infinity. It is not trivial in this example). Since $\lim \left\|P^{n} f\right\|_{2}>0$ this example shows that we do not necessarily have strong convergence in theorem B (ii) (quoted in the introduction) for convolution operators in general locally compact groups, although it holds in compact and Abelian groups.

In contrast to the above example (in which P is transient), we have the following.
Theorem 3.3. Let μ be adapted on G non-compact. If P is recurrent, then $\left\|P^{n} f\right\|_{2} \rightarrow 0$ for every $f \in L_{2}$.

Proof. Derriennic [D] proved that $P^{n} f(x)$ converges to zero everywhere, for f continuous with compact support. Since P is recurrent, we apply [L2] to complete the proof.

The main idea of [D] is to use the fact that a recurrent random walk is topologically irreducible (i.e., P has no closed sets which are absorbing). In terms of μ, this means that the closed semigroup generated by the support of μ is all of G.

Proposition 3.4. Let μ be a probability on a locally compact group G. If $P 1_{A}=1_{B}$ (in $L_{\infty}(m)$), then $T(y) 1_{A}=1_{B}$ for every y in the support of μ.

Proof. There is a set N with $m(N)=0$ such that for $x \notin N$ we have $1_{B}(x)=$ $P 1_{A}(x)=\int 1_{A}(x y) d u(y)$. Hence for $x \notin N$ we have $1_{A}(x y)=1_{B}(x)$ for μ-a.e.y., or $\int\left|1_{B}(x)-1_{A}(x y)\right| d \mu(y)=0$ for $x \notin N$. Hence

$$
\int\left[\int\left|T(y) 1_{A}(x)-1_{B}(x)\right| d m(x)\right] d \mu(y)=\int\left[\int\left|1_{A}(x y)-1_{B}(y)\right| d \mu(y)\right] d m(x)=0 .
$$

Hence $T(y) 1_{A}=1_{B}$ (in L_{∞}) for μ-a.e.y. Since the representation by translations in L_{1} is continuous, the representation in L_{∞} is weak* continuous. Hence $T(y) 1_{A}=1_{B}$ for every y in the support of μ.

Lemma 3.5.[W] Let μ be irreducible with suppport S. Then H, the closed normal subgroup generated by $S S^{-1}$, equals the closed subgroup generated by $\bigcup_{n=1}^{\infty} S^{n} S^{-n}$, (and it also equals the closed subgroup generated by $\bigcup_{n=1}^{\infty} S^{-n} S^{n}$.)

Theorem 3.6. Let P be irreducible. Then
(i) $\Sigma_{t}(P)=\Sigma_{d}(P)=\left\{A: T(y) 1_{A}=1_{A} \forall y \in H\right\}$
(ii) Σ_{d} is trivial $\Leftrightarrow H=G$.

Proof. (i) By the lemma, $T(y) 1_{A}=1_{A} \forall y \in H$ implies $P^{* n} P^{n} 1_{A}=1_{A}$ and $P^{n} P^{* n} 1_{A}=1_{A}$ for every n. Hence $\Sigma^{\prime} \equiv\left\{A: T(y) 1_{A}=1_{A} \forall y \in H\right\} \subset \Sigma_{d} \cap \Sigma_{t}$.

If $A \in \Sigma_{d}$, proposition 3.4 implies $T(y) 1_{A}=1_{B_{n}}$ for y in S^{n} and $T(y) 1_{A}=1_{A}$ for $y \in S^{-n} S^{n}$, and, by lemma 3.5,T(y)1 $1_{A}=1_{A}$ for $y \in H$. Hence $\Sigma_{d} \subset \Sigma^{\prime}$, and $\Sigma_{d}=\Sigma^{\prime}$.

If $A \in \Sigma_{t}$, then $P^{n} 1_{A_{n}}=1_{A}$ implies by proposition 3.4 that $T(y) 1_{A}=1_{A}$ for $y \in S^{n} S^{-n}$, hence, by lemma 3.5, for $y \in H$, and $\Sigma_{t}=\Sigma^{\prime}$.
(ii) Let $H \neq G$. Since H is a normal subgroup, G / H is a locally compact group, with Haar measure $\hat{m} . G / H \neq\{e\}$, so there is $B \subset G / H$ open which is \hat{m} non trivial. Let π be the canonial map of G onto G / H. Define $A=\pi^{-1}(B)$. Then $m(A) \neq 0$, $m\left(A^{c}\right) \neq 0$, so A is non trivial. By the definition, $x \in A \Rightarrow x H \subset A, x \in A^{c} \Rightarrow x H \subset$ A^{c}, so $T(y) 1_{A}=1_{A}$ for $y \in H$, and $A \in \Sigma_{d}$. Hence Σ_{d} is not trivial.

Let $H=G$. If $A \in \Sigma_{d}$, then $T(y) 1_{A}=1_{A}$ for every $y \in G$. Hence A is trivial.
Corollary 3.7. If G is not compact and P is irreducible, then for $A \in \Sigma_{d}$ we have $m(A)$ zero or infinity.

Proof. Derriennic [D] showed that H cannot be compact.
We wish to thank the referee for his useful comments.

References

1. [AB] M. A. Akcoglu and D. Boivin, Approximation of L_{p} contractions by isometries, to appear.
2. [B] P. Bougerol, Une majoration universelle des fonctions de concentration sur les groupes localement compacts non-compacts. Proceeding conf. probability measures, Springer Lecture notes, 706, (1979), 36-40.
3. [D] Y. Derriennic, Lois "zéro ou deux" pour les processus de Markov. Applications aux marches aléatoires, Ann. Inst. Henri Poincaré (B) 12 (1976) 111-129.
4. [DL] Y. Derriennic and M. Lin, Sur le comportement asymptotique des puissances de convolution d'une probabilité, Ann. Inst. Henri Poincaré (B) 20 (1984) 127-132.
5. [F1] S. R. Foguel, The ergodic theory of Markov processes, Van Nostrand Reinhold, New York, 1969.
6. [F2] ——Selected topics in the study of Markov operators, Carolina lecture series, Chapel-Hill, 1980.
7. [K] U. Krengel, Ergodic theorems, De Gruyter, Berlin-New York, 1985.
8. [KL] U. Krengel and M. Lin, Order preserving non-expansive operators in L_{1}, Israel J. of Math. 58, (1987), 170-192.
9. [L1] M. Lin, Mixing for Markov operators, Z. Wahr. verw. Geb. 19 (1971), 231-242.
10. [L2] - Convergence of the iterates of a Markov operator, Z. Wahr. verw. Geb. 29 (1974), 153-163.
11. [L3] -On weakly mixing Markov operators and non-singular transformations, Z. Wahr. verw. Geb. 55 (1981), 231-236.
12. [L4] -Convergence of convolution powers of a probability on a LCA group, Semesterbericht Funktional analysis, Univ. Tübingen, (Winter 1982/3), 1-10.
13. [R] M. Rosenblatt, Markov processes. Structure and asymptotic behavior, Springer, BerlinHeidelberg, 1971.
14. [W] W. Woess, Aperiodische Warhrscheinlichkeitsmasse auf Topologischen Gruppen, Monatsh. Math. 90 (1980), 339-345.

Institut für Mathematische Stochastik
Lotzestrasse 13
D-3400 Göttingen, West Germany

Dept. of Mathematics and Computer Science
Ben-Gurion University of the Negev
Beer-Sheva, Israel

