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Abstract

This note improves two previous results of the second author. They turn out to be special cases of our
main theorem which states: A Banach space X has the property that the strong closure of every abstractly
a-complete Boolean algebra of projections in X is Bade complete if and only if X does not contain a
copy of the sequence space £°°.

2000 Mathematics subject classification: primary O6E15, 46B25, 47L10.

1. Statement of results

Let X be a Banach space and 38 be a Boolean algebra (briefly, B.a.) of continuous
projections in X; the partial order is range inclusion, that is, B\ < B2 means B,X c
B2X, and the unit is the identity operator / in X. Recall that 3$ is called Bade
complete (respectively Bade a -complete) if 88 is complete (respectively o -complete)
as an abstract B.a. and, for each family (respectively countable family) [Ba] c 3S, we
have

{vaBa)X = span I ( J BaX \ and {/\aBa)X = naBaX;

see, for example, [1, Chapter XVII]. The space of all continuous linear operators of X
into itself is denoted by S£(X); it is equipped with the strong operator topology. The
dual Banach space of X is denoted by X*.

The aim of this short note is to extend the two main results of [7]; they both turn
out to be special cases of the following single result.
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THEOREM. A Banach space X has the property that the strong closure {that is, in
_Sf(X)) of every abstractly a-complete B.a. of projections in X is Bade complete if
and only ifX does not contain a copy of l°°.

Theorem 2 of [7] states that if a Banach space X is weakly compactly generated
(briefly, WCG), then the strong closure of any abstractly a -complete B.a. of projections
in X is Bade complete. It is known that WCG spaces cannot contain a copy of £°°,
[7, page 283]. Moreover, there exist Banach spaces X which do not contain a copy
of £°°, but fail to be WCG, [7, Remarks 1 (i) and 3 (i)]. So, the above theorem is a
genuine extension of [7, Theorem 2].

Theorem 3 of [7] states that a Banach space X has the property that the strong
closure of every abstractly complete B.a. of projections in X is Bade complete if, and
only if, X does not contain a copy of £°°. Our main theorem is also an extension of this
result; it relaxes the requirement of abstract completeness to abstract c-completeness.
Again the extension is genuine. For instance, let X := tp ([0, 1]) for any 1 < p < oo
and define SB := [P(E) : E a Borel subset of [0, 1]} where, for each such Borel
set E, the projection P(E) e S£{X) is defined by P(E)<p = XE<P (pointwise product
on [0, 1]) and each <p e X is considered as a C-valued function on [0, 1]. Then 38 is
an abstractly cr-complete B.a. in .if (X) which is not abstractly complete.

Further related results, due to Gillespie, can be found in [3, 2].
The extension of the above mentioned results in [7] is possible because of the fol-

lowing fact (answering Question 1 in [7]). Recall that a compact, totally disconnected
Hausdorff space Q is called a-Stonian (or basically disconnected) if the closure of
the union of any countable family of clopen sets (that is, simultaneously closed and
open) is an open set. The space C(£2), consisting of all C-valued continuous functions
on Q,, is equipped with the sup-norm.

PROPOSITION A. Let Q be a a-Stonian space and X be a Banach space not con-
taining a copy of t°°. Then every continuous linear operator from C{Q.) into X is
necessarily weakly compact.

Let us accept this result for the moment.

PROOF OF THEOREM. Suppose that X does not contain a copy of £°°. A careful
examination of the proof of [7, Theorem 2] reveals that it also carries over to the
current setting, provided that we now replace the use of [7, Proposition 1] in that proof
with Proposition A above.

Conversely, suppose that X does contain a copy of l°°. The same example con-
structed in the proof of [7, Theorem 3] also applies here (since every abstractly
complete B.a. is also abstractly a-complete) to show that there necessarily exists an
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abstractly cr-complete, strongly closed B.a. of projections in X which fails to be Bade
complete. •

REMARK. An abstractly cr-complete B.a. of projections in a Banach space not
containing a copy of I00 need not itself be Bade complete or even Bade cr-complete,
[7, Remark 2].

So, back to Proposition A which is a reformulation of the following result, due
to Rosenthal, [8, Theorem 3.7]; see also [6, Theorem 5.3.17 and Corollaries 3.4.5
and 5.3.14] in the setting of Banach lattices. Recall that a continuous linear operator
T : X —> Y, with X and Y Banach spaces, is called an isomorphism (ofX into Y) if
it is injective and its range TX is a closed subspace of Y. We also say that Y contains
a copy of X.

PROPOSITION B. Let Q be a a-Stonian space and X be a Banach space. Let
T : C(Q) —> X be a continuous linear operator which fails to be weakly compact.
Then there exists a closed subspace Xo of C(Q) which is isometrically isomorphic to
l°° and such that the restriction T\x0 : Xo —> X is an isomorphism ofXo into X.

The proof of this result given in [8] is not entirely clear, especially the reference
made to [4] (of our references) in the proof of [8, Proposition 3.6], which is then
used in the proof of the main result, [8, Theorem 3.7]. Since we know of no other
reference to Proposition B, for the sake of completeness we include a (perhaps) more
transparent and self-contained proof of it. Some preliminaries will be required.

LEMMA 1 ([8, Lemma 1.1 (a)]). Let Q be a a-Stonian space and {/xn}^L, be a
bounded sequence in C(S2)*. Suppose that [En}'^Ll is a sequence of pairwise disjoint
clopen subsets of Q and let e > 0 be given. Then there exists an infinite subset
M C N such that

\IJ-n I ( J Ek I < £, m € M.
\kjtm )

Another ingredient needed for the proof of Proposition B is the following result of
Grothendieck.

LEMMA 2 ([5, Theoreme 2, page 146]). Let SI be a compact Hausdorff space and
K C C(S)* be a bounded set which is not relatively weakly compact. Then there
exists S > 0, a sequence {/x,,}^, c K and a sequence {On}^l, of pairwise disjoint
open subsets ofQ. such that \fJ.n\(On) > 8, for all n e N.

We now formulate the main fact needed for proving Proposition B; it is the
CT-Stonian version of [8, Proposition 3.6], with 'another proof.
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LEMMA 3. Let Q be a cr-Stonian space, X be a Banach space, T : C(Q) -> X
be a continuous linear operator, and 0 < e < 8 be given. Suppose that there exists
a sequence {x*}^ in the closed unit ball of X* and a sequence [On}™=l ofpairwise
disjoint open subsets ofQ. such that

\x*J\(On)>8 and

for every n e N. Then there exists a closed subspace Xo of C(Q) such that Xo is
isometrically isomorphic to £°° and the restriction T\Xa is an isomorphism.

PROOF. Let //„ := \x*T\, for n 6 N, where x*T denotes the measure representing
the element x* o 7 of C(Q)*. Using the regularity of nn and a compactness argu-
ment, we can find a clopen set Pn c On such that ixn{Pn) > 8, in which case also
Mn([Jkjtn fk) < £- So, we can (and do) assume that each set On, for n e N, in the
statement of the lemma is actually clopen.

Let U := (J^ti On and put F := V. Then F is clopen in Q and F is itself <r-Stonian
(for the relative topology). Actually, F ~ fi(U) is the Cech-Stone compactification of
the locally compact space U. To see this, let / : { / - > R be any bounded continuous
function. For any finite set A C N, the function fA := f Xow belongs to C(£2),
where O{A) := [JneA On. There are countably many such functions fA and, since Q
is cr-Stonian, the lattice supremum g :— v A / A e C(Q) exists, [4, page 52]. Clearly,

/ =g\w
Choose any 8' e (e, 8). For each n e H, choose <pn e C(Q) with support in On and

satisfying H^IL = 1 a n d / a <pnd/xn > S'.
Let XQ be the collection of all elements/ e C(Q) such that, on On, the function/

is a constant multiple of <pn, for each n e M. Since F ~ f${U) and, for each f e Xo

each restriction f \On is a constant multiple of <pn (for every n e N), it is clear that Xo

is isometrically isomorphic to l°°. In particular, Xo is a closed subspace of C(Q).
To show that T\Xo is an isomorphism, l e t / e Xo and n e N be fixed. Noting that

F is the disjoint union of On and U \ On, we have

f fdnH+ f f dpin
Jon J~u\o^

fdfiK f__f
Since | | / H^ = supn | / \On \ x we conclude that

II Tf || > sup | ( * ; W ) | > sup (8'\\f Iq, I = (8' - e)\\f \
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This is valid for every / e Xo, from which it follows that T\Xo is injective and has
closed range. •

PROOF OF PROPOSITION B. Since T is not weakly compact, Lemma 2 ensures the
existence of a sequence {**}£!, in the closed unit ball of X*, a 8 > 0 and a sequence
(£U£li °f pairwise disjoint open sets in Q so that, with /xn := \x*T\, we have
Hn(On) > 8 for each n e N. Arguing as in the proof of Lemma 3, the a-Stonian
nature of £2 lets us assume that each On, for n € N, is actually clopen. By Lemma 1
there is an infinite subset M c N so that /zm( \}k+m Ok) < 8/2 for each m e M and,
of course, also /zm(<9m) > 8 for each m e M. Put e := 8/2. Then Lemma 3 gives the
desired conclusion. •
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