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END BEHAVIOUR AND ERGODICITY FOR 
HOMEOMORPHISMS OF MANIFOLDS WITH 

FINITELY MANY ENDS 
S. ALPERN AND V. PRASAD 

1. Introduction. The recent paper of Berlanga and Epstein [5] demon­
strated the significant role played by the "ends" of a noncompact 
manifold M in answering questions relating homeomorphisms of M to 
measures on M. In this paper we show that an analysis of the end 
behaviour of measure preserving homeomorphisms of a manifold also 
leads to an understanding of some of their ergodic properties, and allows 
results previously obtained for compact manifolds to be extended (with 
qualifications) to the noncompact case. We will show that ergodicity is 
typical (dense Gs) with respect to various compact-open topology closed 
subsets of the space Jrif = J(?(M, fx) consisting of all homeomorphisms of a 
manifold M which preserve a measure /A. It may be interesting for 
topologists to note that we prove when M is a a-compact connected 
«-manifold, n = 2, then M is the countable union of an increasing family 
of compact connected manifolds. If M is a PL or smooth manifold, this is 
well known and easy. If M is just, however, a topological «-manifold then 
we apply the recent results [9] and [12] to prove the result. The Borel 
measure ju, is taken to be nonatomic, locally finite, positive on open sets, 
and zero for the manifold boundary of M. 

The study of the space Jf(M, fi) for compact connected manifolds was 
initiated by Oxtoby and Ulam [10] who showed that ergodicity is typical. 
Later Katok and Stepin [8] and Alpern [1, 2] extended the ergodic 
theoretic generality of the Oxtoby-Ulam Theorem by showing that 
ergodicity could be replaced by weak mixing or indeed by any property 
which is typical in the purely measure theoretical context (i.e., for 
automorphisms of a Lebesgue space, with the coarse topology). 

This paper also seeks to generalise the Oxtoby-Ulam Theorem, but in a 
different direction; namely by removing the assumption that the under­
lying manifold is compact. A complete generalisation in this direction was 
shown to be impossible by Alpern's example [4] of the unit shift 

h(0, r) = (0, r + 1) 

along the two dimensional cylinder M = Sx X R. Any homeomorphism h' 
which is sufficiently close to h in the compact-open topology will map 
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y X [0, oo) into a subset of itself, and therefore there is an open subset of 
3tf consisting entirely of nonergodics. This obstruction may be contrasted 
with the successful generalization of the Oxtoby-Ulam Theorem to all 
Euclidean spaces R", n = 2, achieved by Prasad [11]. In order to 
distinguish (i) between manifolds which are like Euclidean space or the 
cylinder in this respect (typicality or not of ergodicity) (ii) between various 
closed subspaces of Ji?(M) for fixed M, and (iii) between individual 
homeomorphisms which are approximable by ergodic homeomorphisms 
("approximately ergodic") or not, we must use the notions "end" and 
"drift". 

Roughly speaking an end of M is a distinct way of "going to infinity" on 
M. More precisely, an end of M is a function e which assigns to each 
compact subset K of M a non-empty connected component e(K) of 
M — K, in such a way that Kx c K2 implies that e(K2) c e{K\). The 
manifold M may be compactified by adjoining the ends, E(M), and 
defining for each compact K & typical neighbourhood NK(e0) of an end e{) 

as the set 

eQ(K) U {ends e:e(K) = e0(K) } 

[5]. Every homeomorphism h e J^f(M) induces a homeomorphism 

oh:E(M) -» E(M) 

such that 

oh(e)(K) = h(e(h~\K))) 

for all e e E(M) and compact K. For this paper we will assume that 
E = E(M) is finite, so that oh is a permutation of ends (denoted usually 
by a). We will say an end e has finite or infinite measure according as 
li(e(K) ) < oo for some compact K or not. It is easily seen that the finite 
measured ends F c E are invariant under any permutation a induced by 
an/j G J f (similarly for the infinite ends E — F). 

A homeomorphism h G Jif is called drift-free if for any cycle C of the 
induced permutation a on E, and any sufficiently large compact set K, 

2 l(x(h(K) n e(K)) - ii(K n he(K))} = 0. 

We can now state our main result relating end behaviour to approximate 
ergodicity f or h G / 

THEOREM 3. The following five successively weaker conditions are each 
sufficient to ensure that h G J4?(M) is approximately ergodic. The last (v) is 
also necessary. 

(i) M is compact 
(ii) ii(M) < oo 
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(iii) M has at most one end of infinite measure 
(iv) h induces a cyclic permutation of the ends of infinite measure 
(v) h is drift free. 

Furthermore under assumptions (i)-(iii) ergodicity may be replaced by any 
other measure theoretic property which is generic in the space of measure 
preserving bijections of a non-atomic Lebesgue space of measure JU,(M), with 
the coarse topology. Since the identity map is drift free, (M, fi) always 
supports an ergodic homeomorphism. 

We note that the different category of ergodicity in the examples of R'z 

and the infinite cylinder, which motivated the work, is now explained by 
the presence and absence of condition (iii). More generally we find 
necessary and sufficient conditions for ergodicity to be generic in Jf?(M) 
and for the closed subspace J% consisting of all h <E Jf(M) which induce 
the permutation o on the ends. 

THEOREM 4. (i) Ergodicity is (compact-open) generic in J$?(M) if and only 
if M has at most one end of infinite measure. 

(ii) Ergodicity is generic inJ% if and only if o is a cyclic permutation of the 
ends of infinite measure. 

The paper is organized as follows. In Section 2 we outline the general 
setting and ideas of the proof, particularly the relation between the 
measure theoretic and topological aspects. We quote there two results 
established for the compact and finite measure contexts that we will need 
later. In Section 3 using the recent results of Quinn [12] and Kirby and 
Siebenmann [9] we show that every a-compact connected «-manifold is the 
increasing union of compact connected «-manifolds. Using this structure 
for M we introduce, for each homeomorphism, the drift (of the homeo­
morphism) into a collection of ends; roughly speaking it measures the net 
flow of mass under the homeomorphism into a collection of ends. The 
drift seems to be related to Thurston's flux homomorphism of [14], if the 
manifold is oriented by the ends (see also [7] and [13] ). Section 4 contains 
the main approximation results of the paper. Roughly speaking, to 
approximate arbitrarily well in the compact open topology a homeomor­
phism /z, by an ergodic measure preserving homeomorphism, we first go 
outside of J^ by approximating h by a measure preserving transformation/ 
(not necessarily a homeomorphism) which is ergodic. This is the content of 
Propositions 1 and 2. Then we come back into J% by approximating (in 
two different senses simultaneously) the measure preserving transforma­
tion h ~ f by a measure preserving homeomorphism. This is the Luzin 
Theorem; Proposition 3. A Baire category argument used in Theorem 1 
(Section 5) completes the approximation of the homeomorphism h by an 
ergodic measure preserving homeomorphism. The reader is urged to skim 
over Sections 2 and 3 at a first reading. 
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2. Definitions and results from previous papers. In this section we define 
terms and state known results. 

As in [1] and [4] our approach is to c o n s i d e r ^ = J$?(M) as a subset of 
^(Af), the group of all invertible (Borel measurable) ju-preserving 
transformations of M. We will use three topologies on ^(M): the coarse 
(sometimes called weak), uniform and compact-open. These are defined 
by the following basic neighbourhoods, in which g and / belong to % B 
and B; are finite measured subsets of M, K is a compact set, € and A are 
positive numbers, d denotes the metric on M and A denotes symmetric 
difference. 

coarse: ^ (g , X, Bx, . . . , Bn) = {f^fB^gB,) < A / = 1, . . . , n} 

uniform: <%(g, B, X) = {fn{x e B:fx ^ gx} < X} 

compact-open: ^(g, K, e) = {fd(f(x), g(x) ) < € for a.e. x in K}. 

The coarse topology is coarser than the other two and (<&, coarse) and 
p£? compact-open) are each topologically complete spaces. 

The following result comes from Theorems 2 and 3 and the proof of 
Theorem 3 in [3]. 

THEOREM A. Let *& denote the group of all \x-preserving bijections of a 
finite Lebesgue space (X, 2 , /i). Let Tj and T2 belong to &, with r2 

antiperiodic. Let stf be a finite subalgebra of 2 such that T} IS0 has no 
non-trivial periodic point (set). (This means there is no A e stf — (0, X) with 
T\(A) G sefor i = 1, . . . , k, and rx(A) = A.) Then there is a conjugate 
rf

2 = T T2T, T G <g, ofr2 such that 

T'2(A) = TX(A) for all A G J ^ 

Suppose further that d is a metric on X such that \x is positive on open sets. 
Let Y denote the union of all atoms of s^ whose image under T, is relatively 
compact and connected. Then given any 8 > 0 we may further assume that 

d(r2(x), Tj(x) ) < 8 for ji — a.e. x in Y. 

The proof of the next result is in [1], Theorem 5.1. 

THEOREM B. Let (R, d) be a compact connected n-manifold such that if 
d(x, y) < € there is a connected open set containing x and y with diameter 
less than e. Let fi be a finite Borel measure on R which is nonatomic, locally 
positive and zero for the boundary of R. Then given any ji-preserving bijection 
g:R —> R with 

ess sup d(x, g(x) ) < 6, 

and any X > 0, there is a fi-preserving homeomorphism h*\R —» R which 
fixes the boundary of R and such that 

sup d(x, h*(x) ) < € and 

lL{x:h*(x) * g(x) } < X. 
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These results are used as follows: Given « e J^(M) and compact K, to 
find a homeomorphism near h on K which is almost ergodic, we will use 
Theorem A to find a ^-preserving automorphism (not necessarily 
continuous) of K U hK onto itself which is ergodic, and near (in the 
manifold metric d) « on K. That this automorphism is extendible to an 
ergodic/ e <g(M) is the content of Propositions 1 and 2. Then by using 
Theorem B (the Luzin Theorem) the automorphism h~ fis approximated 
by homeomorphism «* which is close enough to h~ Y so that ««* is near « 
on K and ««* is "almost" ergodic on M. 

3. A decomposition theorem, separating sets and drift. Given the 
a-compact connected «-manifold M, we would like to write M as the in­
creasing union of compact connected «-manifolds. If the manifold is 
smooth or PL this presents no problem; for the general case we use the 
results in [12] and [9]. 

THEOREM 0. Let M be a o-compact connected n-manifold, n = 2. If 
K a M is a compact set then there is a compact connected n-manifold R 
containing K in its interior. 

Proof. If n ^ 4, then this is a consequence of the fact that M possesses a 
handlebody decomposition; for n ^ 6 this is due to Kirby and Sieben-
mann [9] III, 2.1, for n = 5 to Quinn [12], (Theorem 2.3.1) and n = 2, 3 
this follows from the triangulation theorem of Moise. 

For n = 4 the following argument is based on the recent result of Quinn 
[12] (Theorem 2.2.3) that M has a smooth structure in the complement of a 
point p. First we find a compact connected manifold containing p. Let 
B(p) be a Euclidean neighbourhood of p. The boundary of B(p) is a 
compact set contained in M — {/?}, and so it is contained in a smooth 
manifold R]m The set 

R* = R] U{the component of M — R} containing p} 

is a compact connected «-manifold containing/?. It is now a simple matter 
to extend R* to a compact connected «-manifold containing K, since away 
from /?, M has a smooth structure. 

F. Quinn has suggested to us the following more usual way to obtain 
this result: Pick x e M, 

(1) le t / :M —» [0, oo) be a proper function; 
(2) approximate f so that each integer is a regular value; 
(3) let Mt = the component o f / - 1 [ 0 , i] containing x. 

Then 

oo 

M = U M 
/ = i ' 

and each Mt is compact and connected. If M is a topological manifold then 

https://doi.org/10.4153/CJM-1987-020-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-020-5


478 S. ALPERN AND V. PRASAD 

(2) requires the transversality theorem of Kirby-Siebenmann [9], III, 1.1 or 
III 3.1 for « #= 4, 5 and Theorem 2.4.1 of Quinn, [12] if « = 4, 5. 

LEMMA 0. Let K c M be a compact set. Then there is a compact 
connected n-dimensional manifold R, containing K in its interior, such that 
M — R has no bounded {relatively compact) components and R has boundary 
ix measure zero. 

Proof. Suppose Rx is a compact connected «-manifold, from Theorem 0 
containing K in its interior. Then 

R* = Rx U{the bounded components of M — Rx) 

is a compact connected «-manifold having no bounded components in its 
complement. Next perturb dR*, the boundary of JR*, by a small homeo-
morphism of M, «, so that 

lx(h(dR*)) = 0. 

Then R = hR* will still contain K in its interior if h is small enough. That 
such small homeomorphisms exist (due to Oxtoby and Ulam) can be 
found for example in [5]. 

In the earlier papers, [4] and [11], for the case M = R" the fact that K, 
in the compact-open neighbourhoods ^(/z, K, e) could be restricted to 
«-cubes was heavily exploited. The analogue for general manifolds will be 
to restrict K to be a "strictly «-separating set". The rest of this section will 
be devoted to the definition (in stages) and elementary properties of these 
sets. We will also define our previously mentioned condition of 
"drift-free". 

Definition. A subset K c M is called separating if it is a compact 
connected «-manifold with boundary measure zero, its complement has no 
bounded (relatively compact) components, and e(K) = e'(K) if and only 
if e = e'. 

LEMMA 1. Every compact set is contained in a separating set. 

Proof. Let an arbitrary compact set Kx be given. For any pair e, e' of 
distinct ends of M there is a compact set Ke e, such that 

Let K2 be the (finite) union of these sets. Then K2, and any larger compact 
set, will separate any pair of ends. By Lemma 0, there is a compact con­
nected «-manifold R containing the compact set K = Kx U K2. R is a 
separating set. 

Definition. A separating set K c M is called h-separating, for some 
« e j*f if 

h(e(K) ) c K U (o(e) )(K) for every end e, 

where a is the permutation of ends induced by «. 
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LEMMA 2. Every compact set is contained in an h-separating set. 

Proof. By Lemma 1 we may assume the given compact set Kx is already 
separating. Let R be the separating set obtained by applying Lemma 1 to 
K = Kx U hKx. To establish that R is /^-separating it suffices to show 
that 

(1) h(e{R)) O e\R) = 0 for all ë * oe. 

Since h(e(R)) = [oe](h(R)) (1) is equivalent to 

(2) [ae](h(R)) n ë(R) = 0 for ë * oe. 

But as hKx c h(R) D R, the monotonicity property of ends shows 
that (2) is implied by 

(3) [oe](h(Kx)) H ë(hKx) = 0 for ë * oe. 

However (3) is true because hKx is a separating set (since Kx is). 

In order to define the "drift-free" condition mentioned in the 
introduction, we consider homeomorphisms h Œ J{? inducing a given 
permutation a on the ends of M. Denote these collectively by J^a and 
consider the following real valued functions on J^0. 

Definition. For any cycle of ends C permuted by o and any //-separating 
set K,h^Jifa, let 

8c(h, K) = 2 pihK n eK) - /x(# n e(7^0 ). 

Observe that if we set 

C(K) = eyc e(K) 

then 

h(C(K)) = C(h(K)) and 

8c(/i, /Q = /i(AA: n C(A') ) - \i(K n /z(C(/Q ). 

LEMMA 3. 5r(/z, Â ) is independent of K, and henceforth denoted simply 
8c(h). 

Proof Let R be any /z-separating set containing K U hK U K~XK. We 
will show that 

SC(A, # ) = 8C(A, /Q. 

This will establish the lemma since we can always find such an R which 
simultaneously has this relation to any two given /z-separating sets. 

Let Q = R n C(K) and observe that 

hQ - Q = [h(R) n C(R)] u [K n /z(C(/Q)] and 
disj. 
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Q - hQ = [h(K) n C(K)] U [R n AC(/Î)]. 
disj. 

Hence 

ô r (# ) - SC(K) = ix{hQ - Q) - KO - AG) = 0. 

LEMMA 4. 2^0^ (/z) = 0, where the sum is taken over all cycles of ends 
induced by h. 

Proof. Fix any //-separating set K and write 

8c(h) = n(hK n C(K)) - ii(K n C{hK)). 

Summing over all cycles C, we obtain 

2 Sc(h) = pHhK - K) - ii(K - hK) = 0 
c 

since h preserves JU. 

Definitions. A homeomorphism h e J% (with induced end permuta­
tion a) is called drift-free if Sc(h) = 0 for every cycle C of a. For fixed a, 
the set of all such homeomorphisms is denoted Jf?a. 

LEMMA 5. SC:J^ —> R is continuous in the compact-open topology, for 
every cycle C of o. Hence 3Fa is a closed subset of J^a and hence of J^. 
Furthermore Jtf a is invariant under right composition with any homeomor­
phism of compact support. 

Proof. We show that 8C(-, K) is continuous with respect to the weaker 
coarse topology for any fixed K. If h- —> h in the coarse topology then 

MhjKMiK) + n(h~]KM~]K) -* 0, 

and consequently 

VihjK n C(K) ) -> n(hK n C(K) ) and 

li(K n C(hjK) ) = KK n hj(C(K) ) ) 

= ii{h^AK n C(/Q ) -> \x(h~~xK n C ( / Q ) 

= KA: n /?c(/o ). 
Therefore 8c(h.) —> 8c(h). 

Let /*j G j ^ a and suppose for some /?, /z2 satisfies 

h2(R) = R and h2(C(R) ) = C(tf). 

Then, 

^(A,/^) = ôr(/z,/22, R) 

= ii(hxh2(R) n C(/*)) - ii(R n / ^ ( C X * ) ) ) 

= KM n C(/*)) - K # n A,(C(/?)) = sc(A,) = o. 
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For Propositions 1 and 2 we will need a slightly sharper version of 
/^-separation, namely the following. 

Definition. An /z-separating set K is called strictly h-separating if 

li(K n h(C(K))) > 0 

for every cycle of ends C induced by h. 

This definition excludes the possibility that C(K) might be /^-invariant, 
for then it would also have to be/-invariant for the ergodic approximation 
given in Propositions 1 and 2. (See next section.) 

LEMMA 6. Let h e jfa , e > 0, and an h-separating set K be given. Then 
there is an h* e J? with compact support and 

sup d(x, h*(x) ) < € 
.veM 

such that K is strictly hh*-separating. Consequently there is a suhbasic family 
of compact-open neighbourhoods of the form ^(/z, K, e)for which K is strictly 
h-separating. 

Proof. For any cycle C such that h(C{K) ) = C(K) choose an A7-ball Bc 

with diameter less than e such that 

li(Bc n K) > 0 and fi(Bc n C(K) ) > 0. 

Define a homeomorphism hc G J^ with support in Bc such that Bc n K 
is not invariant under hc. The homeomorphism hc can be taken to be any 
ergodic homeomorphism of Bc fixing the boundary, which exists by [10]. 
Or hc can be constructed using Theorem B, or by specific construction. 
Take h* to be the composition of the hc 's. It follows from Lemma 5 that 
hh* e Jf?(j and by construction that K is /z/z*-separating. 

4. Approximation results. 

PROPOSITION 1. Assume fi(M) < oo. Let h be a ^-preserving homeomor­
phism of M and let K c M be a strictly h-separating (compact) set. If M 
is compact let K = M. Then for any antiperiodic fi-preserving bijection 
6 G ^(M), and any 8 > 0, there is a conjugate 

f = T _ 1 0 T , T <E ^ ( M ) , 

#/ # satisfying 
(\)d(f~\y\h~\y)) < 8 for fi - a.e. y in h{K\ 

('u)f(K) = A(/Q, 
(iii)/((?(/Q ) = h(e(K) ) for every end e of M. 

Proof Assume that M is non compact. Apply Theorem A with X = M, 
Tj = h~\ T2 = 0~\ and s# is the finite algebra whose atoms are the sets 
h(K) = Y and h(e(K) ) as e varies over the ends of M. The assumption 
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that K is strictly ^-separating ensures that TX/S? has no non-trivial periodic 
point (set). The automorphism/ e @(M) defined b y / " 1 = T^, where T'2 

is the conjugate of T2 = 0~~ given by Theorem A, satisfies the 
requirements of the Proposition. 

In the case when K = M, is compact, the above proof works trivially 
w i t h j ^ = {#, 0}. 

PROPOSITION 2. Assume /x(M) = oo. Let h e Jt{)
a and let K c M /te 

tf«y strictly h-separating set. Then given any 8 > 0 //zere /s 0/7 ergodie 
transformation f e ^ satisfying 

{\)d(f~\v),h~\y))< 8 for n - a.e. y in h(K\ 
(u)f(K) = A(/0, 

(iii)/(e(/Q ) = A0?(/Q ) /or every ewrf e of M. 

Proof Let Cr i = 1, . . . ,/?, denote all the infinite measure cycles of ends 
under a, and recall that F denotes the set of ends of finite measure. Ends 
of finite measure will be treated (Step 1) roughly the same as in the 
proof of Proposition 1 and infinite measured ends will first be treated 
together in cycles (Step 1) then individually (Step 2). For each cycle Cl of 
infinite measured ends define the "arrival" and "departure" sets At and 
Dr by the formulae 

Ax•= U, (K n h(e(K))) and D, = U (e(K) n h(K) ). 

Ai consists of all points which have just arrived in K from 

Ct(K) = U e(K) 

and Dt consists of all points which have just departed from K and are now 
in Cj(K). The assumptions that K is strictly /z-separating and h is drift-free 
(the ° in Jf(j) ensure that 

fi(At) = ii(Dt) > 0 for / = 1,. . . ,/?. 

The construction of the ergodie approximation / is done in two steps. 
In Step 1, using finite measure techniques, we construct an ergodie 
/x-preserving automorphism f:X —» X where 

X = K U h(K) U ( \J e(K)\. 

The automorphism/ will satisfy 

(i') d(f\y), h\y) ) < 8 for /x - a.e. >< in /i(/Q, 

(ii') / ( K ) = /z(/Q, 

(iii') / > ( / 0 ) - A(e( /0) 

for all finite measured ends e e F, and 

/ ( / ) , • ) = Ar i = ! , . . . , / > . 
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In Step 2 we utilize a skyscraper construction to extend the restriction of 
/ t o 

p 

X - U D: 
l = \ l 

to the required ergodic automorphism / e J ^ using the ergodic 
transformation T induced b y / on the base X — f(X) of the skyscraper. 

Step 1. Let X be the finite measured (but possibly noncompact) set 

KU h(K) U ( eUFe(A:)) . 

Let h\X —» X be a ju-preserving automorphism which agrees with /z on 

and maps each set Di onto Ah i = 1, . . . ,/?. We apply Theorem A to 
Tj = h~l with r2 ergodic a n d j ^ the finite algebra whose atoms are h(K), 
h(eK) for e ^ F, and A, / = 1, . . . ,/?. We take Y to be the atom 
h(K) whose h image is the compact connected set K. As in the proof of 
Proposition 1 the condition that h ~ restricted to srf has no nontrivial 
periodic points (sets) follows from the assumption that AMs a strictly 
/z-separating set (otherwise we might have h ~X(C{K) ) = C(K) where C is 
a cycle of finite measure ends). If we t a k e / - :X —» X to be the ergodic 
(conjugate to the ergodic r2) transformation rf

2 given by Theorem A, then / 
is ergodic and has the properties listed above as (i')-(iii'). 

Step 2. Let 

p p 

A = U A: and D = U D, 
/ = ! ' i=\ ' 

Let 7 be the transformation |nduced b y / on A. T is ergodic because/ is 
ergodic. The transformation/:Af—» Xmay be represented as in figure 1 by 
a skyscraper construction with A as the base, D as the union of tops, and T 
as the base transformation. 

The final stage of the construction of/ is to stack with subsets of M — X 
additional levels on top of the skyscraper to fill up all of the space M. 
Once this is done, the required automorphism / in &(M) is defined as 
follows. All points not on a top level are mapped by / onto the point 
directly above (one level up). For a point x lying on a top level of the 
skyscraper define/(x) = T(y) where y is the point on the base A lying 
below x. The ergodicity of T will guarantee that the resulting automor­
phism of M is ergodic and that any point leaving X by Dt eventually 
returns to X through A{. So if we identify all levels stacked above an At 

with points in C-(K) the resulting transformation/will satisfy not quite 
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__Z) 

D 

T/ 

A 

f T 

Figure 1. Skyscraper built on A. 

condition (iii) but at least the weaker condition f(C(K) ) = h(C(K) ) for 
every cycle C of infinite measured ends. (Step 1 already guarantees (iii) 
for all e <= F.) 

To ensure property (iii) we proceed with the stacking as follows. Fix any 
cycle Cl of infinite measured ends, and label them e h e2, . . . , env w n e r e 

a(£-) = eJ + ] (with arithmetic on j done mod m). Fix any column of the 
skyscraper (figure 1) determined by a base of the form As n fkDl where 
As c Ai and Dl c Dt are defined by 

As = K n /Z(^.(A:) ) and Dl = et(K) U h(K). 

See figure 2. 

D< 

Vk - 1 

Figure 2. Typical column with base As and top /)'. 
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Let 

w0 = ix(As n / -* /> ' ) 

be the width of this column. On top of this column place s — t — \ (mod 
m) sets (called column levels) of measure (width) w() and identify them 
with subsets of et+](K) - h(K\ et + 2(K) - h(K), . . . , es_}(K) - h(K) as 
in figure 3. We call this a parity-corrected column. 

es_x{K) 

el+l(K) 

D' 

k - 1 

A" 

Figure 3. Typical column after parity correction. 

If we perform a parity-correction on every column, keep the same 
ergodic transformation T on the base, and call the union of all columns A\ 
then the resulting transformation 

f:X^X 

satisfies (i), (ii) and 

f(e(K) n X) c h(e(K)). 

The only problem with / is that 

[i(X) < oo 

so that / is not defined everywhere on M. This is easily corrected as 
follows. For each infinite measure cycle Cr pick a single typical 
(parity-corrected) column of / restricted to 

X - f~\A), 

that is a column as in figure 3. Let w(), w,, vv2, . . . be a sequence decreasing 
to 0 and with infinite sum. On top of the parity-corrected column of figure 
3 stack m = ml (length of cycle C,) sets of width w,, then m sets of width 
vv2, etc. In each of these groups of m the lowest set is chosen from (or 
identified with a subset of) es(K), and the highest from es._x(K). This 
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results in a column of infinite measure with a top set drawn entirely from 
es_](K). See figure 4. If we perform this construction on one column 
from each cycle, the resulting automorphism f.M —> M satisfies the 
remaining requirement (iii) of the proposition exactly. 

VV3 

w2 

• • • 
W1 

Wj 

• • • 
Wj 

• • • 

• • 

es(K) 

es(K) 

es(K) 

m 

s - t - 1 
parity 
corrections 

*,+ i(#) J 

Figure 4. A fully extended column. 

PROPOSITION 3. Let g e @(M) satisfy the following conditions for some 
separating set K. 

(i) g(/Q = K, 
(ii) J(x, g(.x) ) < 8 for some 8 > 0 tf^d /x — a.e. x in K, 

(iii) g(e(K) ) = e{K) for every end e. 
Then any uniform (and hence coarse) topology neighbourhood °U of g contains 
a homeomorphism h e JFwith compact support satisfying (i)-(iii) (with h 
replacing g). 

Proof. Let 

#(g, £, A) = {/ G ^:/x{x e £: /(*) # g(x) } < A} 

https://doi.org/10.4153/CJM-1987-020-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-020-5


MANIFOLDS WITH FINITELY MANY ENDS 487 

be a uniform topology neighbourhood of g, where fi(B) < oo and À > 0. 
For every end e of M define Be = B n e(K) and choose Xe > 0 so that 

For each end ^ choose B'e c ^ so that 

l*Be - B'e) <\e/2 

and B'e U gBj is a relatively compact subset of e(K). It is hypothesis (iii) 
that ensures that this is possible. By Lemma 0 there is a compact 
connected «-manifold Ke c e(K) with boundary measure zero which 
contains B'e U gB'e in its interior. Let ge be any jit-preserving automorphism 
of Ke onto itself which agrees with g on B'e. Now apply the Luzin Theorem 
for measure preserving homeomorphisms, Theorem B, to the restriction of 
g to K, with norm bound ô, and measure error A/4. This yields a 
ju-preserving homeomorphism hK:K —> K which is the identity on the 
boundary of K, satisfying conditions (i) and (ii), and 

li{x e K:hK(x) * g(x) } < A/4. 

Similarly we apply Theorem B to each ge:Ke —> Ke, but without any 8. This 
yields //--preserving homeomorphisms of Ke which fix the boundary of Kv 

and satisfy 

ix{x G Ke:he(x) * ge(x) ) < V 4 -
Let h e 3? be the jU-preserving homeomorphism which agrees with hK on 
K and each he on ^ and is the identity elsewhere. It follows that h has 
compact support and satisfies (i)-(iii). To see that h belongs to °ll(g, B, X) 
observe that B is the disjoint union of the sets 

B - B' - K, B n K and B' = U B'e. 
e 

The first of these has measure less than X/2. On each of the latter two sets 
h differs from g only for points of total measure less than À/4. Hence 

ix{x G B:h(x) ^ g(x) } < X/2 4- A/4 + A/4 = A. 

5. Category theorems. 

THEOREM 1. The ergodic homeomorphisms of M form a dense G8 subset 
of 34?a (drift-free [x-preserving homeomorphisms inducing the permutation o 
on the ends) with respect to the compact-open topology. 

Proof This statement is vacuous ifJf?a is empty, which may happen for 
some a, so we exclude this possibility. We may assume /x(M) = oo, since 
Theorem 2 proves a stronger result when n(M) < oo. 

Since S (ergodic automorphisms) is a G8 subset of c$ in the coarse 
topology [6] we may write 
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oo 

<f= n if 

where each if is a coarse topology open set containing S\ Since the 
compact-open topology is finer than the coarse topology, each set 
if n JT(j is open in the compact-open topology on J^{

G. Since J^\ is a 
closed (Lemma 6) and hence Baire subset of the topologically complete 
space Jtfl in the compact-open topology, it is enough to prove that each 
set if n J^()

0 is compact-open dense in J^{)
a. So we must show that 

y^n jr (j n % ^ 0 

for any compact-open neighbourhood ^(/z, K, e) with h e j fo and any 
coarse topology open set ^containing ê. By Lemmas 2 and 6 we may 
assume without loss of generality that K is strictly /z-separating. Let 
8 = co(e) where co is the uniform modulus of continuity of h on K. 
Let / e ^ be the ergodic automorphism of M given by Proposition 2, 
satisfying 

(i) d(f~\y\ h~\y)) < 5 for/x - a.e. y in /z(AT), 
( i i ) / ( /Q = A(/0, 

( i i i ) / (*(#) ) = h(e(K) ) for every end e of M. 
Set g = h~ f. Since/ 6 ( f c ^ " g e F ^ which is open in the coarse 

topology. Furthermore g(K) = K and g(^(A^) ) = e(K) for every end ^. 
Also for x m K, 

d(x,g(x)) = d(x,h-]f(x)) 

= d(f-]f(xlh-]f(x))<8, 
s ince / (x) <E f(K) = h(K). Therefore we may apply Proposition 3 to 
assert the existence of a homeomorphism h*, with compact support, 
belonging to the coarse open set h'~li^ and with 

d(x, h*(x) ) < S for all x in K. 

The homeomorphism hh* is trivially in if is in ^(/z, /£, e) by choice of <5, 
and belongs to J/f a by Lemma 6. Hence 

rn jsr^l n <g * 0, 

as required to complete the proof. 

THEOREM 2. Assume fi(M) < oo. Then for any conjugate-invariant dense 
G $ subset P? c & with respect to the coarse topology, & n Jf/s <7 dense G$ 
subset oj\yf = Jf(M) vv/Y/z respect to the compact-open topology. 

Proof. Since ^ and <f are dense Ĝ  subsets of ^, so is 0* Pi <f. Hence P? 
contains an ergodic automorphism 6 e <& and consequently the entire 
conjugacy class of 6. Consequently we may imitate the proof of Theorem l 
except that Proposition l may be used in place of Proposition 2. 
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THEOREM 3. Let h be a fi-preserving homeomorphism of the manijold M. 
Sufficient conditions that h be approximately ergodic include the following 
successively weaker assumptions, the last of which (v) is necessary. 

(i) M is compact, 
(ii) /x(M) < oo, 

(iii) M has at most one end of infinite measure, 
(iv) h induces a cyclic permutation of the ends of infinite measure, 
(v) h is drift-free. 

For the first two assumptions h is approximately & (in the compact-open 
closure of&n J^) for any @ c & which is dense G8 in the coarse topology 
and conjugate-invariant. 

Proof Since it is clear that (i) => (ii) => (iii) => (iv) => (v) (the last 
implication follows from Lemma 4), the first part of the theorem follows if 
we show that (v) is necessary and sufficient for h to be approximately 
ergodic. 

For necessity, observe that if h is not drift-free then there is a cycle C of 
the induced permutation o such that 8c(h') ¥= 0 for all h' in some 
compact-open neighbourhood of h in J Ç However if W is even recurrent 
(much less ergodic), then we must have 8c(h') = 0. An easy way to see 
this (arrived at in a discussion with Steve Kalikow) is to observe that if K 
is /z'-separating and T is the transformation induced by the recurrent h' on 
the set 

[h\K) n C(K) ] U [K n h'C(K) ] 

then T transposes the two sets in this union. Since the induced 
transformation is /x-preserving this implies that 

8c(h') = \i(h\K) n C(K) ) - ix(K n h'C(K) ) = 0. 

To see that condition (v) is sufficient, observe that h belongs to the 
subset J^a of J^, in which ergodicity is generic by Theorem 1. 

Theorem 2 already states the second part of the present theorem, under 
assumptions (i) or (ii). Under assumption (iii) the proof contained in [4] 
goes over if «-cubes are replaced by strictly /z-separating sets and any ends 
of finite measure are first dealt with as in Step 1 of the proof of our 
Proposition 2. 

THEOREM 4. (i) Ergodicity is generic in J^(M) if and only if M has at 
most one end of infinite measure. 

(ii) Ergodicity is generic inJ% if and only ifo is a cyclic permutation of the 
ends of infinite measure. 

Proof Consider the following variation of the example of the non-
ergodic homeomorphism described in the introduction. The manifold is 
the tube R X In~ where ln~ is the n — 1 dimensional unit cube. The 
homeomorphism h moves points "to the right" by one unit in the centre, 
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tapering off to the identity on the boundary of /'?~ . Then h is an 
end preserving homeomorphism with positive drift to the right, where 
R X I"~~] has Lebesgue measure. 

Given a manifold M with two distinct ends of infinite measure we can 
find a tube R X In~] connecting them. Furthermore this tube (with 
Lebesgue measure) may be embedded into (M, /x) in a measure preserving 
manner [5] so that the above homeomorphism can also be extended to a 
jti-preserving homeomorphism h* of M. It is clear that any homeomor­
phism in Jf(M) close enough to h* will also be nonergodic. In case (ii) we 
only need to join two infinite measure ends belonging to distinct cycles. 
The composition of h* with a homeomorphism inJ^0 will yield a homeo­
morphism in J% with non-zero drift; in fact we get an open set of 
homeomorphisms that are non ergodic. 

\ 

k 
R 

Figure 5. /? moves points in the centre, one unit to the right, taper ing off to the identi ty along 

the boundary of / " 
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