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Abstract

This paper studies a special type of binomial splitting process. Such a process can
be used to model a high dimensional corner parking problem as well as determining
the depth of random PATRICIA (practical algorithm to retrieve information coded in
alphanumeric) tries, which are a special class of digital tree data structures. The latter
also has natural interpretations in terms of distinct values in independent and identically
distributed geometric random variables and the occupancy problem in urn models. The
corresponding distribution is marked by a logarithmic mean and a bounded variance,
which is oscillating, if the binomial parameter p is not equal to 1

2 , and asymptotic to
one in the unbiased case. Also, the limiting distribution does not exist as a result of the
periodic fluctuations.
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1. Introduction

In this paper we study the random variable Xn, defined recursively by

Xn
d= XIn + 1 for n ≥ 1, (1)

with X0 = 0, where (Xn) and (In) are independent and

P(In = k) =
(

n

k

)
pkqn−k − pk(q − p)n−k

1 − qn
for k = 0, . . . , n − 1,
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972 M. FUCHS ET AL.

where, throughout this paper, 0 < p ≤ q := 1 − p. In particular,

p = 1
2 �⇒ P(In = k) =

(
n

k

)
1

2n − 1
,

p = 1
3 �⇒ P(In = k) =

(
n

k

)
2n−k − 1

3n − 2n
for k = 0, . . . , n − 1.

Note that, for convenience, we retain the case k = 0, but drop k = n.
The random variable Xn originally arose out of the analysis of a special type of parking

problem with ‘corner preference’ (described in Section 2). It also arose in a leader election
algorithm, in which a truncated binomial number of contestants were advanced at each stage
during a contest. Namely, Xn is the number of rounds taken until the election comes to an end;
see [13] and [14] for a broad framework for these types of problems.

Moreover, it turns out that when p = 1
2 the distribution of Xn is identical to that of two of

the parameters in a random symmetric PATRICIA (practical algorithm to retrieve information
coded in alphanumeric) trie: the depth and the length of the left arm. The depth is the distance
between a uniformly chosen leaf node and the root and the left arm is the path that starts at the
root and keeps going left until no more nodes can be found on the left; see, for example, [15],
[21]. Also, the depth, or the left arm, of random PATRICIA tries is identically distributed as
the number of distinct values in some random sequences, see [1], and the number of occupied
urns in some urn models, see [7].

In this paper we prove that the random variable Xn has both a logarithmic mean and a
bounded variance for large n. Also, the distributions do not approach a fixed limit law due to
the fluctuations present in the distributions. For a similar context, see [12], [13], [14] and the
references therein.

2. A corner preference parking problem in discrete space

The parking problem has a long history in the discrete probability literature and it is closely
connected to many applications and models in chemistry, physics, biology and computer
algorithms; see, for example, [2] and [22]. Most analytic results for the numerous variants
in the literature are for the one dimensional setting with very few authors dealing with higher
dimensions due to the intrinsic complexity of the corresponding problems.

First, we will give an explanation of a simple discrete parking problem. Integral translates
of the cube [0, �]n are ‘parked’ into the n-dimensional hypercube [0, L]n, where L > � ≥ 1. A
precise mathematical formulation of this is as follows. Represent cubes by their corner which
has the shortest distance to the origin. Moreover, set

Zn
L−� := {a = (a1, . . . , an) : aj = 0, 1, . . . , L − �} for 1 ≤ j ≤ n,

and define a distance ρ(x, y) := max1≤j≤n |xj −yj | between two points x, y ∈ Zn
L−�. Initially,

choose one point uniformly at random from Zn
L−� and record it as a(1). Then choose another

point uniformly at random and record it as a(2) if � ≤ ρ(a(1), a(2)); otherwise, reject it and
repeat the same procedure. If a(1), a(2), . . . , a(k) are already recorded then choose the next
point uniformly at random and record it as a(k+1) if � ≤ ρ(a(k+1), a(j)) for j = 1, 2, . . . , k;
otherwise, reject it and repeat the same procedure. We continue this procedure until it is
impossible to add more points among the (L − � + 1)n points. Since analytic development of
this model remains challenging, simulations have been carried out in order to determine the
jamming density of this model; see, for example, [9] and [10].
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We further restrict the parking so that it operates towards one corner, which we call ‘corner
preference parking’. More precisely, let

S(a) := {x : x ∈ Zn
L−�, 0 ≤ xj ≤ aj , j = 1, . . . , n},

U(a, �) := {x : x ∈ Zn
L−�, ρ(x, a) < �}andSU(a, �) := S(a) \ U(a, �).

The corner preference parking problem then starts from SU(a(1), �) with

a(1) = (L − �, L − �, . . . , L − �) ∈ Zn
L−�.

Subsequently, we place, sequentially at random, the integral translates of cube [0, �]n into the
cube [0, L]n, so that any car placed will be closer to the ‘corner’ (origin) than the previously
placed cubes. This is repeated until there is no possible space to park. By ‘closer to the corner’
we mean that the coordinates of the point representing the car are all, at most, as large as the
car parked immediately before it. The process continues until saturation is achieved.

We now take L = 2m, and � = m, where m ≥ 1. Assume that all possible ‘parking
positions’ are equally likely at each stage. Let the random variable Yn be the number of cars
parked (after the first car) at the time of saturation in our n-dimensional corner parking problem.
The distribution of Yn can be explicitly characterized.

Lemma 1. The random variable Yn can be recursively enumerated, with Y0 = 0, by

E(uYn) = u
∑

1≤k≤n

(
n

k

)
mk − (m − 1)k

(m + 1)n − mn
E(uYn−k ) for n ≥ 1. (2)

This corresponds to (1) with p = 1/(m + 1).

Proof. There are (m + 1)n possible positions of integral translates of hypercubes (cars)
[0, m]n to park in the hypercube [0, 2m]n. After parking the first car at the top right corner the
number of possible positions for the second car a(2) is equal to (m + 1)n − mn, which is the
denominator in (2).

Suppose that n − k coordinates of a(2) assume the value m, and each of the remaining k

coordinates may assume any of the values {0, 1, . . . , m − 1}. Observe that at least one of the
k coordinates should be 0 for the second car to park without overlapping with the first car.
Since the number of cases with each of the k coordinates taking a value in {1, 2, . . . , m − 1}
is (m − 1)k , the number of all possible positions for the second car (under the mentioned
restriction) is mk − (m − 1)k . We have

(
n
k

)
choices of the k coordinates. Thus, under this

restriction, the second car has a total of
(
n
k

)
(mk − (m − 1)k) possible positions to park. After

this placement the problem is reduced to that of an (n − k)-dimensional one; see Figure 1 for
an illustration with L = 4 and � = 2.

_ (0,0) (1,0) (2,0)
3

(0,2)

(0,1)

_
5

2
5

Figure 1: The five (32 −22) different two dimensional configurations of corner preference parking, when
L = 4 and � = 2. In this case E(uX2 ) = 3

5 u + 2
5 u2.
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2.1. Depths of PATRICIA tries

Tries (a mixture of tree and retrieval) are one of the most useful tree structures in storing
alphabetical or digital data in computer algorithms. The underlying construction principle is
simply ‘0-bit directing to the left’and ‘1-bit directing to the right’. PATRICIA tries are a variant
of tries where all nodes with only a single child are compressed; see Figure 2 for a plot of tries
and PATRICIA tries and the book [17] for more information. Note that, unlike tries, the number
of internal nodes of which is not necessarily a constant, a PATRICIA trie of n keys always has
n − 1 internal nodes for branching purposes. This is a standard property of a binary tree.

To study the shapes of random PATRICIA tries we assume that the input is a sequence
of n independent and identically distributed (i.i.d.) random variables, each composed of an
infinite sequence of Bernoulli random variables with mean p, 0 < p < 1. Under such
a Bernoulli model, we construct random PATRICIA tries and the shape parameters become
random variables.

Consider the depth Zn of a random PATRICIA trie of n keys under the Bernoulli model,
where the depth denotes the distance between the root and a randomly chosen key (from the
leaves where keys are stored), where the n keys are equally likely to be selected. Then we have
the recurrence relation for the probability generating function of Zn:

E(uZn) = u
∑

1≤k<n

(
n
k

)
pkqn−k

1 − pn − qn

(
k

n
E(uZk ) + n − k

n
E(uZn−k )

)
for n ≥ 2,

with Z0 = Z1 = 0. In the unbiased case p = 1
2 , this reduces to

E(uZn) = u
∑

0≤k≤n−2

(
n−1
k

)
2n−1 − 1

E(uZk+1),

which implies that

Zn+1
d= Xn for n ≥ 1, p = 1

2
.

Another identically distributed random variable is the length Wn of the ‘left arm’, which is
the path starting from the root and going always to the left until reaching a key node. Then,
under the Bernoulli model,

Figure 2: A trie (left) of n = 5 records and the corresponding PATRICIA tries (right) where the circles
represent internal nodes and the rectangles holding the records are external nodes. The compressed bits

are also indicated on the nodes.
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E(uWn) = u
∑

1≤k≤n

(
n
k

)
pkqn−k

1 − qn
E(uWn−k ) for n ≥ 2, (3)

with W0 = 0 and W1 = 1. It is obvious that Wn
d= Xn, when p = 1

2 .

2.2. Distinct values and urn models

The left arm Wn has two other different interpretations. One is in terms of the number of
distinct letters in a sequence of i.i.d. geometric random variables with success probability p for
which we have exactly the recurrence (3); see [1]. Alternatively, if we consider the urn model
where the j th urn has probability of pqj of receiving a ball, then the number of occupied urns
also follows the same distribution; see [7].

3. Mean of Xn

3.1. Generating functions

The exponential generating function for the moment generating function of Xn,

P(z, y) :=
∑
n≥0

E(eXny)

n! zn,

satisfies, by (1), the functional equation

P(z, y) = ey(eqz − e(q−p)z)P (pz, y) + P(qz, y).

It follows that the exponential generating function of the mean f1(z) := ∑
n≥0 E(Xn)z

n/n!
satisfies

f1(z) = (eqz − e(q−p)z)f1(pz) + f1(qz) + ez − eqz,

with f1(0) = 0. By iteration, we obtain

f1(z) =
∑
k≥0

0≤j≤k

(exp(pk−j qj z) − exp(pk−j qj+1z))

×
∑

0≤i1≤···≤ik−j ≤j

∏
0≤�<k−j

(exp(p�qi�+1+1z) − exp((q − p)p�qi�+1z)),

which does not seem useful for further manipulation.
For our asymptotic purposes it is technically more convenient to consider the Poisson

generating function,

P̃ (z, y) := e−zP (z, y),

which then satisfies the equation

P̃ (z, y) = ey(1 − e−pz)P̃ (pz, y) + e−pzP̃ (qz, y). (4)
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It follows that the Poisson generating function for the mth moment

f̃m(z) := e−z
∑
n≥0

E(Xm
n )

n! zn,

satisfies the equation

f̃m(z) = (1 − e−pz)
∑

0≤�≤m

(
m

�

)
f̃�(pz) + e−pzf̃m(qz) for m ≥ 0,

where f̃0(z) = 1.

In particular, we have

f̃1(z) = (1 − e−pz)f̃1(pz) + e−pzf̃1(qz) + 1 − e−pz, (5)

f̃2(z) = (1 − e−pz)f̃2(pz) + e−pzf̃2(qz) + 2(1 − e−pz)f̃1(pz) + 1 − e−pz. (6)

3.2. Asymptotics of the mean

Let
φ(z) = e−z(f̃1(p

−1qz) − f̃1(z)), (7)

and let φ∗(s) denote its Mellin transform (see [4])

φ∗(s) :=
∫ ∞

0
e−t t s−1(f̃1(p

−1qt) − f̃1(t)) dt, (8)

which is well defined in the half-plane Re(s) > −1 (see Appendix A for growth properties of
f̃1).

Theorem 1. The expected value of Xn satisfies

E(Xn) = log1/p n + γ + φ∗(0)

log(1/p)
− 1

2
+ Q(log1/p n) + O(n−1).

Here γ denotes Euler’s constant and

Q(u) :=
∑

k∈Z\{0}
Qke−2kπ iu, Qk := −�(χk) − φ∗(χk)

log(1/p)
, (9)

where χk := 2kπ i/ log(1/p), and � denotes the Gamma function.

The asymptotic expansion simplifies when p = 1
2 ; indeed, in this case, we have the closed-

form expression

f̃1(z) =
∑
k≥1

(1 − e−z/2k

) for Re(z) > 0.

Corollary 1. In the symmetric case when p = 1
2 , the expected value of Xn satisfies asymptot-

ically

E(Xn) = log2 n + γ

log 2
− 1

2
− 1

log 2

∑
k 	=0

�(χk)n
−χk + O(n−1),

where χk = 2kπ i/ log 2.

https://doi.org/10.1239/jap/1421763322 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763322


Corner parking problems 977

100 200 300 400 500 600 700
0

0.0002

0.0004

0.0006

–0.0002

0.2 0.4 0.6 0.8 1.0

–0.00005

0

0.00005

0.00010

–0.00010

Figure 3: Fluctuation of the periodic function Q(log3 n) for p = 1
3 as approximated by μn −Hn/ log 3+

1
2 − φ∗(0)/ log 3 (left) and the first five terms of the Fourier series (9) (right).

For numerical purposes, the value of φ∗(χk) can be computed by the series expression

φ∗(χk) =
∑
j≥1

μj

j ! �(χk + j)(qj − 2−j−χk ) for k = 0, 1, . . . .

Approximate plots of the periodic function Q(u) for p = 1
3 based on exact values of

μn := E(Xn) and on its Fourier series are shown in Figure 3.

Outline of the proof of Theorem 1. Theorem 1 is proved by a two stage purely analytic
approach based on a Mellin transform and analytic de-Poissonization (see, for example, [3]
and [11]). We outline the major steps and arguments used here, leaving the major technical
justification in Appendix A.

Our starting point is the functional equation (5), which is rewritten as

f̃1(z) = f̃1(pz) + φ(pz) + 1 − e−pz,

where φ(z) is defined in (7). While φ also involves f̃ , we show that it is exponentially small for
large complex parameter, and thus the asymptotics of f̃1(z) can be readily derived by standard
inverse Mellin transform arguments (growth order of the integrand at infinity and calculus of
residues).

Once the asymptotics of f̃1(z) for large |z| are known, we can apply the Cauchy integral
formula

E(Xn) = n!
2π i

∮
|z|=n

z−n−1ezf̃1(z) dz,

and the saddle-point method to derive the asymptotics of the mean. Roughly, the growth order
of f̃1 is small which means that the saddle-point (where the derivative of the integrand becomes
zero) lies near n. The specialization of the saddle-point method here (with integration contour
|z| = n) has many interesting properties and is often referred to as the analytic de-Poissonization
(see the survey paper by Jacquet and Szpankowski [11]).

It turns out that such a Mellin and de-Poissonization process can be manipulated in a rather
systematic and operational manner by introducing the notion of JS-admissible functions in
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which we combine ideas from [6] and [11] (see also [5] and [8]). We can easily apply the same
approach to characterize the asymptotics of the variance and the limiting distribution.

3.3. Proof of Theorem 1

Let

Sε :=
{
z : | arg(z)| ≤ π

2
− ε

}
for ε > 0. (10)

By Proposition 3 (in Appendix A), f̃1(z) is polynomially bounded for large |z| in the sector Sε.
This means that φ(z) + 1 − e−pz = O(1) for |z| ≥ 1 in Sε. Consequently, f̃1(z) = O(| log z|)
in the same range of z. Moreover, since f̃1(z) ∼ z, as z → 0, we see that the Mellin transform

f̃ 

1 (s) :=

∫ ∞

0
f̃1(z)z

s−1 dz,

exists in the strip −1 < Re(s) < 0, and defines an analytic function there.
It follows from (5) that

f̃ 

1 (s) = �(s) − φ∗(s)

1 − ps
for − 1 < Re(s) < 0,

and φ∗ is defined in (8).
By the Mellin inversion formula,

f̃1(z) = 1

2π i

∫ −1/2+i∞

−1/2−i∞
�(s) − φ∗(s)

1 − ps
z−s ds.

We need the growth property of φ∗(σ ± it) for large |t |.
Lemma 2. For σ > −1,

|φ∗(σ ± it)| = O(e−(π/2−ε)|t |) as |t | → ∞.

Proof. This follows from the fact that f̃1(z) is an entire function, the estimate f̃1(z) =
O(| log z|) for z ∈ Sε and the exponential smallness lemma; see [4, Proposition 5].

Moreover, since
|�(σ ± it)| = O(|t |σ−1/2e−π |t |/2),

for finite σ and |t | → ∞, we can move the line of integration to the right, summing the residues
of all poles encountered. The result is

f̃1(z) = log1/p z + C + Q(log1/p z) + 1

2π i

∫ 1/2+i∞

1/2−i∞
�(s) − φ∗(s)

1 − ps
z−s ds, (11)

where (defining χk := 2kπ i/ log(1/p))

C := −1

2
+ γ + φ∗(0)

log(1/p)
. (12)
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Note that, by definition, we have

φ∗(χk) =
∑
j≥1

μj

j ! �(j + χk)(q
j − 2−j−χk ) for k ∈ Z,

the series being absolutely convergent by the growth order of μj . In particular, when p = 1
3

φ∗(0) =
∑
j≥1

μj

j

(
2j

3j
− 1

2j

)
≈ 0.581 309 808 352 813 440 19 . . . ,

so that C ≈ 0.554 535 330 802 526 966 05 . . .

To evaluate the remainder integral in (11), we expand the factor 1/(1−ps) (since Re(s) > 0)
into a geometric series, and integrate term by term, giving

1

2π i

∫ 1/2+i∞

1/2−i∞
�(s) − φ∗(s)

1 − ps
z−s ds =

∑
k≥0

e−p−kz(1 − f̃1(qp
−k−1z) + f̃1(p

−kz)).

Thus the remainder is indeed exponentially small.
We summarize these derivations as follows.

Proposition 1. For z lying in the sector Sε, f̃1(z) satisfies the asymptotic and exact equation

f̃1(z) = log1/p z + C + Q(log1/p z) +
∑
k≥0

e−p−kz(1 − f̃1(qp
−k−1z) + f̃1(p

−kz)), (13)

where C and Q are given in (12) and (9), respectively.

Theorem 1 follows from a standard de-Poissonization argument (see Appendix A) and (13)

E(Xn) = f̃1(n) − n

2
f̃ ′′

1 (n) + O(n−2).

4. The variance

For the asymptotics of the variance, it proves advantageous to consider suitable Poissonized
variance at the generating function level, which, in the case of Xn, can be handled by the
following form

Ṽ (z) := f̃2(z) − f̃1(z)
2,

where the Poisson generating function of the second moment f̃2(z) satisfies (6). Then Ṽ (z)

satisfies the functional equation, with Ṽ (0) = 0

Ṽ (z) = (1 − e−pz)Ṽ (pz) + e−pzṼ (qz) + gV (z), (14)

where
gV (z) := e−pz(1 − e−pz)(1 + f̃1(pz) − f̃1(qz))2.

Unlike g and g2, which is O(1) for large z, gV is exponentially small for large z.
When p = 1

2 , we see that (14) has the closed form solution

Ṽ (z) = 1 − e−z.
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When p 	= q, define

φ∗
V (s) :=

∫ ∞

0
e−zzs−1(Ṽ (p−1qz) − Ṽ (z) + (1 − e−z)(1 + f̃1(z) − f̃1(p

−1qz))2) dz.

By following exactly the same analysis as that for f̃1, we obtain

Ṽ (z) = QV (log1/p z) +
∑
k≥0

e−p−kz{Ṽ (p−k−1qz) − Ṽ (p−kz)

+ (1 − e−p−kz)(1 + f̃1(p
−kz) − f̃1(p

−k−1qz))2}, (15)

for Re(z) > 0, where

QV (u) = 1

log(1/p)

∑
k∈Z

φ∗
V (χk)e

−2kπ iu.

Note that QV (u) = 1 when p = 1
2 .

Theorem 2. If p = 1
2 , then the variance of Xn satisfies

V(Xn) = 1 + O(n−1),

if p 	= q, then the variance of Xn is bounded and asymptotically periodic in nature

V(Xn) = QV (log1/p n) + O(n−1).

Proof. By the definition of Ṽ

V(Xn) = n! [zn]ezf̃2(z) − (E(Xn))
2

= n! [zn]ezṼ (z) − n! [zn]ezf̃1(z)
2 − (n! [zn]ezf̃1(z))

2,

which, by the asymptotic nature of the Poisson–Charlier expansions (see Appendix A), is
asymptotic to

V(Xn) = Ṽ (n) + O(nṼ ′′(n) + nf̃ ′
1(n)2) = Ṽ (n) + O(n−1),

and the theorem follows from (15).

Figure 4 illustrates the periodic fluctuations of the variance when p = 1
3 . See also [20] for

a similar situation where the variance is not oscillating when p = 1
2 .

For computational purposes we use the series expression

φ∗
V (χk) =

∑
j≥1

E(X2
j )

j ! �(j + χk)(q
j − 2−j−χk ) + �(χk)(1 − 2−χk )

+
∑
j≥1

μ
[2]
j

j ! �(j + χk)(2 · 3−j−χk − 4−j−χk − qj 2−j−χk )

+ 2
∑
j≥1

μj

j ! �(j + χk)(2
−j−χk − 3−j−χk − qj + qj (1 + p)−j−χk )

− 2
∑
j≥1

μ
[11]
j

j ! �(j + χk)((1 + p)−j−χk − (1 + 2p)−j−χk ),

where μ
[2]
n := n! [zn]f1(z)

2 and μ
[11]
n := n! [zn]f1(pz)f1(qz).
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Figure 4: Fluctuation of the periodic function QV (log3 n), p = 1
3 , as approximated by V(Xn)+ c0/n−

c0/(2n2) in logarithmic scale (left) and the first four oscillating terms of its Fourier series (right). Here
the number c0 = 1/ log(1/p)2 and the two additional terms c0/n − c0/(2n2) are chosen for a better

numerical correction and graphical display.

5. Asymptotic distribution

We now show that the distribution of Xn is asymptotically fluctuating and no convergence to a
fixed limit law is possible. We focus on deriving an asymptotic approximation to the probability
P(Xn = k), which then leads to an effective estimate for the corresponding distribution
functions. The method of proof we use here relies on the same analytic de-Poissonization
procedure we used for the first two moments, and requires a uniform estimate with respect to
k; see [12], [16] for a similar analysis.

We begin by considering

Ãk(z) = e−z
∑
n≥0

P(Xn = k)
zn

n! ,

which satisfies the obvious bound Ãk(x) ≤ 1 for real x ≥ 0. Moreover, from (4), it follows
that

Ã0(z) = e−z

Ãk+1(z) = (1 − e−pz)Ãk(pz) + e−pzÃk+1(qz), k ≥ 0. (16)

Iterating (16) gives

Ãk+1(z) =
∑
j≥0

e−(1−qj )z(1 − e−pqj z)Ãk(pqj z) for k ≥ 0.

We then deduce the explicit expression, for k ≥ 1

Ãk(z) =
∑

j1,...,jk≥0

exp

{
−

(
1 − q

∑
1≤r≤k

pr−1qj1+···+jr

)
z

} ∏
1≤r≤k

(1 − exp{−prqj1+···+jr z}).
(17)
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Now define the normalizing function

�(z) :=
∏
j≥0

(1 − e−p−j z).

For convenience, let
η(n) := {log1/p n}

denote the fractional part of log1/p n.

Theorem 3. The distribution of Xn satisfies

P(Xn = �log1/p n� + k) =
∑
j≥0

R̂j (p
−η(n)+k−j ) + O

(
1

n

)
, (18)

uniformly in k ∈ Z, where R̂k(z) := �(z)e−pzÃk(qz) and Ãk(z) is given in (17).

Proof. Write Âk(z) := �(z)Ãk(z). Then by (16), we have

Âk+1(z) = Âk(pz) + R̂k+1(z) for k ≥ 0,

which, after iteration, leads to

Âk(z) =
∑

0≤j≤k

R̂j (p
k−j z) for k ≥ 0,

or, equivalently,

Ãk(z) = 1

�(z)

∑
0≤j≤k

R̂j (p
k−j z) for k ≥ 0.

Since, by definition
P(Xn = k) = n! [zn]ezÃk(z),

we need the following uniform estimates (which are needed to justify the de-Poissonization;
see Appendix A).

Lemma 3. The functions Ãk(z) are uniformly JS-admissible, namely, for | arg(z)| ≤ ε, 0 <

ε < π/2,

Ãk(z) = O(|z|ε′
), (19)

uniformly in z and k ≥ 0, and, for ε ≤ | arg(z)| ≤ π ,

ezÃk(z) = O(e(1−ε′)|z|), (20)

uniformly in z and k ≥ 0. Here 0 < ε′ < 1 and the involved constants in both cases are
absolute.

Proof. Consider first | arg(z)| ≤ ε. Choose K > 0 large enough such that 1 + 2e−p Re(z) ≤
1 + ε′ for all z with |z| > K . Moreover, choose C > 0 such that for 1 ≤ |z| ≤ K

|Ãk(z)| ≤ e|z|−Re(z) ≤ C for k ≥ 0.
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We use a simple induction to show that

|Ãk(z)| ≤ C|z|log1/q (1+ε′) for k ≥ 0. (21)

A similar inductive proof is used in [11] where it is referred to as induction over increasing
domains. The claim (21) holds for k = 0. Next we assume (21) has been proved for k and we
prove it for k + 1. The case 1 ≤ |z| ≤ K follows from the definition of C. If K < |z| ≤ K/q,
we can use (16) and the induction hypothesis, and obtain

|Ãk+1(z)| ≤ (1 + e−p Re(z))|Ãk(pz)| + e−p Re(z)|Ãk+1(qz)|
≤ C(1 + ε′)|qz|log1/q (1+ε′) = C|z|log1/q (1+ε′).

Continuing successively the same argument with K/qj < |z| ≤ K/qj+1 for j ≥ 1, the upper
bound (21) follows for all z. This concludes the proof of (19).

To prove (20), let Ak(z) := ezÃk(z). Then (16) becomes

Ak+1(z) = (eqz − e(q−p)z)Ak(pz) + Ak+1(qz) (k ≥ 0).

Note that we have the (trivial) bound |Ak(z)| ≤ e|z|. Substituting this into the functional
equation above yields

|Ak+1(z)| ≤ (eq cos ε|z| + e(q−p) cos(ε)|z|)ep|z| + eq|z|,

from which (20) follows.
Now, by a standard de-Poissonization argument (see Appendix A for details and references),

we obtain that

P(Xn = k) = 1

�(n)

∑
0≤j≤k

R̂j (p
k−j n) + O

(
1

n1−ε

)
, (22)

uniformly in k, where ε > 0 is an arbitrarily small constant.
Note that we have the identity

1

�(n)

∑
k≥0

∑
0≤j≤k

R̂j (p
k−j n) = 1. (23)

This is seen as follows.∑
k≥0

∑
0≤j≤k

R̂j (p
k−j n) =

∑
j≥0

∑
k≥0

R̂j (p
kn)

=
∑
k≥0

�(pkn)e−pk+1n
∑
j≥0

Ãj (qp
kn)

=
∑
k≥0

�(pkn)(1 − (1 − e−pk+1n))

=
∑
k≥0

(�(pkn) − �(pk+1n))

= �(n),

which completes the proof of (23).
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Now
�(n) =

∏
j≥0

(1 − e−p−j n) = 1 + O(e−n).

This and (22) implies that ∑
0≤j≤k

R̂j (p
k−j n) = O(1),

uniformly in k. Thus

P(Xn = k) =
∑

0≤j≤k

R̂j (p
k−j n) + O

(
1

n1−ε

)
,

uniformly in k.
Finally, observe that

∑
j≥k+1

R̂j (p
k−j n) ≤

∑
j≥k+1

e−pk+1−j n =
∑
j≥0

e−p−j n = O(e−n).

Thus

P(Xn = k) =
∑
j≥0

R̂j (p
k−j n) + O

(
1

n1−ε

)
,

uniformly in k.
Since the mean is asymptotic to log1/p n, we replace k by �log1/p n� + k. Then

P(Xn = �log1/p n� + k) =
∑
j≥0

R̂j (p
−η(n)+k−j ) + O

(
1

n1−ε

)
,

uniformly in k, where η(n) = {log1/p n}. Because of the periodicity, the limiting distribution
of Xn − �log1/p n�, in general, does not exist. However, if we instead consider a subsequence
nj of positive integers such that η(nj ) → θ ∈ (0, 1), as j → ∞, then the limit law does exist.
The series on the right hand side sums (over all k) asymptotically to 1 by (23).

Finally, the finer error term O(n−1) in (18) is obtained by refining the same procedure by
including, say, one more term in the asymptotic expansion. This completes the proof.

A similar analysis can be carried out for the distribution function of Xn (we only have to divide
(4) by 1 − ey). This then yields the following estimate for the distribution.

Corollary 2. The distribution function of Xn satisfies

P(Xn − �log1/p n� ≤ k) =
∑
j≥0

Ŝj (p
−η(n)+k−j ) + O

(
1

n

)
,

uniformly in k ∈ Z, where Ŝk(z) = ∑
j≤k R̂j (z).

When p = 1
2 , we have the representation

∑
k≥0

Ãk(z)u
k =

∏
j≥1

(1 + (u − 1)(1 − e−z/2j

)),
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which gives

Ãk(z) = e−z
∑

1≤j1<···<jk

∏
1≤r≤k

(ez/2jr − 1);

compare with (16). This expression was already derived in [21] where different expressions of
the asymptotic distributions were given.

Appendix A. Analytic de-Poissonization and JS-admissible functions

We develop the required tools for justifying the growth order of the functions involved in
this paper, as well as systematic means of justifying the de-Poissonization procedure, based on
the notion of JS-admissible functions (combining ideas from Jacquet and Szpankowski [11]
and the classical paper by Hayman [6]). The following material, which is different from that
given in [11], has been modified from [5], which provides more details.

Definition 1. An entire function f̃ is said to be JS-admissible, denoted by f̃ ∈ JS, if the
following two conditions hold for |z| ≥ 1.

(I) There exist α, β ∈ R such that uniformly for | arg(z)| ≤ ε,

f̃ (z) = O(|z|α(log+ |z|)β), where log+ x := log(1 + x).

(O) Uniformly for ε ≤ | arg(z)| ≤ π ,

f (z) := ezf̃ (z) = O(e(1−ε′)|z|).

Here, and throughout this paper, the generic symbols ε, ε′ denote small quantities whose values
are immaterial and not necessarily the same at each occurrence.

For convenience, we also write f̃ ∈ JSα,β to indicate the growth order of f̃ inside the sector
| arg(z)| ≤ ε.

Note that if f̃ satisfies condition (I), then, by Cauchy’s integral representation for derivatives
(or by Ritt’s theorem; see [18, Ch. 1, Section 4.3]), we have,

f̃ (k)(z) = O(|z|α−k(log+ |z|)β).

Moreover, by Cauchy’s integral representation, we also have

an = n!
2π i

∮
|z|=n

z−n−1ezf̃ (z) dz ≈ f̃ (n)
n!

2π i

∮
|z|=n

z−n−1ez dz = f̃ (n),

since the saddlepoint z = n of the factor z−nez is unaltered by the comparatively smoother
function f̃ (z).

The latter analytic viewpoint provides the additional advantage of allowing an expansion to
be obtained by using the Taylor expansion of f̃ at z = n, yielding

an =
∑
j≥0

f̃ (j)(n)

j ! τj (n), (24)

where

τj (n) := n! [zn](z − n)j ez =
∑

0≤�≤j

(
j

�

)
(−1)j−� n! nj−�

(n − �)! , j = 0, 1, . . . ,
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and [zn]φ(z) denotes the coefficient of zn in the Taylor expansion of φ(z). We call such an ex-
pansion the Poisson–Charlier expansion since the τj ’s are essentially the Charlier polynomials
Cj (λ, n) defined by

Cj (λ, n) := λ−nn! [zn](z − 1)j eλz,

so that τj (n) = njCj (n, n). For the other terms used in the literature and for more properties,
see [8] and the references therein. In particular, the expansion (24) is absolutely convergent
when f̃ is entire.

Proposition 2. Assume f̃ ∈ JSα,β . Let f (z) := ezf̃ (z). Then the Poisson–Charlier expan-
sion (24) of f (n)(0) is also an asymptotic expansion in the sense that

an := f (n)(0)

= n! [zn]f (z)

= n! [zn]ezf̃ (z)

=
∑

0≤j<2k

f̃ (j)(n)

j ! τj (n) + O(nα−k(log n)β) for k = 1, 2, . . . .

The polynomial growth of condition (I) is sufficient for all our uses; see [11] for more general
versions.

The real advantage of introducing admissibility is that it opens the possibility of developing
closure properties as we now briefly discuss.

Lemma 4. Let m be a nonnegative integer and α ∈ (0, 1).

(i) zm, e−αz ∈ JS.

(ii) If f̃ ∈ JS, then f̃ (αz), zmf̃ ∈ JS.

(iii) If f̃ , g̃ ∈ JS, then f̃ + g̃ ∈ JS.

(iv) If f̃ ∈ JS, then the product P̃ f̃ ∈ JS, where P̃ is a polynomial of z.

(v) If f̃ , g̃ ∈ JS, then h̃ ∈ JS, where h̃(z) := f̃ (αz)g̃((1 − α)z).

(vi) If f̃ ∈ JS, then f̃ ′ ∈ JS, and thus f̃ (m) ∈ JS.

Proof. This is straightforward and is omitted.

Specific to our needs are the following transfer principles, first the real version and then the
complex one.

Lemma 5. Let f̃ (z) and g̃(z) be entire functions satisfying

f̃ (z) = (1 − e−pz)f̃ (pz) + e−pzf̃ (qz) + g̃(z), (25)

with f̃ (0) = g̃(0) = 0. If g̃(x) = O(xα(log+ x)β) for real large x, where α, β ∈ R, then

f̃ (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O(xα(log+ x)β) if α > 0,⎧⎪⎨
⎪⎩

O((log+ x)β+1) if β > −1

O(log+ log+ x) if β = −1

O(1) if β < −1

⎫⎪⎬
⎪⎭ if α = 0,

O(1) if α < 0.

(26)
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Proof. The idea behind this proof is that f̃ (x) behaves asymptotically like the following
recurrence

φ(x) = φ(px) + g̃(x),

with φ(0) = 0. To that end, we need only to show that f̃ (x) grows, at most, polynomially for
large x. This is easily achieved by noting that f is bounded above by the function defined by
the trie-recurrence

λ(x) = λ(px) + λ(qx) + ν(x),

with λ(0) = ν(0) = 0, where

ν(x) :=
{Kxᾱ if x > 1,

Kx if 0 ≤ x ≤ 1,

K > 0 being a large constant and ᾱ := max{�α�, 0} + 1. Note that the exact solution of λ is
given by

λ(x) =
∑

j,�≥0

(
j + �

j

)
ν(pjq�x).

From this we then deduce that λ(x) = O(xᾱ) for large x. Accordingly, f̃ is polynomially
bounded. The more precise estimates (26) then follow from standard Mellin arguments (by
subtracting the first few ᾱ + 1 terms of the Taylor expansion of λ(x) and then considering the
Mellin transform of the now truncated λ term, which exists in the strip −ᾱ−1 < Re(s) < −ᾱ).

Proposition 3. Let f̃ (z) and g̃(z) be entire functions satisfying (25). Then

f̃ ∈ JS if and only if g̃ ∈ JS.

Proof. The necessity part follows from Lemma 4. We prove the sufficiency, namely if
g̃ ∈ JS, then f̃ ∈ JS.

Throughout the proof we write z = reiθ , r ≥ 0 and −π ≤ θ ≤ π . Consider first the region
where ε ≤ |θ | ≤ π . By assumption, |ezg̃(z)| ≤ Ke(1−ε1)r . Define

M(r) := max
ε≤|θ |≤π

|f (z)| (r ≥ 0).

Then by the functional equation

f (z) = (eqz − e(q−p)z)f (pz) + f (qz) + ezg̃(z),

we have
M(r) ≤ |eqz − e(q−p)z|M(pr) + M(qr) + Ke(1−ε1)r .

By using Pittel’s inequality (see [19, Appendix])

|ez − 1| ≤ (er − 1)e−r(1−cos θ)/2, r ≥ 0, |θ | ≤ π,

we have

|eqz − e(q−p)z| = |e(q−p)z||epz − 1|
≤ e(q−p)r cos θ (epr − 1)e−pr(1−cos θ)/2

= (eqr − e(q−p)r )e−(q−p/2)r(1−cos θ)

≤ e−ε2r (eqr − e(q−p)r ),
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for ε ≤ |θ | ≤ π . Let ε′ := min{ε1, ε2}. It follows that

M(r) ≤ e−ε′r (eqr − e(q−p)r )M(pr) + M(qr) + Ke(1−ε′)r .

Let M̃(r) := M(r)e−(1−ε′)r . Then

M̃(r) ≤ e−ε′pr(1 − e−pr)M̃(pr) + e−(1−ε′)prM̃(qr) + K.

By the same bounding argument that was used in Lemma 5, we see that M̃(r) = O(1), and
thus M(r) = O(e(1−ε′)r ). [Technically, we define a function, say φ(r), satisfying the functional
equation

φ(r) = e−ε′pr(1 − e−pr)φ(pr) + e−(1−ε′)rφ(qr) + K,

prove φ(r) = O(1) and then M(r) ≤ φ(r).]
We now consider the sector |θ | ≤ ε. Since g̃(z) = O(|z|α(log+ |z|)β) in this sector, we

can then show that f̃ grows at most polynomially and is thus JS-admissible, the details being
omitted here. This completes the proof.
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