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Abstract

In this note we investigate lacunarity or 'thin' subsets in the dual object of a compact group via different
classes of summing operators between Banach spaces. In particular, we give characterisations of Sidon
and A(p) sets, 2 < p < oo.

2000 Mathematics subject classification: primary 47B10, 42A55.

1. Introduction and notation

Lacunary sets have been studied in a wide variety of settings. Here we will consider
lacunarity mainly for compact (not necessarily abelian) groups. In [1, 2, 3] Sidon and
A(p) sets for compact abelian groups were studied by investigating special operator
ideals. Here we will generalise these results for the nonabelian case.

We start by introducing our main tool. These are the ideals of operators which
are summing with respect to a given infinite orthonormal system. Henceforth, we
consider (cr-finite) measure spaces (Q, E, /x) such that L2(/x) is infinite dimensional
and B c L2(IJL) always denotes an infinite orthonormal system. Moreover, we use
standard Banach space notation. In particular, for any Banach space X we denote by
Ex its closed unit ball and by X* its topological dual.

DEFINITION 1. An operator T : X -+ Y is said to belong to the class Y\B(X, Y) of
B-summing operators if there exists a constant c > 0 such that for all finite sequences
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in B and (JC,-)" in X we have:

(1)
( / .

1/2

< c sup
x'eBx.

We write nB(T) for the smallest constant c satisfying (1). Also we abbreviate the
supremum on the right hand side of (1) by ||(JC,-)" II;«*(*)•

The corresponding operator ideal of fi-summing operators will be denoted by

For further theory of operator ideals, we will follow Pietsch [8]. Given two Banach
ideals \a/, a] and [38, 6] we write sf C 38 if we have s/{X, Y) C 38(X, Y) for
all pairs of Banach spaces X and Y. If srf C 36, then there exists a constant c > 0
such that 0(T) < ca(T) for all Banach spaces X, Y and all T € .e/(X, K) (see
[8, Theorem 6.1.6]). For the Banach ideals of bounded, Gaussian-summing and p-
summing operators, 1 < p < oo, we use the standard notations [Jf, || • ||], [UY, nY]
and [np, np] respectively.

For the sake of completeness we recall the definitions of p -summing and Gaussian-
summing operators.

A Banach space operator T: X -> Y is called p-summing, 1 < p < oo, if there
exists a constant c such that, for any choice of finitely many jc t , . . . , xn in X, we have

(2) < c sup

The infimum of all numbers c satisfying (2) is denoted by np(T).
The Banach ideal of Gaussian-summing operators was introduced in 1974 by Linde

and Pietsch [6]. Given an infinite set $ of real valued, independent standard Gaussian
variables on a suitable probability space (Q, £ , P) an operator T.X—y Y is said
to be Gaussian-summing if there exists a constant c such that for any choice of
gi,...,gn €&andxi,...,xn e X we have

0
The least constant c for which (3) holds is denoted by nY(T).

It is known (compare [1, 15]) that

n2 c nB c ny

holds with continuous embeddings of norm 1 for all infinite orthonormal systems B.
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Throughout, we will use the following convenient notation. Let H be a finite
dimensional (real or complex) Hilbert space of dimension d and let {ej : 1 < j < d)
be an orthonormal basis of H. Given a matrix x = [xjJc : 1 < j , k < d] with entries
in X and an operator A in J£(H) represented with respect to {e,- : 1 < j < d) by
the matrix {a7Jt : 1 < j , k < d] we will denote by tr Ax, or trx/l , the element of X
defined by

tr Ax_ = trx.A = > ajikxkj .
i.k=\

Given n m a t r i c e s JC, = [xj k : 1 <j,k<dj],l < / < n, w i t h en t r i e s in X w e w r i t e

1/2

IIC*i)?ll/rak«o = sup

Moreover, G will always denote a compact group, m the normalised Haar measure
on G and £ the dual object of G, that is, the set of all equivalence classes of continuous
irreducible unitary representations of G. For a e E, f/*7 is a representative of the
class a with degree */„ and trace Xa- For each a e E, let {MJ^ : 1 < j , k < da} be a
set of coordinate functions for U" e E and a fixed basis {e,: : i — 1 , . . . , da\ in the
representation space Ha of U". Recall that the set of all dy2u°k, j , k e {1, . . . , dn)
and a e E, forms an orthonormal basis in L2(G) and {u"k(g) : 1 < j,k < <io},
g € G, is the matrix representing U", with respect to [e,• : i = 1, . . . , da).

The Fourier series of a function / e L, (G) is given by

where A{ is

A subset E of E is called a 5Won ie? with Sidon constant c if

(4) H/IU

K = ! f (g-')U" dm{g).
Jc

for every continuous ^-function ( / is an ^-function if A{ = 0 for all a not in £) .
E is called a A ( p ) sef, 1 < p < oo, if there is a constant <t> such that for some

q < p we have

(5) I I / I I P < * I I / I I ,

https://doi.org/10.1017/S144678870000272X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000272X


74 Franziska Baur [4]

for every ^-function/ in LP(G). The least constant 4> satisfying (5) is denoted by
<$(B,p, q) and is called the A(p, <7)-constant of E. From Holder's inequality we
infer that if (5) is satisfied for some q < p, then the same is true for any q < p, albeit
with different constants.

E is called a central Sidon set (respectively central A(p) set) if (4) (respectively
(5)) holds for all central ^-functions, that means for those ^-functions belonging to
the center of the algebra LX{G). Functions in the center are those with Fourier series
of the form

rreE

where

/ > ) = f f(g)xAg-l)dm(g).
Jc

Given an infinite subset E of E we write YlXc for n(Xc;:ae£] and Fl£ for

\dln-u"lk:afiEMJ.k<da\ '

The second notation is justified since a routine calculation shows that n £ does not
depend on the choice of the representations Ua of the c's. It follows from [2,
Theorem 7] that TlE (respectively HX£) coincides with n2 isometrically if and only if
E fails to be a A(2) system (respectively a central A(2) system). Since it is known
that the special unitary group yW(n), n > 1, does not have any infinite A(2) sets
(see [10, 14]) this yields the following proposition.

PROPOSITION 2. For all infinite subsets E of the dual object ofy% (n), 2 < n, we
have n £ = n 2 with equal norms.

2. Main results

Henceforth, we will make repeated use of the following easy observations.

PROPOSITIONS. (i) n £ c nXEforall £ c E .
(ii) IfE C £ is ofuniformly bounded degree (supn€£ da < oo), then T\Xe coincides

with n £ .

We will see later that the reverse implication in (ii) does not hold. It has been
shown in [3] that in case where G is a commutative compact group, an infinite subset
E of the dual group is a Sidon set if and only if UE = UY whereas E is a A(p)-set,
2 < p < oo, if and only if T\p c n £ holds. In the following we will generalise these
two results to arbitrary compact groups.
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THEOREM 4. Let E be an infinite subset of E, 2 < p < oo and c > 0 be given.
Then E is a A{p) set with A(p, 2)-constant c if and only if Ylp c n £ holds with
nE <c np.

PROOF. FixanE-polynomial/ = £]"=1 da\x(AniU
a'),n e N. Using the properties

of the normalised Haar measure we have, for all h e G,

11/IIP =

UP

dm(g)

Hence, assuming that T\p C n £ holds with nE < c np and taking into account that
the embedding ip : "€{G) -> LP(G) is p-summing with np(ip) — 1 (see for instance
[5, Example 2.9]) we get

dm{h) <c

Since point masses form a norming subset of C(G)* and U"g
i is a unitary matrix for

all g € G, 1 < / < n, we have

= \ \ f h .

Hence, E is a A(p) set with A(p,2) < c. Since the reverse implication holds even
for general orthonormal systems (see [1, Corollary 7.9]) we are done. •

Making use of a description of orthonormal systems B for which the inclusion
T\p C n s , 2 < p < oo, holds (compare [1, Theorem 7.7]) we get the following
characterisation of A(p)-sets.

COROLLARY 5. Let 2 < p < oo, c > 0 and E C T, be given. Then E is a A(p)
set with A(p, 2) < c if and only if the embedding I: Lf(G) <->• L2(G) is p-convex
such that the p -convexity constant of I is smaller or equal to c. That means that

< c
I = I

holds for every choice of finitely many / , /„ m Lf(G). Here Lf(G) denotes the
space of all E-functions in L2(G).
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Let {gj k : 1 < j,k < da,a e E) be a collection of independent real valued
Gaussian random variables with mean 0 and variance 1. We denote by Ga the random
operator on Ha which admits (rf~1/2 g°<k)f_k=l as its representative matrix with respect
to the basis {e; : 1 < j < da) in //„. Obviously, an operator T e J£?(X, Y) is
Gaussian-summing if and only if we can find a constant c such that

1/2

<c |

for all choices of finitely many CT,'S and xf 's.
The following statement is a generalisation of a result by Pisier [9, Theorem 2.1]

about Sidon sets in the abelian case. Pisier's proof can be extended to establish the
analogue result in the setting of compact nonabelian groups.

THEOREM 6. Let E C S be a Sidon set with Sidon constant c. Then there exists a
constant C such that for all n € N, cr, € E and all da. x dOi matrices x_t with values
in a Banach space X, 1 < j < n, we have

1/2

dm < C
1/2

dP

PROOF. Given n € N, ax,..., on e E and Vt G W(Ha) represented with respect
to {e<: : i = 1 , . . . , do.} by the unitary matrix (Uj,t)/i=i, i = 1 , . . . , n, we define the
linear map

where <€E(G) denotes the space of all continuous ^-functions. Since £ is a Sidon
set with Sidon constant c the functional £ is continuous with | |§| | < c. By the
Hahn-Banach Theorem, we find a measure /x e ^(G) such that \\ix\\ < c, where
\\fi\\ denotes the total variation of n, and fcf dfi = %(f) for all / € C^E{G). In
particular, we have f(«J' t) = i>j k. Given x_t = (xj t)/'k=i, 1 < / < «, we put
Z(g) = Yi"=i t r ( i i ^ ' ) . g £ G. By v we denote the image measure of /x under
g i->- g~'. Then

«.,-
E
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, = 1 j . * . . v = l 1=1

Moreover, by the convexity of t )->• t2,

\\(v * Z)(g)\\2 < \\v\\ [ \ \ Z ( h ~ x g)\\2 d \ v \ ( h )

and so we get, by integrating,

f ||(v * Z)(g)\\2 dm{g) = f Y>(x , V, U"')
JG JG ,

dm(g)

JG JG

|2 f \\Z{g)\\2dm(g)
JG

< \\v\\ I I \\Z(h-lg)\\zdm(g)d\v\(h)
IG JG

= \\v

-7
JG

1=1

-1

dm(g).

Replacing in the later x, by x_t Vt and V, by V̂  reveals

/ .

dm(g) < c2 / •1, V, U"') dm{g).

Let G denote the compact group Y[nes ^ (Ha) and /nG the normalised Haar measure
on G. Integrating over G and applying [7, Proposition 5.2.1], [7, Corollary 5.2.4]
and [7, Proposition 5.2.6] we infer the existence of a constant C depending only on c
such that

dm
JG JG

/=1

dm

dm c

<c2f
Jn

•LI Ga) dP,

and the proof is complete. •
Since nf i c Uy holds for all infinite orthonormal systems B it is immediate from

Theorem 6 that I~I£ = I~l;, holds for all Sidon sets E in Y.. As in the abelian case the
reverse implication holds as well.

https://doi.org/10.1017/S144678870000272X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000272X


78 Franziska Baur [8]

THEOREM 7. Let E CLbe given. Then E is a Sidon set if and only ifUy = nE

holds.

PROOF. If n £ = n,,, we find a constant c > 0 such that

1/c 7r£ < 7rx < Bp np for all 2 < p < oo ,

where Bp denotes the constant from the Khinchin Inequality (compare [6, Theorem 6]).
Since Bp < ^fp (see for instance [4, page 96 and page 100]) we have nE < c^fpnp

and so, by Theorem 4, ||/ ||p < cjp \\f ||2 for all E-functions / e L2{G) and all
2 < p < oo. Now apply [7, Theorem 6.2.3] and [7, Remark 6.2.6] to see that £ is a
Sidon set. •

REMARK 8. (a) By Proposition 3 and Theorem 7 we have n £ = Y\XE for all Sidon
sets E. Since a Sidon set does not have to be of uniformly bounded degree the equality
n £ = n^£ does not imply that supne£ dn < oo holds.

(b) It follows from Theorem 7 that the union of two Sidon sets is a Sidon set. Since
it is known that this does not hold for central Sidon sets (compare [11, Example 8]),
an equivalent of Theorem 7 cannot hold for central Sidon sets. More precisely, there
exist central Sidon sets E which are not central A(p) sets for any p > 0 (compare
[11, Example 1]) and so YlXE = n2 by [2, Theorem 7]. Hence, E being central Sidon
does not imply that YlXE coincides with n r .

(c) An extension of Theorem 7 for the case where the compact group G is replaced
by a compact (abelian) hypergroup does not hold either since central Sidonicity on
a compact group is known to be equivalent to Sidonicity on the compact abelian
hypergroup consisting of the group's conjugacy classes (compare [16]).

If E is of uniformly bounded degree things look better since in this case a central
Sidon set is a Sidon set (see [17, Remark 7.2]) and a central A(/J) set is a A(p) set.
The latter can be seen by combining for example [1, Corollary 7.9], Proposition 3 (ii)
and Theorem 4.

COROLLARY 9. Let E be an infinite subset of Z of uniformly bounded degree and
2 < p < oo. Then the following statements are equivalent.

(i) E is a Sidon [respectively A(p)] set.
(ii) E is a central Sidon [respectively A(p)] set.

(iii) n £ = T\y [respectively FIP c I"I£].
(iv) T\XE = Uy [respectively Up C l l J

We conclude with the following remark.
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REMARK 10. If £ C £ fails to be of uniformly bounded degree, the inclusion
np c TlXE does not necessarily imply that Tlp c TlE holds. For example we know
by Proposition 2 that n 2 = n £ , for all infinite subsets E of the dual of y<fr(n),
n > 2. On the other hand, every infinite set E in the dual of y%{ri) contains an
infinite subset which is central A(p) for all p < 2 + 2/n (see [12]) and so, by [1,
Corollary 7.9], Up C T\XE for those p.
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