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Summary

Unconditionally deleterious mutations could be an important source of variation in quantitative

traits. Deleterious mutations should be rare (segregating at low frequency in the population) and

at least partially recessive. In this paper, I suggest that the contribution of rare, partially recessive

alleles to quantitative trait variation can be assessed by comparing the relative magnitudes of two

genetic variance components : the covariance of additive and homozygous dominance effects (C
ad

)

and the additive genetic variance (V
a
). If genetic variation is due to rare recessives, then the ratio

of C
ad

to V
a
should be equal to or greater than 1. In contrast, C

ad
}V

a
should be close to zero or

even negative if variation is caused by alleles at intermediate frequencies. The ratio of C
ad

to V
a

can be estimated from phenotypic comparisons between inbred and outbred relatives, but such

estimates are likely to be highly imprecise. Selection experiments provide an alternative estimator

for C
ad

}V
a
, one with favourable statistical properties. When combined with other biometrical

analyses, the ratio test can provide an incisive test of the deleterious mutation model.

1. Introduction

A primary objective of population genetics is to

determine the factors maintaining genetic variation

(Robertson, 1967; Lewontin, 1974). Natural popu-

lations generally exhibit substantial genetic variation

for morphological, behavioural and life history traits

(Roff & Mousseau, 1987; Mousseau & Roff, 1987;

Houle, 1992). While mutation is the ultimate source of

this variation, the role of other evolutionary forces

(selection, migration and random genetic drift) in

maintaining variation is generally unknown. This is

unfortunate because the nature and intensity of

natural selection will largely determine the adaptive

significance of standing variation and hence the

‘evolutionary potential ’ of populations.

Deleterious mutations could be one important

source of genetic variation in quantitative traits. Such

mutations occur at a fairly high rate in most organisms

and could generate substantial variation in life history

traits (Mukai et al., 1972; Simmons & Crow, 1977;
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Lynch, 1988; Houle et al., 1994, 1996; Drake et al.,

1998; but see Keightley, 1996, 1998; Keightley &

Caballero, 1997). Deleterious mutations may also be

responsible for variation in morphological or

behavioural traits via pleiotropy (Keightley & Hill,

1990; Barton, 1990; Santiago et al., 1992; Mackay et

al., 1992; Kondrashov & Turelli, 1992; Caballero &

Keightley, 1994). Variation caused by unconditionally

deleterious mutations is qualitatively different from

that maintained by other mechanisms (e.g. balancing

selection) because the former may be effectively

irrelevant to adaptive evolution (Keightley & Hill,

1990; Houle et al., 1996).

Two important predictions of the deleterious

mutation model can be tested empirically. First,

quantitative trait variation should be due to rare

alleles. Deleterious mutations should not reach sub-

stantial frequencies unless selection is very weak.

Secondly, the rare allele at each quantitative trait

locus should usually be at least partially recessive in its

effects on fitness. Mutations with large deleterious

effects (e.g. lethals) tend to be almost completely

recessive (Simmons & Crow, 1977). Gene action is

more variable among mutations with smaller effects

(individual mutations may be partially recessive,
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additive or partially dominant). However, recessive or

partially recessive alleles are likely to dominate

standing variation because they will persist longer

than additive or dominant mutations under antag-

onistic selection.

Partial recessivity of deleterious mutations is

supported by direct estimates of dominance

coefficients for alleles affecting life history traits.

Charlesworth & Hughes (1998) summarize many

studies of Drosophila melanogaster and suggest that

the heterozygous effect of deleterious alleles is typically

20% of their homozygous effect (h¯ 0±2). Dudash &

Carr (1998) and Willis (1999) have obtained similar

estimates for a range of life history characters in the

annual plant Mimulus guttatus. Morphological vari-

ation caused by the pleiotropic effects of deleterious

mutations should also be caused by rare, partially

recessive alleles if alleles have consistent dominance

relations across all traits they affect. Consistency

implies that alleles that are recessive in their effects on

fitness will also be recessive in their effects on other

traits. Genetic data from Drosophila provide support

for consistency of dominance relations (Keightley &

Kacser, 1987).

Quantitative genetic methods can be used to assess

the contribution of rare, partially recessive alleles (e.g.

Charlesworth & Hughes, 1998). The change in the

genetic variance with inbreeding is particularly in-

formative (Robertson, 1952; Jacquard, 1974). In the

next section, I review genetic variance components

that emerge with inbreeding. Rare recessives inflate

the magnitude of these ‘ inbreeding components ’

relative to the additive genetic variance.

2. Genetic statistics

Consider the standard model of quantitative trait

inheritance in which the phenotype is the sum of

statistically independent genetic and environmental

components (Falconer, 1989). We assume that the

genotypic value of an individual is the sum of

genotypic effects at each of its quantitative trait loci

(there is no epistasis). With random mating and

linkage equilibrium among quantitative trait loci, the

genetic variance is the sum of genetic variances at

individual loci.

Consider a particular locus segregating for a high

allele (A
"
) and a low allele (A

!
). Following Falconer

(1989, ch. 7), the average phenotypic values of

genotypes A
!
A

!
, A

!
A

"
and A

"
A

"
are ®a, d and a,

respectively. Let p denote the frequency of A
"

and q

denote the frequency of A
!
. It follows that the

genotypic variance (V
g
) at this locus equals the additive

variance (V
a
) plus the dominance variance (V

d
), where

V
a
¯ 2pq[ad(q®p)]# and V

d
¯ 4(pqd )#. I will subse-

quently assume that ®a% d% a (no phenotypic over-

or under-dominance).

Inbreeding can change both the mean and genetic

variance of a quantitative character. The extent to

which the mean changes with inbreeding is charac-

terized by B, the directional dominance. This equals

the difference in mean phenotype between an outbred

population and a completely inbred population with

the same allele frequencies. (Here, I use the term

directional dominance instead of the more familiar

‘ inbreeding depression’ because the latter is often

formally defined as a ratio.) Under the model outlined

above, the directional dominance associated with a

single locus is ®2pqd (Cockerham & Weir, 1984). The

overall value for B is the sum of this quantity across

all quantitative trait loci. Using the subscript k to

denote locus, we can define the standard phenotypic

mean of a randomly mating population (M ) and the

directional dominance (B) in terms of allele frequencies

and genotypic effects :

M¯3
k

a
k
(p

k
®q

k
)2d

k
p
k
q
k

(1)

and

B¯®3
k

2d
k
p
k
q
k
, (2)

where the sums are taken across all loci affecting the

trait. With inbreeding, the mean phenotype is MFB,

where F is the mean inbreeding coefficient (Jacquard,

1974; Cockerham & Weir, 1984).

The genetic variance with inbreeding depends on V
a
,

V
d

and several additional quantities (Harris, 1964;

Jacquard, 1974; Cockerham & Weir, 1984; Cornelius,

1988; de Boer & Hoeschele, 1993). Let C
ad

denote the

covariance of additive effects with homozygous

dominance effects and V
hd

denote the variance of

homozygous dominance effects. The ‘homozygous

dominance effect ’ is the dominance deviation

associated with a particular allele when that allele is in

homozygous form. As shown by Cockerham & Weir

(1984), the values for these quantities at a single

diallelic locus are

C
ad

¯ 2pq(p®q) d[ad(q®p)] and

V
hd

¯ 4pq(q®p)#d#.

The ratios of C
ad

and V
hd

to V
a

are given as a

function of the frequency of a partially recessive allele

in Fig. 1. If the additive variation in a trait is due

primarily to rare recessive alleles, we should observe

relatively large values for C
ad

and V
hd

. If alleles with

intermediate frequencies predominate, however, V
a

should be substantially greater than C
ad

or V
hd

. In fact,

C
ad

may be negative when recessive alleles occur at

high frequencies (greater than 0±5). All these quantities

can be estimated from phenotypic comparisons among

relatives if inbred individuals are included in the

pedigree (Cockerham & Weir, 1984; Cornelius, 1988;
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Fig. 1. The ratio of C
ad

or V
hd

to the additive genetic variance given the frequency of a partially recessive allele. In this
case, the heterozygous effect of the allele is 20% of its homozygous effect (h¯ 0±2; d¯®0±6a).

de Boer & Hoeschele, 1993; Shaw & Woolliams,

1998; Shaw et al., 1998).

Drosophila geneticists have estimated V
a

and the

variance among homozygous genotypes (hereafter

denoted V
hg

) for numerous life history traits of

Drosophila melanogaster (Takano et al., 1987; Hughes,

1995, 1997; summarized by Charlesworth & Hughes,

1998). In the terminology of the present paper, V
hg

¯
2V

a
4C

ad
V

hd
. If quantitative trait alleles are at

intermediate frequencies or if there is no dominance,

V
a
}V

hg
should approach 0±5 (Charlesworth & Hughes,

1998). Lower values for V
a
}V

hg
are expected under the

deleterious mutation model. For variation in male

longevity attributable to the third chromosome of D.

melanogaster, Hughes (1995) obtained an estimate for

V
hg

that was only slightly greater than V
a
. This

suggests that at least some intermediate frequency

alleles contribute to variation in the trait

(Charlesworth & Hughes, 1998).

Unfortunately, statistical difficulties hinder the

broad application of this method. Estimates for V
hg

,

V
a
, C

ad
or V

hd
from any single experiment will generally

have large sampling errors. As a consequence, the

ratio of estimated values is a biased estimator of the

true ratio and it will typically have a high sampling

variance. To illustrate, let V
a
* and C

ad
* denote

estimators for V
a

and C
ad

. By the ‘delta method’

(Rice, 1988, pp. 142–147; Lynch & Walsh, 1998,

pp. 807–809), we find the approximate bias and

sampling variance of the ratio of V
a
* to C

ad
*:

E9Cad
*

V
a
*

®
C

ad

V
a

:E 1

V
a
#
9saa0Cad

V
a

1®s
ad: (3)

and

V9Cad
*

V
a
* :E

1

V
a
#
9saa0Cad

V
a

1#s
dd

®2s
ad0Cad

V
a

1:, (4)

where s
aa

is the sampling variance of V
a
, s

dd
is the

sampling variance of C
ad

*, and s
ad

is the sampling

covariance of V
a
* and C

ad
*. If s

aa
, s

dd
and s

ad
are small

relative to V
a
#, then the bias and sampling variance are

small. Unfortunately, prohibitively large sample sizes

may be required to ensure that s
aa
, s

dd
and s

ad
'V

a
#.

The sampling covariance, s
ad

, has a particularly

important effect on the accuracy of ratio estimates. If

V
a
* and C

ad
* are estimated from distinct experiments

then s
ad

¯ 0. However, if they are estimated sim-

ultaneously from the same data (e.g. Shaw et al.,

1998), the sampling covariance will generally be non-

zero. A negative sampling covariance between V
a
* and

C
ad

* (s
ad

! 0) will usually inflate both the bias and the

sampling variance. This is noteworthy because sam-

pling covariances between genetic variance component

estimators are typically negative (Shaw, 1987;

Cornelius, 1988).

An alternative means of estimating the relative

magnitudes of C
ad

and V
a
is from the rate of evolution

in selection experiments. In the short term, the

expected change in the mean phenotype (M ) equals

the product of the cumulative selection differential

and the narrow-sense heritability (Falconer, 1989).

The latter is V
a
divided by V

p
, the phenotypic variance.

The expected change in the directional dominance (B)

is the product of the cumulative selection differential

and C
ad

}V
p

(Kelly, 1999a, b ; Appendix). Thus, the

ratio of the cumulative change in B to the cumulative
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change in M provides an estimate of the ratio of C
ad

to V
a
.

Estimation of C
ad

}V
a

from a selection experiment

has two principal advantages. The first is simplicity :

the cumulative change in the directional dominance

can be measured simply by generating inbred progeny

from the base population (or a non-selected control

population) and from the selected population. The

difference in mean values of inbred and outbred

individuals provides an estimate of B (Cockerham &

Weir, 1984). Secondly, sampling errors in estimates of

C
ad

and V
a
, which are caused by genetic drift in this

type of experiment, should be positively correlated

when quantitative trait variation is caused primarily

by rare recessive alleles. Positive values for s
ad

allow

the ratio of C
ad

to V
a

to be estimated with much

greater precision (Eq. 4).

This can be illustrated with a highly simplified

version of the deleterious mutation model. We assume

that all mutations segregating in the population are

equally deleterious and have equivalent fitness effects

in heterozygotes. The fitnesses at a particular locus are

1, 1®hs and 1®s for the wild-type homozygote, the

heterozygote and the mutant homozygote, respect-

ively. As a consequence of their equivalent fitness

effects, we assume that all deleterious mutations have

the same frequency (ρ).

Pleiotropic effects of deleterious alleles may either

increase or decrease trait values. I assume that there

are n
"

loci where the deleterious allele increases the

trait value and n
#

loci where the deleterious allele

decreases the trait value. I further assume that

dominance relations for phenotype and fitness are

consistent (the rare allele is always partially recessive).

Thus, d¯ a(1®2h) for rare ‘ low alleles ’ and d¯
a(2h®1) for rare ‘high alleles ’. With these assump-

tions,

C
ad

¯ 2(n
"
n

#
) ρ(1®ρ) (1®2ρ) a#(1®2h)

(1®(1®2h) (1®2ρ)) (5)

and

V
a
¯ 2(n

"
n

#
) ρ(1®ρ) a#(1®(1®2h) (1®2ρ))#. (6)

Thus,

C
ad

V
a

¯
(1®2ρ) (1®2h)

1®(1®2h) (1®2ρ)
, (7)

which converges on (1®2h)}2h as ρ gets small. With

h¯ 0±2, C
ad

}V
a
E1±5. If h! 0±2 (see Watanabe &

Ohnishi, 1975; Sved & Wilton, 1989), then C
ad

}V
a

may be substantially greater.

Equation (7) gives the ratio of C
ad

to V
a

as a

function of allele frequencies (ρ) in the population as

a whole, i.e. the ‘reference’ or ‘base’ population

about which we hope to make inferences. After a

selection experiment is conducted, allele frequencies

will differ from ρ due to both selection and genetic

drift. Drift occurs first when an experimental popu-

lation is established by sampling the initial set of

individuals and also during each subsequent round of

selection and reproduction. Let M
!
and B

!
denote the

mean phenotype and directional dominance of the

base population, respectively. Let M
t
and B

t
denote

the values for these quantities in a particular ex-

perimental population after t generations of selection.

To a first approximation,

M
t
®M

!
E 2a(1®(1®2h) (1®2ρ))

93n"

i

∆p
i
3

n
#

j

∆p
j: (8)

and

B
t
®B

!
E 2a(1®2h) (1®2ρ) 93n"

i

∆p
i
3

n
#

j

∆p
j: , (9)

where ∆p
i
is the cumulative change in the frequency of

the high allele at locus i (among the set of loci where

the high allele is rare) and ∆p
j
is the cumulative change

in the frequency of the high allele at locus j (among the

set of loci where the low allele is rare). Equations (8)

and (9) neglect terms of order (∆p)# and are thus only

valid for short-term response to selection.

In this simple model, the ratio of (B
t
®B

!
) to

(M
t
®M

!
) is :

B
t
®B

!

M
t
®M

!

E
(1®2h) (1®2ρ)

1®(1®2h) (1®2ρ)
. (10)

Equation (10) indicates that (B
t
®B

!
)}(M

t
®M

!
) in-

variably equals C
ad

}V
a
. While genetic drift will cause

(B
t
®B

!
) and (M

t
®M

!
) to differ among replicate

populations, these random effects cancel out of the

ratio. In fact, the evolutionary forces determining

allele frequency changes (∆p
i
and ∆p

j
in (8) and (9))

are completely arbitrary. In statistical terms, (B
t
®B

!
)

and (M
t
®M

!
) have a positive sampling covariance

because random fluctuations in allele frequency affect

each quantity in the same way.

3. Stochastic simulations

The cancellation of random variables in (10) stems

from the simplicity of this particular deleterious alleles

model. However, we expect a high, positive sampling

covariance under a range of models in which variation

is due to rare, partially recessive alleles. To test this

expectation, I performed stochastic simulations of

truncation selection in which the frequencies, effects

and dominance of alleles varied among loci.

In these simulations, the genotypic value of the trait

under selection is determined by contributions from
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Table 1. Simulation results for the ratio test under a �ariety of genetic models (as described in the text)

Model parameters
Selection up Selection down

Case a q h C
ad

}V
a

∆B}∆M (SD) ∆B}∆M (SD)

Model 1
1 1 0±02 0±2 1±36 1±44 (0±01) 1±04 (0±04)
2 1 0±02 0±1 3±31 3±67 (0±04) 2±11 (0±11)
3 1 0±01 0±2 1±43 1±45 (0±01) 1±13 (0±04)
4 1 0±01 0±1 3±63 3±83 (0±03) 2±41 (0±12)
5 1}®1 0±02 0±2 1±36 1±17 (0±04) 1±17 (0±04)

Models 2 and 3
6 Varies 0±02 Varies 1±48 1±83 (0±21) 1±18 (0±23)
7 Varies Varies 0±2 1±40 1±47 (0±02) 1±09 (0±04)
8 Varies Varies 0±1 3±51 3±84 (0±09) 2±24 (0±15)

Model 4
9 1 0±01 0±1 3±63 3±83 (0±03) 2±32 (0±17)

10 1}®1 0±01 0±1 3±63 2±69 (0±19) 2±69 (0±19)

Model 5
11 10}1 0±005}0±02 0±02}0±2 2±02 2±17 (0±13) 1±52 (0±46)
12 10}1 0±01}0±02 0±02}0±2 2±79 2±76 (0±14) 1±84 (0±47)
13 10}1 0±01}0±02 0±02}0±3 1±38 1±63 (0±16) 1±08 (0±44)

The standard deviation among replicates for ∆B}∆M is given in parentheses next to the mean for each direction of selection.
Parameter values for a particular simulation are list prior to the results. Here, q denotes the frequency of the rare allele at
each locus and h denotes its dominance coefficient. Multiple values (separated by }) are given when the value of a particular
parameter varies among loci. For model 5, the first listed value for each parameter refers to loci harbouring lethals.

100 unlinked loci. Each locus has two alleles and

contributes additively to the genotypic value (there is

no epistasis). The three genotypes at locus k (denoted

A
!
A

!
, A

!
A

"
and A

"
A

"
) contribute ®a

k
, d

k
and a

k
,

respectively, to the genotypic value of an individual

(as in Falconer, 1989). The frequency of allele A
"

at

locus k is p
k

(q
k
¯1®p

k
). Different values for d

k
, a

k

and p
k
across loci are considered in different ‘models ’.

Selection was imposed on populations of 100

individuals. For each particular genetic model, selec-

tion was performed for four generations and in both

directions (for both high and low values of the trait)

at one-half intensity (the top or bottom 50 individuals

survive to reproduce). The genotypes of individuals in

the initial population for a simulation were obtained

by randomly sampling alleles given their respective

frequencies in the base population. After the genotypic

value of an individual was established, a normally

distributed, environmental error was added to de-

termine the phenotypic value. Individuals were then

ranked by their phenotypic value and selection was

based on those ranks. The 50 selected individuals were

randomly paired for mating and each couple contri-

buted four offspring to the next generation.

For each genetic model and direction of selection,

evolution was simulated 1000 times. In each simu-

lation, M
t

and B
t

were calculated from allele

frequencies among the progeny of the fourth gen-

eration (the last set of selected adults). Subtracting

base population values from these quantities, we

obtain ∆M, ∆B, and the ratio of ∆B to ∆M. The

results of 1000 simulations are summarized by the

average ∆B}∆M and the standard deviation among

replicates.

(i) Genetic models

Model 1 is based on the genetic assumptions of

(5)–(10). A rare allele is segregating at 100 loci. The

frequency of this rare allele (denoted q
k
) is the same at

each locus in the base population (q
k
¯ q for all k).

The dominance coefficient, h, is also the same for all

rare alleles (d
k
¯ a

k
(2h®1)). Finally, the magnitudes

of allelic effects are the same across loci, but the

direction of effect may vary (a
k
¯1 or ®1). The rare

allele increases the trait value at n
"
loci and decreases

the trait value at n
#

loci, where n
"
n

#
¯100.

Simulation results with n
#
¯100 and different values

for h and q are given in cases 1–4 of Table 1.

The average ratio of ∆B to ∆M is consistently high

in these simulations and the standard deviation among

replicates is very low in every case. The joint

distribution of ∆B and ∆M in the 1000 replicates of

downward selection is given in Fig. 2a (for case 3 of

Table 1). As expected from (8)–(10), there is a very

high correlation between ∆B and ∆M. This correlation

reflects the fact that genetic drift changes ∆B and ∆M

in the same way under the rare alleles model. This is

responsible for the low variance in ∆B}∆M among

replicates. In case 4, for example, 95% of the

simulations of upward selection yielded ratios between

3±81 and 3±91. Ninety-five per cent of the downward
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Fig. 2. The joint distribution of ∆B and ∆M in 1000
replications of selection. (a) Results from case 3 of Table
1 with selection for lower trait values. (b) Results from
case 11 with selection for lower trait values. Here, r is the
correlation between ∆B and ∆M.

selection simulations gave ∆B}∆M values between

2±17 and 2±63.

A notable feature of cases 1–4 in Table 1 is the

difference in mean ∆B}∆M between upward and

downward selection. With selection for higher trait

values, the observed ratio of ∆B to ∆M is greater than

the ratio of C
ad

to V
a

in the base population. With

selection for lower values, ∆B}∆M is less than C
ad

}V
a
.

There are two causes for this asymmetry. The first is

that rare recessive alleles cause non-linearity in

parent–offspring regressions (Robertson, 1977;

Bulmer, 1985, p. 137). This naturally leads to an

asymmetric response to selection. Second, the genetic

variance components evolve with selection when the

number of loci is finite. The infinitesimal model breaks

down very quickly when quantitative trait variation is

due entirely to rare alleles. With upward selection in

model 1, allele frequencies move towards more

intermediate values. This increases V
a

and decreases

C
ad

. As a consequence, ∆M is substantially greater

(and ∆B is substantially less) in the third or fourth

generations of selection than in the first. Thus, the

overall ratio of ∆B to ∆M is less than what would be

expected given C
ad

}V
a
of the base population. Genetic

variance components evolve in the opposite direction

with selection for lower trait values (when n
#
¯100 in

model 1). The ratio of C
ad

to V
a

increases with

selection and the final ratio of ∆B to ∆M is greater

than expected.

I have also simulated model 1 for a variety of cases

in which the rare allele increases trait values at some

loci and decreases trait values at others (n
"
, n

#
" 0).

Case 5 in Table 1 describes results from one set of

simulations with n
"
¯ n

#
¯ 50. In this case and others,

the average ∆B}∆M invariably exceeds 1 and the

standard deviation is small.

Models 2 and 3 allow the frequency and dominance

coefficient of the rare allele to vary among loci. In

model 3, the frequency of the rare allele is fixed (q
k
¯

q for all k), but a
k

varies uniformly between 0±02 and

2 (a
"
¯ 0±02, a

#
¯ 0±04,…, a

**
¯1±98, a

"!!
¯ 2±00). The

dominance coefficient varies among loci such that

alleles with larger effects tend to be more recessive :

h
k
¯ 0±5®0±25a

k
. A negative relationship between

effect and h is supported by both theoretical arguments

and experimental studies (Simmons & Crow, 1977;

Caballero & Keightley, 1994). A typical set of results

for model 2 are given as case 6 in Table 1. As in the

simpler model 1, the average ratio of ∆B to ∆M is

consistently greater than 1. The standard deviation

among replicates is slightly higher in these simulations,

but it remains small relative to the mean.

Model 3 assumes the same distribution for a
k
, but

allows the frequency of the rare allele to vary among

loci instead of the dominance coefficient. I assume

that initial allele frequencies are uniformly distributed

(on a log scale) between 0±005 and 0±05: q
k
¯

0±05®log
"!

(4±5 a
k
1). The negative relationship be-

tween q
k

and a
k

reflects the biological intuition that

deleterious mutations with larger effects will be rarer.

The results for model 3 (cases 7 and 8) are entirely

consistent with previous cases. Standard deviations

are comparable to model 1.

In models 1–3, genetic variation affects only the

phenotype. There is no direct effect of deleterious

mutations on ‘fitness ’, which is determined entirely by

phenotypic value in the selection experiment. This

kind of model applies most directly to deleterious

mutations of ‘small effect ’. However, lethal and sterile

mutations make a substantial contribution to in-

breeding depression in some traits (Crow & Simmons,

1977). Such ‘ large effect ’ mutations will affect fitness

even in a selection experiment. Model 4 considers

lethal alleles. If an individual is homozygous for a

lethal at any locus, it is eliminated and replaced by a

second individual from the same family. Two examples

of model 4 are given as cases 9 and 10 in Table 1. Rare

alleles invariably decrease the trait in case 9, while half

increase and half decrease in case 10. The average

ratio of ∆B to ∆M is very high under both these

models and the standard deviations among replicates

are small relative to the average ratios. The results are

strikingly similar to the non-lethal case with similar

phenotypic effects (case 4).

The final pure ‘rare allele ’ model considers a

mixture of loci with large and small effects. In model
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Fig. 3. The average ratio of ∆B to ∆M as a function of
the percentage of additive variance contributed by loci
with intermediate-frequency alleles. Results were obtained
from simulations of model 6 by increasing a

"
from 0±1

(where loci 1–9 contribute 4±9% of V
a
) to 2±0 (where loci

1–9 contribute 95±6% of V
a
). Open symbols denote ratios

obtained with selection for lower trait values ; filled
symbols denote ratios obtained with selection for higher
trait values. In this example, h

"
¯ 0±5, q

"!
¯ 0±02, a

"!
¯1,

h
"!

¯ 0±2.

5, lethal alleles with large phenotypic effects segregate

at loci 1–10. Non-lethal alleles with minor phenotypic

effects segregate at loci 11–100. I assume that all loci

within a ‘category’ are equivalent (a
k
¯10, q

k
¯ q

"
,

and h
k
¯ h

"
for k%10; and a

k
¯1, q

k
¯ q

""
, and h

k
¯

h
""

for k"10). Results for different parameter values

are given as cases 11–13 in Table 1. The relative

contribution of lethal alleles to phenotypic variation

differs among these cases. Lethals contribute 33% of

the initial directional dominance in case 11, 47% in

case 12 and 58% in case 13. As with previous models,

the average ratio of ∆B to ∆M is near to or greater

than 1. However, the standard deviation among

replicates is substantially greater. This is due primarily

to a lower sampling covariance of ∆B and ∆M. The

bivariate distribution is given for downward selection

of case 11 in Fig. 2b.

For comparison, I also simulated models in which

at least some portion of quantitative trait variation is

caused by alleles at intermediate frequencies (between

0±1 and 0±9). In model 6, allele frequencies are

intermediate (in the base population) at loci 1–9 (q
"
¯

0±1, q
#
¯ 0±2, q

$
¯ 0±3,…, q

)
¯ 0±8, q

*
¯ 0±9). I assume

that effects and dominance coefficients are the same

across these loci (a
k
¯ a

"
and h

k
¯ h

"
for k¯1–9).

Loci 10–100 harbour rare alleles with equivalent

parameters (q
k
¯ q

"!
, a

k
¯ a

"!
and h

k
¯ h

"!
for k¯

10–100). Simulations were conducted by fixing all

other parameters and allowing a
"
to vary from 0±1 to

2±0. With a
"!

¯1, the contribution of loci 1–9 to V
a

increases from about 5% of the total (when a
"
¯ 0±1)

to about 95% of the total (when a
"
¯ 2±0). The

average ratio of ∆B to ∆M is given as a function of the

relative contribution of loci 1–9 (to V
a
) in Fig. 3. As

expected, the average ∆B}∆M is high when V
a

is

caused primarily by rare recessive alleles and declines

towards zero as intermediate-frequency alleles make a

larger contribution.

In all the preceding simulations the environmental

variance was adjusted so that the trait heritability

(V
a
}V

p
) was 0±5 in the base population. I have also

simulated all these cases assuming that the heritability

was 0±2. The absolute magnitudes of ∆B and ∆M were

smaller in these simulations, but ratios of ∆B to ∆M

were generally similar to the results in Table 1. In fact,

∆B}∆M was generally closer to C
ad

}V
a

in cases with

lower heritability.

4. Discussion

(i) The nature of genetic �ariation

The ratio test is amethod for assessing the contribution

of rare, partially recessive alleles to quantitative trait

variation. Rare recessives should be the principal

cause of variation under the deleterious mutation

model. In contrast, a large contribution by alleles at

intermediate frequencies suggests that quantitative

genetic variation is either actively maintained by

selection or ‘quasi-neutral ’. The difference between

these two scenarios has important implications for

both quantitative trait evolution and the methods we

use to investigate it.

Consider a plant population that has recently

experienced a change in selection regime such that

smaller flowers are favoured. If genetic variation in

flower size is not caused by unconditionally deleterious

mutations, there should be an immediate response to

selection. Alleles that reduce flower size should

increase in frequency and the rate of phenotypic

evolution can be predicted from quantitative genetic

parameters (the selection differential and trait heri-

tability ; Falconer, 1989). In contrast, we expect very

limited phenotypic change (in the short term) if

standing variation is caused by deleterious mutations.

Small flower alleles will increase in frequency only if

positive selection on their phenotypic effects is strong

enough to overwhelm their direct deleterious effect on

fitness. As a consequence, the rate of phenotypic

evolution will deviate from the quantitative genetic

prediction.

Genetic variances and covariances are frequently

used to assess the evolutionary potential of popu-

lations (Arnold, 1992; Houle, 1992). Such studies

implicitly assume that observed genetic variation is

not inherently deleterious, because deleterious

mutations probably will not contribute to adaptive

evolution (Keightley & Hill, 1990). In contrast,

investigations of life history traits (survival, fecundity,

etc.) frequently assume that genetic variation is due

entirely to deleterious mutations (Deng, 1998). This

assumption allows mutational parameters to be

estimated from phenotypic data (Morton et al., 1956;

Charlesworth et al., 1990; Deng & Lynch, 1996;
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Willis, 1999). This striking difference in empirical

presumptions indicates that experimental studies are

necessary to assess the contribution of deleterious

mutations to standing genetic variation.

(ii) The ratio test

The ratio test is based on the relative magnitudes of

two genetic variance components : the covariance of

additive and homozygous dominance effects (C
ad

) and

the more familiar additive genetic variance (V
a
). It is

thus an indirect assay of allele frequencies. Such

indirect methods have proved useful in the past,

however. An example is the classic genetic studies of

heterosis in corn (Reviewed by Moll et al., 1964).

These experiments used changes in the ratio of the

dominance variance to additive variance to reject

single locus overdominance as the primary cause of

heterosis.

Rare, partially recessive alleles increase C
ad

relative

to V
a

(Fig. 1). Large values of C
ad

}V
a

(equal to or

greater than 1) are only likely if the additive variation

in a trait is due primarily to rare, recessive alleles.

Small or negative values of C
ad

}V
a

will obtain if

quantitative trait variation is caused by alleles at

intermediate frequency. It is possible to estimate both

C
ad

and V
a

from comparisons among relatives

(Cockerham & Weir, 1984; Shaw et al., 1998).

Unfortunately, such estimates typically have large

sampling errors. This makes estimating the ratio of

C
ad

to V
a
very difficult.

Selection experiments may provide a statistically

effective means to estimate C
ad

}V
a
. The change in the

directional dominance of a randomly mating popu-

lation under selection, ∆B, is approximately pro-

portional toC
ad

(Kelly, 1999a, b ; Appendix). Analyses

presented here indicate that ∆B}∆M can be used as an

estimator of C
ad

}V
a

and that this estimator has

favourable statistical properties (∆M is the change in

the population mean). In the highly simplified version

of the deleterious mutation model considered in

(8)–(10), random factors that generate variance in ∆B

and ∆M among replicate selection populations cancel

out in the ratio (to a first approximation). As a

consequence, ∆B}∆M invariably equals C
ad

}V
a

(the

sampling variance is zero). This result is surprising in

that quantitative genetic estimators typically have

high sampling variances.

Stochastic simulations of truncation selection were

used to investigate the generality of this result (Figs

2–3; Table 1). These simulations confirm that the

sampling variance of ∆B}∆M is relatively low under a

broad range of models in which genetic variation is

caused by rare, partially recessive alleles. However,

they also indicate that ∆B}∆M can be biased. In

simulations where rare alleles reduced the trait value,

the average ∆B}∆M was typically greater than C
ad

}V
a

with upward selection but less than C
ad

}V
a

with

downward selection (Table 1). This is a notable

concern for quantitative estimation of C
ad

}V
a
, but it

does not hinder use of ∆B}∆M as a test of the

deleterious mutation model. Despite bias, ∆B}∆M

was uniformly high across replicate populations in

simulations with variation caused by entirely by rare

alleles. In contrast, ∆B}∆M was generally close to

zero or even negative in simulations where variation

was caused primarily by intermediate-frequency alleles

(see Fig. 3).

(iii) Inbreeding depression �ersus genetic �ariation

It is important to distinguish the contribution of rare

recessives to ‘ inbreeding depression’ from their

contribution to the genetic variance in a trait. As

emphasized by Charlesworth (1998), rare recessives

may be the sole determinant of inbreeding depression

(directional dominance) but generate only part of the

genetic variance. This will occur if two qualitatively

different types of loci contribute to variation in the

trait. At the first set of loci, non-deleterious alleles are

segregating at intermediate frequencies. The second

set of loci harbour rare, partially recessive alleles.

Under these circumstances, C
ad

will be positive but

substantially smaller than V
a

(because the inter-

mediate-frequency alleles will make large contri-

butions to V
a

but not to C
ad

). Simulation results for

this kind of model are given in Fig. 3.

Under very different assumptions, deleterious

mutations could be responsible for genetic variation

in traits that exhibit no directional dominance. Here,

we are primarily concerned with the pleiotropic effects

of deleterious mutations on morphological characters

because fitness components generally show inbreeding

depression (Wright, 1977; Charlesworth &

Charlesworth, 1987). Lack of directional dominance

may result for at least two different reasons. The first

is that the population contains rare recessives that

increase the trait value at some loci (2pqd! 0) and

decrease the trait value at other loci (2pqd" 0) so that

these two sets of loci cancel in their net effect on B. In

fact, theoretical models typically assume that del-

eterious mutations are equally likely to increase or

decrease the value of a morphological character

(Keightley & Hill, 1990; Barton, 1990; Kondrashov &

Turelli, 1992; Caballero & Keightley, 1994). These

conditions will yield high values for C
ad

and selection

will subsequently generate directional dominance in

the trait.

There will also be no inbreeding depression if the

pleiotropic effects of deleterious mutations are ad-

ditive. For reasons described previously, deleterious

mutations that persist in a population are likely to be

at least partially recessive in their effects on fitness. If

alleles have consistent dominance relations across all
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traits they affect, as suggested by some studies

(Keightley & Kacser, 1987), then deleterious alleles

will also tend to be recessive in their morphological

effects. It is possible, however, that deleterious

mutations with recessive affects on fitness could have

additive pleiotropic effects (Caballero & Keightley,

1994). In this case, we expect small values for C
ad

even

when quantitative variation is caused entirely by

deleterious mutations.

Finally, it is necessary to consider the case in which

both the inbreeding depression and the genetic

variance in a trait are due to intermediate-frequency

alleles. Under these circumstances, C
ad

may actually

be significantly negative (although smaller in mag-

nitude than V
a
). The contribution of a particular

quantitative trait locus to C
ad

will be negative if the

recessive allele at that locus has a frequency greater

than 0±5 (Fig. 1 ; Cockerham & Weir, 1984).

(iv) Experimental design

Consider an experiment in which selection is per-

formed on a self-compatible plant. An initial concern

is to choose a scale of measurement in which trait

variation conforms approximately to the relevant

quantitative genetic model (e.g. Falconer, 1989;

Appendix). Most models assume that the effects of

deleterious mutations combine multiplicatively across

loci (Crow & Kimura, 1970, ch. 6). In this case, a

simple logarithmic transformation of the trait will

ensure that each locus contributes additively to

variation. If the interactions among loci are neither

additive nor multiplicative (e.g. Sved & Wilton, 1989;

Willis, 1993; Charlesworth, 1998), then a more

complicated transformation may be required.

The duration of the selection experiment is a second

important issue. The number of generations should be

sufficient to generate a significant change in the

population mean (say 1–3 phenotypic standard

deviations), but not so many that new mutations can

contribute to the selection response (e.g. Frankham et

al., 1968). The purpose of the ratio test is to assess the

contribution of rare alleles in the base population. Only

the immediate response to selection is informative

about the genetic composition of the base population.

The choice of four generations of selection in the

simulation study was arbitrary and longer durations

(or more intense selection) may be preferable with low

heritabilities.

After selection is completed, outbred seeds from the

selected populations are germinated simultaneously

with outbred seeds preserved from the base population

(or from an unselected control population). Adults

from each population then produce two types of seed:

self-fertilized and outbred (each individual is randomly

mated to another member of the same population to

generate outbred seed). The resulting seeds fall into

four categories : base-outcrossed (bo), base-inbred

(bi), selected-outcrossed (so) and selected-inbred (si).

The seeds are subsequently germinated and measured

for the trait. The inbreeding coefficient of selfed

progeny is 0±5. Hence, the directional dominance of

the base population may be estimated as 2(M
bi
®M

bo
)

and the directional dominance of the selected popu-

lation as 2(M
si
®M

so
). Here the M denotes the mean

phenotype of individuals in the category given by the

subscript. (If inbred progeny were generated by full-

sib mating, then each difference would be multiplied

by 4 to estimate B).

The ratio test can be applied by using M
so
®M

bo
as

an estimator of ∆M and 2(M
si
®M

so
)®2(M

bi
®M

bo
)

as an estimator of ∆B. If ∆M is substantially greater

in magnitude than ∆B (across replicates), we can

reject the hypothesis that variation is caused primarily

by rare, partially recessive alleles. We cannot reject the

hypothesis that variation is caused by rare, additive

alleles. Fortunately, alternative analyses of data from

the same selection experiment can also be used to test

this hypothesis (e.g. Curtsinger & Ming, 1997).

Appendix

We consider a slightly more general model than that

described in the text. Each quantitative trait locus can

have an arbitrary number of alleles. Let pjl denote the

frequency of the jth allele (A
j
) at locus l. Let αjl denote

the additive effect of allele j at locus l and δjkl denote

the dominance deviation associated with genotype

A
j
A

k
at locus l. Additive and dominance effects are

defined in the standard way (Cockerham & Weir,

1984; Falconer, 1989). With these definitions,

B¯3
l

3
j

pjl δjjl (A 1)

and

∆B¯3
l

3
j

∆pjl δjjl (A 2)

where ∆pjl is the change in the frequency of A
j
at locus

l. Assuming that quantitative trait variation is caused

by many loci of small effect and that these loci are in

linkage equilibrium, allele frequency changes are

approximately a linear function of S, the selection

differential (Kimura, 1958; Griffing, 1960). In this

model,

∆pjl E 0S

V
p

1 p
jl
αjl, (A 3)

where V
p

is the phenotypic variance. Substituting

(A 3) into (A 2),

∆B¯ 0S

V
p

13
l

3
j

pjlδjjlαjl. (A 4)
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Noting that the latter sum equals the multi-allele

definition for C
ad

(Cockerham & Weir, 1984), we

obtain

∆B¯ 0S

V
p

1C
ad

. (A 5)

Linkage disequilibrium will develop among quan-

titative trait loci if selection is sustained (Bulmer,

1985). This violates the assumptions of the preceding

analysis. However, because linkage disequilibrium

tends to change V
a

and C
ad

in the same direction, it

will have less effect on ∆B}∆M than on either ∆B or

∆M alone. Dynamical recursions for ∆B and ∆M that

allow linkage disequilibrium are given in Kelly

(1999a, b).

Another notable assumption of the preceding

derivation is that the contribution of each locus is

small relative to the phenotypic variation. This

assumption is violated by ‘ large effect ’ mutations such

as lethals. Such mutations can make an important

contribution to inbreeding depression (Crow &

Simmons, 1977) and their dynamics may not be

accurately described by (A 3). However, the derivation

of (8) and (9) does not depend on the assumption of

small effects. Moreover, the simulation studies of

models 5–7 indicate that the ratio test is not invalidated

by lethals.
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