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Rheology of ice at the bed of Engabreen, Norway

Denis COHEN
Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455, U.S. A.

ABSTRACT. A three-dimensional finite-element model is used to analyze field data
collected as dirty basal ice flowed past an instrumented obstacle at the bed of Engabreen, a
temperate glacier in northern NoriyvajygThe ice is modeled as an incompressible power-law
fluid, with viscosity n = (B/2) H](3 w7 " where Ip is the second invariant of the stretching
tensor, and B and n are two parameters. Using measurements obtained in 1996 and 1997,
two values of B are obtained, one using the measured normal stress difference across the
obstacle, and the other using the measured bed-parallel force over the instrument. These
two values are not equal, probably owing to small frictional forces at the bed unaccounted
for in the numerical model. Hence, B ranges between 1.9 x 107 and 3.2 10’ Pas” in 1996,
and between 2.2 x10” and 4.1 x10" Pas” in 1997. These values are smaller than measured
elsewhere for clean glacier or laboratory ice. Field measurements of water content, fabric
and texture of the basal ice suggest that unbound water between thin sediment layers and
lamellae of clean ice may act as a lubricant and significantly weaken the ice. Near-isotropic

fabrics indicate that preferred fabric orientation does not enhance the deformation.

SYMBOLS AND NOTATION

All superscripted asterisks represent dimensionless quanti-
ties. Lightfaced letters denote scalar quantities, boldfaced
minuscules denote vectors and boldfaced majuscules denote
second-order tensors. Exception: F represents a force vector.

A%, Area of panel projected on the x—y plane
Pre-exponential factor in power law

D,D*  Stretching tensor

€; Cartesian basis, ¢ = x,y, 2

F,F* Force on panel
F, F? Components of F, ¢ = z,y, 2
F Measured bed-parallel force

Fyy, F/*/ True bed-parallel force
H Height of computational domain

h Height of cone

hy Reference length

I Unit tensor

L Length of computational domain
N, N* Normal stress

N;, N Normal stresses on pressure transducers, 7 = 1,2
n Power-law exponent

n Unit normal vector

p,p* Pressure

Do Reference pressure

S,s* Stress deviator

T, T* Cauchy stress

t, t* Traction vector

v,v* Velocity vector

) Far-field velocity

w Water content

W Width of computational domain

* Present address: Department of Geology and Geophysics,
Yale University, New Haven, Connecticut 06311, U.S.A.

https://doi.org/10.3189/172756500781832620 Published online by Cambridge University Press

X Position vector

i Ice viscosity

0 Temperature

W Coefficient of friction between panel and plate

II Second invariant of stretching tensor

Ilg Second invariant of stress deviator

To Reference stress

1) Angle between axis of symmetry of panel and
ice-flow direction

P Angle between ice-flow direction and bed-parallel
force

INTRODUCTION

Glaciologists have long suspected that ice near the beds of
temperate glaciers may be rheologically distinct from other
glacier ice. From observations in subglacial cavities, Carol
(1947) concluded that ice near the bed seemed more “plastic”
(less viscous) than ice elsewhere. Since then, a basal ice layer
that is texturally and structurally distinct has been observed
beneath many glaciers (cf. references in Knight, 1997). In
temperate glaciers this layer is typically decimeters to meters
in thickness and is visually distinct from the ice above due to
its higher sediment content. It may also have a different
water content, texture and fabric. In addition, unlike ice
higher in glaciers, it is subject to repeated, rapid changes in
the state of stress as it flows past obstacles on the bed. All of
these factors may influence its rheology.

The effect of sediment on ice rheology has been assessed
in a few laboratory experiments (e.g. Hooke and others,
1972; Baker and Gerberich, 1979; Nickling and Bennett,
1984; Lawson, 1996). Although there are no definitive conclu-
sions, observations suggest that, in temperate ice, the pres-
ence of sediment softens the ice, probably because of the
presence of a microscopic (or sub-microscopic) water layer
around the sediment particles. Field observations and experi-
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ments on cores from ice sheets confirm that inclusions, micro-
particles and debris weaken ice which is at or near the melting
temperature (e.g. Fisher and Koerner, 1986; Echelmeyer and
Wang, 1987). These results, however, have not yielded precise
estimates of the extent to which sediment reduces the viscos-
ity of the ice, a critical parameter for modelling glaciers and
ice sheets.

Experiments by Duval (1977) demonstrated that ice vis-
cosity is inversely related to water content. Liquid inclusions
apparently enhance local melting and refreezing associated
with recrystallization by acting as sinks and sources of heat
(Lliboutry and Duval, 1985). Observations suggest that the
water content of basal ice may be anomalously high (Carol,
1947), as expected from high rates of strain-energy dissipa-
tion near the base of glaciers. These observations are in
agreement with recent theories (Lliboutry, 1993, 1996), so
high water content may be an important control on the
rheology of basal ice.

Anisotropic texture and fabric found in ice that has under-
gone large cumulative strains may reduce the effective ice
viscosity. Strong single maximum fabric facilitates dislocation
glide in the crystallographic basal planes. In contrast, ice with
a multi-maximum fabric behaves isotropically. Analyses have
shown that these fabrics are predominant near the bed (e.g.
Hooke, 1970; Anderton, 1974; Hooke and Hudleston, 1980). In
almost all of these studies, however, the fabric of the debris-
laden basal ice layer was not measured because of the difficulty
of making thin sections of such ice for measurements of c-axis
orientation. Hence, the fabric of basal ice containing signifi-
cant sediment concentrations is not well known. This technical
difficulty has now been surmounted with the use of a diamond
wire-saw technique (Tison, 1994; Tison and others, 1994).

Finally, deformation of basal ice may be distinct from
that elsewhere due to the varying, somewhat cyclic state of
stress imposed on the ice by the bed roughness (Weertman,
1979; Lliboutry, 1987). Because the state of stress is varying; it
is seldom, if ever, symmetric with respect to the crystal fabric,
as required for steady creep. As a result, the crystal fabric
must be continuously adjusting to the changing stress field.
Thus, rheological parameters determined in experiments
carried out under steady laboratory conditions may not be
appropriate when applied to basal ice.

In order to estimate the rheology of basal ice, an instru-
mented panel containing a flat-topped conical obstacle was
mounted flush with the bedrock beneath 210 m of ice at
Engabreen, a valley glacier in northern Norway. Simulta-
neous measurements of sliding speed, normal and shear
stresses and temperature were obtained as dirty, temperate
basal ice flowed past the obstacle. The experiments and
measurements are discussed in Cohen and others (2000).
Herein, we use a three-dimensional finite-element model of
ice flow past the obstacle to estimate the basal ice rheology.
Preliminary measurements of water content, ice fabric and
texture are used to interpret the results.

SUMMARY OF FIELD MEASUREMENTS

Engabreen is a temperate valley glacier that drains ice from
the Svartisen ice cap. The bedrock beneath the glacier is
largely schist and gneiss. Access to the ice/bedrock interface is
through tunnels in the bedrock excavated by the Norwegian
Water Resources and Energy Administration (NVE) to tap
meltwater for hydroelectric power generation. A tunnel off
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the main system is used for the sole purpose of research. This
tunnel ends at the glacier bed beneath 210 m of ice. The bed
can be accessed in two places: a horizontal tunnel with a door,
and a 5m high vertical shaft which opens onto a relatively
planar section of the glacier bed. The instrumented panel
was positioned at the top of this shaft, and measurements
were made during two field efforts in April 1996 and
November 1997.

Details of the measurements are given in Cohen and
others (2000). The main conclusions relevant here are:

(I) Normal stress and both sliding speed and direction
changed from one year to the next, possibly because of
changes in basal ice rheology triggered by changes in
sediment concentration or water content.

(2) Regelation flow was negligible compared to viscous flow
past the obstacle.

(3) Vertical melt rates were negligible compared to the sliding
speed.

(4) Friction at the bed, estimated from Hallet’s (1979, 1981)
model, was only 5% of the total bed-parallel force
exerted by the ice on the panel.

(5) There was no ice/bed separation on the lee side of the
obstacle.

DESCRIPTION OF BASAL ICE

In 1994, Jansson and others (1996) studied the ice sequence
at the base of Engabreen. They retrieved a 1.6 m long core
near the horizontal entrance. In this core, they distin-
guished four different units: clean blue ice, upper sediment-
laden ice, cloudy ice and lower sediment-laden ice. The last
of these rested on the bed and was about 0.13 m thick. None
of the layers appeared to contain air bubbles. Sediment con-
centrations ranged from effectively zero in the cloudy and
blue ice to as much as 25% by weight in the upper sedi-
ment-rich layer (10% by volume assuming an ice density of
917 kg m * and a sediment density of 2650 kg m ). Sediment
concentration in the lower sediment-rich layer was 2-6%
by volume, with concentration increasing near the bed.
During observations in 1996 and 1997, the four units
described by Jansson and others could still be identified,
although in 1997 the cloudy-ice layer thinned and disap-
peared a few meters up-glacier from the door. The thickness
of the lower sediment-laden layer was found to vary spa-
tially because of bedrock topography. It also varied tempor-
ally; above the shaft, it was 0.3 m thick in 1996, and 0.6 m
thick in 1997. In 1997, debris concentration in this lower
layer increased toward the bed, from 3% to 17% by volume.
Debris concentration was also found to vary spatially. In
samples collected from the lower layer, silty sediment was
concentrated in small clots (also observed by Jansson and
others). With increasing sediment concentration, the clots,
which are no more than a couple of millimeters in diameter
for the most part, collect into thin sediment layers (some-
times with and sometimes without visible interstitial ice), up
to several millimeters thick, separated by layers or lenses of
clean ice. These layers define a foliation which is generally
parallel to the bed. Similar basal ice facies have been observed
in other temperate glaciers (e.g. Vivian and Bocquet, 1973;
Wold and Ostrem, 1979), in cold glaciers (e.g. Lawson, 1979;
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Echelmeyer and Wang, 1987) and in ice sheets (e.g. Hooke,
1970; Gow and others, 1979).

In November 1997, tunnels in the blue ice near the door
revealed numerous water pockets, similar to those described
by Jansson and others (1996). The water pockets found in
1997 were prolate ellipsoids, up to 2m long, aligned with
the ice-flow direction. In cross-section, they were flattened
in the horizontal direction, with long axes ranging from 30
to 200 mm. The volume of these pockets was as high as 5%
of the local ice volume. Some of these water pockets con-
tained a small amount of sediment. Smaller water pockets,
up to 10 mm long, were also found in the lower sediment-
laden ice layer. These were not observed by Jansson and
others (1996). The total volume of water in these pockets
was substantially smaller than in the blue ice above.

NUMERICAL MODEL

The most commonly used constitutive equation for glacier
ice is Nye’s generalization of Glen’s flow law (cf. Nye, 1933,
1957; Glen, 1958). Such a constitutive equation is that of an
incompressible power-law fluid. This constitutive equation,
however, cannot describe many of the observed characteris-
tics of deforming ice. In particular, it has been noted
(Weertman, 1979; Lliboutry, 1987) that such an equation is
inappropriate for ice deforming past obstacles, since a vis-
cous fluid has no “memory” and therefore its constitutive
equation cannot describe the phenomena of work-harden-
ing and recovery observed during the transient stages of
deformation of polycrystalline ice. However, owing to high
stresses near our conical obstacle, the transient creep phase
should last only a few hours at most, whereas ice takes
>1day to pass the obstacle. Thus, adjustments to the transi-
ents should occur over time-spans that are short compared
with the time it takes for ice to flow past the obstacle. In addi-
tion, the experiments at Engabreen did not yield sufficient
data to consider a constitutive equation more complex than
that of a two-parameter viscous fluid. In fact, because of the
difficulty in accurately measuring, in situ, the sliding speed
and the bed-parallel force, the data could not be used to esti-
mate both material constants in the power-law fluid model.
Instead, the pre-exponential factor in the power-law model
was calculated as a function of the power-law exponent.

Constitutive equation

The constitutive equation for the deviatoric stress S for an
incompressible power-law fluid is

S=27D, (1)

where S = T + pI, T is the Cauchy stress tensor, I is the
identity tensor, p is an undetermined hydrostatic pressure
due to the incompressibility constraint, and D = %(gradv
+ (grad V)T) 1s the stretching tensor with v the velocity vec-
tor. 1) is the viscosity function given by

B (1-n)

WZEHDZT’ (2)

where B is a pre-exponential factor, n is a power-law expo-
nent, and I3, = %trD2 is the second invariant of D. B and n
are two parameters commonly used in Glen’s flow law when
it is written in the form ¢ = (7/B)", where ¢ = H]13/2 and
T= Héﬂ, I = %trS2 being the second invariant of S.
When n = 1, Equations (I) and (2) reduce to the constitutive
equation of a Newtonian fluid with viscosity n = B/2. Equa-
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tion (2) is empirical and has emerged as the simplest best fit
to the large amount of data accumulated on the creep of
polycrystalline ice in laboratory and glacier experiments
(cf. Hooke, 1981; Lliboutry and Duval, 1985; Alley, 1992).

Governing equations

Consider the steady, slow, 1sothermal flow of an incompressible
power-law fluid past a rigid isolated obstacle on the bed of a
glacier. In the present case, the obstacle is a flat-topped cone
of height h and of radii ry at the base and 1 at the top (cf.
Cohen and others, 2000, figs 4 and 5), with two camera hous-
ings, one on each side of the cone, protruding a distance h,
above the base of the panel. The vertical plane that passes
through the center of the cone, with one camera housing on
each side, is the plane of symmetry of the instrumented panel.
The bed surface around the obstacle is flat, and we assume
that it i1s mathematically smooth. A Cartesian coordinate
system (z,y, z) with basis (e,, ey, e;) is chosen so that the
base of the cone and the flat smooth bed surrounding the
cone define the plane z = 0. The origin of the coordinate
system 1s at the center of the base of the cone. The ice-flow
direction, away from the obstacle, is parallel to the y axis. This
axis is oriented at an angle ¢ to the plane of symmetry of the
panel. The computational domain is a rectangular parallele-
piped of length 2L, height H and width 2W, where H is much
smaller than the ice thickness. The dynamical equations, to be
solved in this domain, expressing the conservation of mass and
momentum are

divv =0, (3)

—gradp + div [B H? (gradv + (grad V)T):| =0. (4

Boundary conditions

Boundary conditions need to be prescribed on all sides of the
parallelepiped. On the bottom (bed), conditions of no
friction and no melting—refreezing, which describe ice at the
melting temperature sliding on a thin lubricating film of
water, translate mathematically into zero tangential stress
and zero normal velocity. The use of this boundary condition
1s substantiated by experimental data (Cohen and others,
2000). A difficulty in modelling the flow in an artificially
truncated domain is the choice of boundary conditions on
surfaces within the ice mass, since nothing is known about
the stresses or velocities on these boundaries. One of the
simplest models consistent with the boundary conditions on
the bed 1s to assume that at the inlet, the ice is moving with a
constant, uniform speed vp; at the top, the tangential stress
and normal velocity are zero; at the outlet, the traction is
zero; and on the sides, symmetric boundary conditions are
used. We do not use periodic boundary conditions for the inlet
and outlet flow, because there is only one isolated obstacle on
the bed, located on a portion of the bed that is planar for
several meters in every direction. Incidentally, using periodic
boundary conditions does not change any of the results
described below, because the inlet and outlet boundaries of
the domain have been chosen far from the obstacle.

The dynamical Equations (3) and (4), together with the
boundary conditions, form a system of non-linear (for
n # 1) partial differential equations for the velocity field v
and pressure p as a function of position x.
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Non-dimensionalization

The above system of partial differential equations contains
three parameters: vg, B and n. The remaining variables h,
70, 1, Ne, H, W and L are geometrical constants that define
the domain of computation. The non-dimensionalization of
these equations leads to a simpler system with only one
parameter, n. Let v =1y Vv", and x = hyx*, where hy =
0.15m is a reference length taken to be the initial height of
the cone in the first field experiment, and quantities with an
asterisk superscript are non-dimensional. Then, the Cauchy
stress and the stretching tensors are given by

T:TOT*+pOIa (5)
(20
D=—D" 6
oD (6)
where

1

_B Vo n
n=3 (2 7

1s a reference stress quantity and py 1s a reference hydrostatic
(far-field) pressure that must be determined from experi-
mental data. Under these new non-dimensional quantities,
the dynamical equations to be solved are

llf_n
—grad® p* + div* | II" (grad* V" 4 (grad” v*)T) =0,

®)
div*v* =0. (9)

There is only one parameter in these dimensionless equa-
tions (not counting the domain geometry): n, the power-
law exponent. Thus, our numerical calculations are inde-
pendent of B and vy. For each value of n, only one numerical
solution is needed, a major computational advantage.

The force of gravity was not included in Equation (8).
Had we included it, the gravitational term

h
_Lolez (10)
B(w)"
2 \ hg

would have appeared on the lefthand side of the equation.
This term is the dimensionless ratio of gravitational to
viscous forces. For p =917kgm *, g =9.81ms % hy =0.15m,
vo= 17x10°ms ) n= 3 and B= 3x10"Pas" (sce
sections below), the numerical value for this term is 0.004.
This is much smaller than the two other terms in Equation
(8), which are of order 1. Physically, this is because we are con-
sidering the flow of only a very small part of the glacier above
the panel. What drives the flow of this small volume of ice is
not gravity but the force that the ice above exerts on it (the
boundary conditions presuppose no longitudinal stresses). Of
course, the ice above is driven by the gravitational force.
The non-dimensional boundary-value problem stated in
Equations (8) and (9) was solved with the commercial soft-
ware FIDAP using Galerkin’s finite-element method. Various
three-dimensional meshes were constructed with different
refinements using tri-quadratic basis functions for velocity
and linear piecewise discontinuous basis functions for pres-
sure. Each element has 9 nodes for velocity, or 27 unknowns,
and 4 nodes/unknowns for pressure. The coarsest mesh had
5940 elements and 37485 nodes. The finest mesh had 21650
elements and 148 461 nodes (Fig. 1). This discretization result-
ed in linear systems of ~100 000 to ~220 000 unknowns to be
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Fig. 1. (a) Finite-element mesh. (b) Detail of mesh on the
obstacle.

solved iteratively. Solutions were obtained on a CGRAY C90
and an IBM RS6000 at the Minnesota Supercomputing

Institute.
Numerical results

The boundary-value problem was solved for three domain
geometries representing the particular ice-flow direction
and cone dimensions during the three experiments at Enga-
breen, one in April 1996 and two in November 1997. Table 1
gives the geometrical parameters describing the domain
geometry for each of the experiments. All results shown
below are dimensionless. Comparison between numerical
values and measurements is deferred to the next section.

Table 1. Geometrical paramelers for the computational domain,

in meters
Experiment

Parameter 1 2 3
h 0.150 0.150 0.100
o 0.123 0.123 0.123
r1 0.0176 0.0176 0.0506
he 0.055 0.055 0.055
H 2.25 2.25 2.25
L 1.5 1.5 1.5
w 1125 1125 1125

Note: H, L and W were chosen much larger than the dimensions of the
obstacle to reduce the sensitivity of the solution of the boundary-value
problem to the location of these artificial boundaries.
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Dimensionless speed

g, 2. Dimensionless velocity profile computed from finite-
element model for different values of n.

Velocity profile
The dimensionless speed above the obstacle is shown in Fig-
ure 2 as a function of n. Extrusion flow (flow velocity near
the bed is higher than far-field velocity) begins for values of n
between 1.5 and 2. This phenomenon was first documented by
Carol (1947) in measurements of sliding velocity near a roche
moutonnée, and later measured in the laboratory by Hooke
and Iverson (1985). It has also been found in an analytical
solution of ice sliding without friction past a hemisphere
(Lliboutry and Ritz, 1978), in which the appearance of
extrusion flow is at n = 1.5 precisely, and in numerical solu-
tions of ice sliding over a sinusoidal bed (Gudmundsson,
1997). We were unable to observe whether extrusion flow
was present above our obstacle.

The speed at the ice/bed interface, along the center line
x = 0, 1s shown in Figure 3 as a function of n. The speed
decreases as the ice approaches the cone and reaches a mini-
mum just before the cone. For n =1 the speed near the cone is
one-third of the far-field velocity. For n = 3 it is about one-half.
The disturbance of the velocity field caused by the obstacle
extends a greater distance from the obstacle for a Newtonian
fluid. This is consistent with the analytical solution of Lliboutry
and Ritz (1978) for flow past a hemisphere.

LEffective stresses
Figure 4a shows the dimensionless scalar quantity (2 I1})
for n =1and n = 3 for experiment 3 (Hi‘)l/2 is the non-di-

1/2

mensional effective strain rate). The effective stress on the
bed, Héﬂ, can be calculated from the relation

1
1/2 Vo \ " L
Y _B<h—0> I (11)

From Figure 4a, (2 H;‘D)l/2 ~ 3 on the stoss side. With vy =
015md "' =174x10 °ms , hg=015m, n=3 and B =
3 x10” Pas"? (see next sections), Hé/Q = 1.0 MPa. This value
for the effective stress is sufficiently high that transient creep
should last only about an hour (Jacka, 1984), which is much
less than the time required for the ice to move past the cone.

Pressure and normal stresses
Contours of the dimensionless pressure and normal traction
on the obstacle are shown in Figure 4b and c, respectively,
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Fig. 5. Dumensionless speed along the ice/bed interface com-
puted from finite-element model as a function of n. Small kinks
are due to discontinuities in the velocity vectors at the corners of
the obstacle; these give rise to numerical errors because corners
are not fully resolved by the finile-element mesh.

for n = 1 and n = 3. As ice flows past the cone, high pres-
sures build up on the stoss side, with a zone of low pressure
on the stoss side of the flat top of the cone. Since the flow is
(almost) symmetric, the exact opposite is observed on the
lee side of the cone.

The pressure on the ice/bed interface, along the center line
2 = 0, is shown in Figure 5 as a function of n. The peaks in
pressure (there are also similar peaks in the normal stress
curves) are due to the sharp edges at the base and top of the
cone. At a perfect edge, the velocity is discontinuous. This
results in a non-integrable discontinuity in normal stress in
the continuum problem (cf. Batchelor, 1967, p.226). This dis-
continuity is smoothed in the finite-element approximation,
but mesh refinements worsen this effect. Of course in reality
this discontinuity is not present, as the corners are not perfect.

Non-dimensional normal stresses on the stoss and lee sides
of the cone at sites of pressure transducers where normal
stresses were measured, N; and N3, respectively, are shown
in'Table 2 as a function of n. These are obtained by averaging
the normal stress N* over the area of the platens of the pressure
transducers Apy,

1 .
Ni*:A—/N*dA7 1=1,2. (12)
pt
Apt;
Because the obstacle is (almost) symmetrical, the values of
N7 and N5 are (almost) equal and opposite. Negative values
on the lee side are due to the assumption in the non-dimen-
sional formulation that the far-field pressure 1s zero. These
negative values do not mean that a cavity formed there. In
fact, there are no separating streamlines or zones of recircu-
lation in the flow, and hence no cavity forms on the lee side
of the obstacle as was observed in the field experiments.

Force on panel
The dimensionless normal stress N* on the panel can be
integrated over the entire area of the panel to obtain the
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Iig.4. (a) Dimensionless effective strain rate, (b) dimensionless pressure and (¢ ) dimensionless normal stress vector (onice) on
the bed forn =1(left panel) andn = 3 (right panel ) computed from finite-element model. Flow is in the y direction. Because of
the non-dimensionalization, lee-side pressures are negative, and lee-side normal stress vectors point toward the obstacle. In the

experiments, the base of the cone is 0.25m in diameter.

dimensionless force F* that the ice exerts on the panel. In
component form,

FL,*: / N*n'eldA i:x7y7’z’ (13)

panel

where A7 ) is the dimensionless area of the panel. The bed-
parallel force is simply

* * k. 1
Fj = (> +F%). (14)

The angle between the ice-flow direction and the direction
of the bed-parallel force, 1 (¢ # 0 since ¢, the angle
616
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between the axis of symmetry of the panel and the ice-flow
direction, is different from 0), is

B
_ xT
1) = arctan T
y

— 0. (15)

The values of F/*/, F7 and 1 as a function of n are given in
Table 3. F7, is also shown in Figure 6 together with the
dimensionless bed-parallel force on a hemisphere calculated
by Lliboutry and Ritz (1978). This provides a check to our
calculations, as the shape of the obstacle is not too dissimilar
to that of a hemisphere. Not surprisingly, F/*/ is largest in
experiment 1, when the camera housings on each side of the
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Fig. 5. Dimensionless pressure along the ice/bed interface for
n =1, 1.5, 2, 3 and 4. Because of the non-dimensionalization,
the far-field pressure is zero and lee-side pressures are negative.
The real pressure p is calculated from the dimensionless pres-
sure p* by multiplying by Ty and adding po. An explanation for
the pressure peaks is given in the text.

conical obstacle offer most resistance to flow owing to their
high angle with the flow direction (¢ = 30°). Similarly, the
force on the panel is smallest for experiment 3, when the
obstacle is smallest.

COMPARISON WITH FIELD DATA

Results of the numerical model will now be compared with
data from the field experiments, in which the bed-parallel
force on the panel and normal stresses on the stoss and lee
sides of the cone were measured. The objective is to obtain
equations for estimating the value of B from the comparison
between the numerical model and the field data. In this sec-
tion, we establish relations between these measured quanti-
ties and the non-dimensional quantities from the numerical
model. Again, dimensionless quantities are indicated with a
superscript asterisk.
From Equation (5), the traction vector on the bed is

t=Tn=7N'n+pm. (16)

Because there are no shear stresses on the bed, T*n has been
replaced by N*n, where N* is the non-dimensional normal

Table 2. Dimensionless normal stress N (stoss) and N3
(lee) calculated from finite-element model as a_function of n
Jor all three experiments

Exp. n 1 15 2 3 4
1 N; 2.89 378 447 503 516
N; 286 371 438 498 501
2 N; 3.10 398 467 5.4 537
Nj 307 391 46 52 54
3 N; 276 400 452 493 5
Ny 27 -394 445 485 495

Note: Because of non-dimensionalization, normal stresses on the lee side are

negative.
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Dimensionless bed-parallel force

6 ——a8—— Exp.1
—<—— Exp.2

4 F ——o6—— Exp.3

I [ ) Hemisphere
2 F
0 I L 1 L 1 1

1 2 3 4

n

Fig. 6. Dimensionless bed-parallel force , F/*/, computed from
Sfinite-element model as a function of m together with bed-
parallel force on a hemisphere calculated from Lliboutry and
Ritz (1978). Forn =1, Iy, . =27 Forn =3 F), , =44

stress. Both N* and n are functions of position on the bed.
Integrating Equation (16) over the area of the panel yields
the force F on the panel

F=n0l|n / N*n dA + py / ndA|. (17)

*
panel panel

To obtain the z, ¥y and z components of F, we take the dot
product of Equation (17) with the basis unit vectors e,, e,
and e, and furthermore use the identities

/n~e,EdA: /n~eydA:0, (18)

¥ b
panel panel

(owing to the symmetry of the panel), and

n-e,d4=A; (19)

Iy’

.
panel

where A7 is the non-dimensional area of the panel projected

Table 5. Dimensionless bed-parallel force, F/*/, dimensionless
vertical force, Y, and the angle, in degrees, between the ice-
Slow direction and the bed-parallel force, 1, as a_function of
n_for the three experiments

Exp. n 1 15 2 3 4
1 F, 65 101 113 126 131
Ff 022 04 049 03 -028
¥ 14.8 66 8.8 89 9.1
2 F, 57 97 109 121 126
F' 02 04 041 026 027
¥ 95 34 44 48 53
3 E 51 85 97 107 111
Fi 029 022 033 04 008
P 6.0 50 50 53 57

Note: F7} is negative because it is downward.
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on the z—y plane. The components of F in the (z,y, 2) co-
ordinate system are then

E,=h Tk, (21)
F.=h{nF; +hypo AL, (22)

where F,i = x,y, z is defined in Equation (13). The bed-
parallel force (parallel to z—y plane) is

Fyy=hm Fj, (23)

where I}, was defined in Equation (14). The true bed-paral-
lel force, F/;, was not measured in the field experiments.
Instead, the force exerted on a load cell mounted on the
down-glacier side of the panel, Fy,, was measured. F), is
related to Fy, by (Cohen and others, 2000, equation (4))

- Fu(1—p?)
11~ cos(¢ + ¥) — psin(¢ + )

where p 1s the friction coefficient between the instrumented

+u|F, (24)

panel and the plate beneath it (the absolute value of F is
used because, in the numerical model, the vertical direction
is up). In Cohen and others, F, was estimated from the aver-
age normal stress on the stoss and lee sides of the cone. Here,
we simply replace F, by Equation (22). Then, equating (23)
and (24), we obtain

Fu(l—p)
cos(¢ +¢) — psin(¢ + 1)) (25)
+ phi | Y|+ phipo A, = hi o F) .

In this equation, F, and ¢ are measured quantities, p =
0.1(Cohen and others, 2000), hy and A} are geometrical
quantities, and all F™* are computed from the numerical
model. ¥ is given by Equation (15). 7p and pg are unknowns.
Equation (25) forms one of the working equations from
which B can be estimated, as B is indirectly present in 7.

From Equation (16), the relations between the measured
normal stresses N1 and Ns on the stoss and lee sides of the
cone, respectively, and the non-dimensional Ny and N3,
can be obtained by taking the dot product of the traction
with the unit normal vector n:

Ny =t1-n=7N] +pg, (26)
N2=t2~1’1:7'0N;+p0. (27)

Equations (26) and (27) form another pair of equations from
which B can be estimated, again because B is indirectly
present in .

ESTIMATION OF B

There are two independent ways of calculating the material
constant B. In the first, py 1s eliminated from Equations (26)
and (27). Then, using Equation (7) for the definition of 7y,
we obtain

1
ho\" Ni — N
B — (Z0) - 2 28

(vo N —N; (28)

This method makes use only of the normal stress measure-
ments on the surface of the cone. The second method is to
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Table 4. Area of panel, reference length, and measured quantities

Ay (m?) 036
h(] (m) 0.15
Experiment
1 2 3
N; (MPa) 1.8 29 25
Ny (MPa) 0.1 03 03
Fu (kN) 36 60 52
vy (md ™ 0.07" 0.15 0.12
o 30° 20° 20°

* In experiment 1, the velocity was measured near the cone. After proper
scaling (see text), the far-field velocity in md ' is vy = 0131 for n = 1,
vy = 0101 for n = 1.5, vp = 0.087 for n = 2, vy = 0.074 for n = 3, and
vy = 0.068 forn = 4.

solve for 7y in Equation (25), and using definition (7) obtain

i Fm(l _NQ)
B _ <@) " costp — psin
o h? (F/*/—M|F;|)

+ w1 po hg A;y

o (29)

where py is obtained by eliminating 7y from Equations (26)

and (27):

Ny Nf — N1 Ny

bo = Ni — N (30)

With this method, the normal stress measurements
(through py) are used only to estimate the frictional force
between the panel and the plate underneath. In Equations
(28-30), all * quantities depend on n and on the flow geom-
etry (except A7, which is the dimensionless panel area).

The far-field velocity, vy, is determined as follows: for the
experiments in 1997, we use the velocity measured 0.45m
above the bed by a dowel and cable (Cohen and others,
2000); for the experiment in 1996, the velocity was measured
on the side of the cone by a video camera looking through
quartz-glass windows. The ice speed measured at this
location is not the far-field velocity. To recover the far-field
velocity, the measurement is scaled using the numerical
model. For example, for n =1, the dimensionless speed above
the quartz-glass plate is 0.3. If the measured speed was Vpeas
then the far-field speed is vy = Upeas/0.3. Table 4 gives the
values of the measured quantities (see Cohen and others,
2000). Table 5 gives the values of BY and B® as a function
of n for experiments 1-3. The two major sources of uncer-
tainty in the calculations of B are the measurements of the
sliding velocity (£20%) and the static coefficient of friction
between the panel and the plate (£50%) (Cohen and others,
2000). This gives an uncertainty of about £20% for BY, and
about £30-40% for B, depending on the value of n.

In Table 5, the value of BY is always less than the value
of B®. If our assumptions in the numerical model are cor-
rect, the two values of B should coincide for some value of n
(within the limits of uncertainty). This would have allowed
us to determine 7 directly. This, however, was not possible.
The difference between B® and B is >50% for n =1, and
>35% for n > 1; for n =1 this exceeds the uncertainty in
the measurements. For n > 1, some values of BY and B?
overlap, but most do not. Of the key assumptions made in
the model, namely, that ice is a power-law fluid and that it
slides without friction on the bed, neglecting friction at the
bed is probably responsible for the discrepancy in the two
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Table 5. Values of B"” and B in Pa s"" as a function of n,for

each experiment

Cohen: Rheology of ice at the bed of Engabreen

Table 6. Comparison of B_for n = 3 in Pas"” with other

values of B for clean temperate ice

Exp. n 1 15 2 3 4 Bx10"  Source Comments
) 10 9 8 7 6
1 BQ) 59 x 1010 1.2 x 109 1.5 % 103 1.9 x 107 71 % 106 19-4.1 This paper Flow past obstacle
B 11710 1810 25 x10 32x10 11510 34  Kohler (1993) Borehole closure at the bed of Engabreen
9 BY  84x10©° 14 x10° 1.8 x 108 24 %107 9.0 x10° 44  Hagen (1986) Borehole closure at the bed of Bondhus-
B? 183x10"°  23x10°  31x10®  41x107 153x10° breen, Norway
N " 0 5 , . 48  Budd andJacka (1989) Laboratory experiments
3 B' 86x10 L4 <10 1710 22x10 82x10” 48-6.8 Duval (1977) Laboratory experiments. Water content
B? 191x10° 24x10° 30x10° 40x107 147 x10° 0—1%

values of B. This friction is due to the interactions between
sediment particles and the bed. An increase in friction at the
bed will decrease the horizontal velocity gradient near the
cone and cause (N; — N;) to decrease. This will increase
BY. Such a simple reasoning cannot be used to predict the
behavior of B® because B® depends on the total force on
the obstacle F},, which is the sum of the integrated normal
and shear stress distributions. As the former decreases
monotonically with increasing friction, the latter probably
increases monotonically. Hence, one cannot predict how
the sum will behave. Numerical solutions of ice flow past
the obstacle with the no-slip condition at the bed indicate,
however, that B® < BY. Therefore, it is reasonable to
assume that the two values of B will be equal for some inter-
mediate frictional force. In Cohen and others (2000), fric-
tion on the panel was calculated using the model of Hallet
(1979, 1981) and was found to be only about 5% of the total
bed-parallel force. It appears that friction at the bed, how-
ever small, does affect the estimation of B. Friction was not
included in the numerical model because of the uncertainty
associated with friction laws and because our data could not
provide a means of evaluating these laws.

Another important observation is that in experiment 1
(1996) the values of B are smaller than in experiments 2
and 3 (1997). This is due to the lower normal stresses and
bed-parallel force measured in 1996. The difference between
experiments 1 and 2 is about 20% for BY and about 25%
for B, This is about equal to the error in the calculation
of BY and slightly less than the error in B®; hence it is pos-
sible that the change in B from one year to the next is just
measurement error. However, changes in normal stresses,
ice speed and direction were real. Cohen and others (2000)
suggested that these changes were due to variations in sedi-
ment concentration or water content which changed the
basal ice rheology.

DISCUSSION

In'Table 6, the values of B for n = 3 obtained herein are com-
pared with other measurements obtained from laboratory
and field experiments and from comparison of velocity data
with numerical models of glacier flow. Except for our meas-
urements, all data are for clean ice. The values obtained by
Hubbard and others (1998) and Gudmundsson (1999) are
substantially higher than others. Both of these values were
obtained from large-scale three-dimensional ice models as
the best fit to velocity data. Values of B are smallest for
laboratory experiments (Duval, 1977; Budd and Jacka, 1989)
and intermediate for tunnel-closure (Nye, 1953) and bore-
hole-tilting experiments (Raymond, 1980). Ice at the bed of
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Recommended value for 0°C

Penelope rheometer

Tunnel closure at Jungfraufirn, Switzerland
Tilting of boreholes, Blue Glacier, WA,
US.A.

75  Gudmundsson (1999) Numerical model of Unteraagletscher,
Switzerland

33 Paterson (1994, p.97)
54-6.8 Meyssonnier (1989)

56  Nye (1953)

56  Raymond (1980)

159 Hubbard and others  Numerical model of Haut Glacier
(1998) d’Arolla, Switzerland

two Norwegian glaciers appears to be softer than that meas-
ured elsewhere. Both in Hagen (1986) and in Kohler (1993),
the data are obtained from closure of boreholes in clean ice.
The experiments were done at the bed of Bondhusbreen
beneath 160 m of ice and at the bed of Engabreen beneath
200 m of ice. Our debris-rich ice at Engabreen appears to be
softer than clean temperate glacier or laboratory ice. The
weakness of the debris-rich ice may be due to one or more of
the following: high water content, high sediment content, tex-
ture or preferred fabric orientation.

Effect of water content

Cohen (1999) measured the water content in the sediment-
laden ice and in the cloudy-ice layer above it. Although
there is a large margin of error, cloudy-ice was found to con-
tain about 1% water, while sediment-laden ice near the bed
contained >2.0%. Duval (1977) noted that water content
plays an extremely important role in controlling the viscos-
ity of temperate ice. An empirical equation relating B to the
water content is given in Lliboutry and Duval (1985, equa-
tion (32)). In our notation this equation is

1
) w
b= (0.2 10.2260 1 0.368 w) o w<1%, (1)
where B is in units of bars and years, € is the temperature in
°C and w is the water content in %. For § = 0°C and w =
0%, B =68 x10" Pas"’. Using this equation, and assuming
6§ = 0°C, the water content for B = 4.1 x10” Pas" (upper
bound for experiments in 1997) is w = 1.9%, while for B =
32 x10” Pas” (upper bound for 1996) it is w = 4.7%. The
first value is reasonable, although it is already beyond the
range of validity of Equation (31). For lower bounds of B,
the results do not make any sense. Hence, although water
plays an important role in lowering the value of B, it does
not appear to be sufficient, by itself, to explain our results.

Effect of fabric and texture

Samples of cloudy ice and debris-rich ice above the bed were
collected near the door. Thin sections were made by J.-L. Tison
at the Université Libre de Bruxelles, Belgium, using the
diamond wire-saw apparatus, and analyzed by Cohen
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(1999). c-axis orientations were determined on a Rigsby
stage following standard procedures (Langway, 1958).

Fabric in the basal ice sequence changes gradually from a
strong three-maximum one in the cloudy-ice layer to an
isotropic fabric in the sediment-laden ice where sediment
concentrations are highest. Hence, the hypothesis that the
softness of the ice is due to a strong preferred orientation is
unfounded. As sediment concentration increases near the
bed, the thin sediment layers become thicker, more continu-
ous and more frequent. In addition, average crystal cross-sec-
tional area decreases from 50 mm? in the clean ice to 7 mm?
in the dirty ice, perhaps because sediment grains act as
pinning points, inhibiting boundary migration (Nicolas and
Poirier, 1976, p.167). Between sediment layers are bands of
clean ice. Ice crystals in the clean bands commonly span the
distance between sediment layers. In some cases, an ice
crystal will extend across such a sediment layer. This is more
common in samples with lower sediment concentration
where sediment layers are often discontinuous. In a few
instances, a crystal extending across such a sediment layer
shows evidence of shearing along the sediment layer.

Owing to intermolecular interactions (Dash and others,
1995), water is present around sediment particles and at the
interface between a sediment layer and a clean-ice band. This
thin water film will lubricate these interfaces. We hypothesize
that sediment layers with unbound water surrounding them
act as weak shear planes. This was suggested by Echelmeyer
and Wang (1987) for cold ice near the melting temperature.
As implied by the shearing of an ice crystal spanning such a
layer, preferential sliding apparently occurs on these planes,
causing significant weakening of the ice. Further studies of
fabric and texture evolution as ice flows past obstacles are
needed to confirm this hypothess.

CONCLUSIONS

A three-dimensional finite-element model was used to ana-
lyze field measurements obtained in 1996 and 1997 by Cohen
and others (2000) at the bed of Engabreen as dirty basal ice
flowed past an instrumented obstacle. Comparison of the
results from the numerical model with the measured normal
stress across the obstacle, on the one hand, and the measured
bed-parallel force, on the other, yielded two estimates of the
pre-exponential factor B. These two estimates gave different
values of B, probably because friction at the bed, although
small as estimated from Hallet’s (1979, 1981) theory in Cohen
and others (2000), was not included in the model. Hence, a
range of B values was obtained. For n = 3, B was between
19%10” and 3.2 x10” Pas' in 1996, and between 2.2 x 10
and 4.1 x10” Pas" in 1997. Different values were obtained in
1996 and in 1997 due to variations in the quantities measured
in the field. It is not clear whether these differences reflect real
differences in the characteristics of the basal ice. All these
values are lower than measurements obtained elsewhere for
clean temperate glacier and laboratory ice. The value of the
power-law exponent, n, could not be determined, in part
owing to small frictional forces between the ice and the bed
that were not taken into account in the numerical model.
Despite high water content (>1%), the enhanced melt-
ing-refreezing mechanism around liquid inclusions in clean
ice proposed by Lliboutry and Duval (1985) is, by itself, not
sufficient to explain the low values of B. Fabric studies reveal
that the sediment-laden ice is almost isotropic, indicating that
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weak ice is not the result of a strong preferred orientation.
Instead, the combined measurements of water content and
of fabric and texture of the sediment-laden ice suggest
another deformation mechanism for the weak ice layer, pre-
viously put forward by Echelmeyer and Wang (1987): sedi-
ments found to collect in layers a couple of millimeters thick
are separated by layers of ice of similar thickness; unbound
water at the sediment/ice interface acts as a lubricant and
enhances sliding along these layers, thereby significantly low-
ering the ice viscosity.
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