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ABSTRACT. Measurements of snow properties across and 
down snow slopes have been used to calculate a safety 
margin - the difference between the basal shear strength 
and the applied static stress . Areas of basal deficit exist 
when the applied shear stress exceeds the basal shear 
strength (the safety margin is negative), and basal areas are 
pinned when the safety margin is positive. As the size of 
deficit increases, stresses within the overlying slab also 
increase, and these may be sufficient to cause an 
avalanche. 

Measurements made on five slopes (four of which had 
avalanched) were characterized by considerable spatial 
variability, and the safety margin has been treated as a 
random function which varies over the slope. Statistical 
models of Vanmarcke (1977[a], 1983) have been applied to 
determine the most likely size of deficit required for 
avalanching (95% confidence). In one case, an avalanche 
occurred when the length of deficit was only 2.9 m, and in 
the other cases the length was always less than 7 m. This 
size of deficit is small compared with the total area of 
many avalanche slopes which suggests that avalanches initiate 
from small zones of deficit, and makes it difficult to locate 
a deficit with just a few tests. 

The optimum sampling interval and number of tests 
required to yield an adequate estimate of the statistical 
parameters of the safety margin are also discussed. 

INTRODUCTION 

Because we can hope to make only a few 
measurements of snow strength and stress over any 
particular slope, we need to estimate the continuous spatially 
varying properties from a fin ite number of "point" 
measurements. Furthermore, we would like to minimize the 
number of measurements required to represent adequately a 
slope. Several techniques have been used to extrapolate 
properties over large areas from just a few measurements 
(e.g. Kriging - see Krige, 1966; or Monte Carlo 
simulations - see Harr, 1977, 503-54; or Nguyen and 
Chowdhury, 1985), and we have chosen a technique 
proposed by Vanmarcke (1977[a], 1983). 

A series df contiguous point measurements made at 
intervals over a slope · may be treated as a "stationary 
random process". Such a process can be characterized by a 
mean value, a variance or standard deviation, and a measure 
of the influence between adjacent measurements. The 
influence (or correlation structure) of a random process is 
commonly represented either by a correlation function or by 
a Fourier transform, but Vanmarcke (1977[a], [b] , 1983) has 
proposed a new approach using a "moving average" 
technique. A small amount of local averaging is allowed and 
this serves to smooth micro-scale fluctuations which can 
give rise to excessive sensitivity. Adjacent measurements are 
averaged to generate a locally averaged random function 
with a changed variance. The averaging procedure can be 
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extended over larger lengths to produce a family of 
functions. 

As an example of the extended averaging procedure, 
measurements of basal shear strength (taken from case 2 
discussed below) have been averaged and plotted in Figure 
la. The figure shows the original "point" measurements and 
also the measurements averaged over 2.67 and 6.23 m. As 
the averaging length is increased, fluctuations about the 
mean tend to cancel, causing the variance to diminish. The 
manner in which the variance diminishes is a reflection of 
the correlation between adjacent measurements, and a 
variance function is defined as the ratio of the variance of 
the locally averaged process to the variance of the original 
point process. For the example shown in Figure la, the 
variance function is: 

r 2 = var Cf hI. 
var Cfbo 

(I) 

where var Cfbo and var CfbL are respectively the variance of 
point measurements of shear strength, and the variance of 
measurements which have been averaged over length L. This 
function (plotted in Figure Ib) fully characterizes the 
correlation structure of the original process and contains the 
same information as a correlation function or a spectral 
density function. 

The decay in variance can be described in terms of a 
"scale of fluctuation", 6, which defines the scale at which 
increased averaging commences to have a significant 
influence on the variance. Numerous specific analytical 
models of the variance function can be used , and one of 
the simplest takes the form: 

r 2 = I 
6/ L 

for L 6, 
for L > 6. 

(2) 

This function provides a reasonable approximation of the 
variance function , especially when the averaging length 
exceeds about 26, and is also plotted for the example in 
Figure lb. 

Random processes for which 6 ... 0 have no long- term 
memory, and under extended local averaging the variance 
decay is in inverse proportion to L 2 (rather than L). This 
further simplifies calculations because values can be assumed 
to be independent. However, any random process may be 
sufficiently described by a mean, variance, and scale of 
fluctuation, making for simple derivations of the mean­
square derivative, mean threshold-crossing rates, and the 
probability distribution of extreme values. 

Physically, there exists an approximate relationship 
between 6 and the average length the point process is above 
(or below) its mean value. In fact, the half wavelength of 
the process, "1../2, can be approximated by (Vanmarcke, 
1977[a], 1983): 

)../ 2 = (n/ 2}Yl6 (3) 

z 1.256. 
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Fig . la. An example of how extended local averag ing of 
point measurements of a property can be used to generate 
a family of random processes . The upper plot shows 
"point" measurem ents of basal shear strength ( taken from 
case 2). These were measured over an area of about 0 .1 m 2 

and spaced 0.89 m apart , and were measured across the 
s lope. The lower plots show the point measurements 
averaged over 2.67 and 6.23 m . With increased a verag ing, 
the variance of successive functions diminishes. 
b. For the same example ( case 2), the lower plot shows 
how the ratio of the variance of the averaged values to the 
variance of the original point values can be used to 
construct a variance function ( marked by . ). The variance 
function can be approx imated by an analytical m odel 
(solid curve) to calculate a scale of fluctuation . For the 
basal shear- strength measurements shown, 6 = 1.3 m . 

Risk of local failure 
A potential slab avalanche can be described as a 

relatively stiff slab of snow overlying a weak layer (or 
weak interface between layers). We define the difference 
between the resisting basal shear strength (ab) and the static 
driving stress (SD) as a safety margin (SM), and a "basal 
shear deficit" to occur when the safety margin is negative. 
Areas where the safety margin is positive are called 
"pinned" areas. A deficit will cause the stresses within a 
slab to increase which may initiate slab-failure processes, 
particularly in cases where the strength of the slab is small 
(e .g. in low-density, shallow slabs). In this paper we 
consider the driving stress to comprise of the gravitational 
stress (T g - determined for the "infinite" slab condition) , 
plus any extra static slope-parallel stress (SE - such as the 
weight of a skier or cornice fall, etc.): 

Tg + SE 

pghsin e + SE 
(4) 

where p is the slab density, g is the gravitational 
acceleration, h is the slab depth, and e is the bed-surface 
angle. 

Con way and Abrahamson: Snow- slope stability 

The safety margin can be treated as a random process 
in the manner described above and is: 

(5) 

and for point locations, the probability of a basal shear 
deficit is therefore: 

(6) 

where SMo is derived from point measurements of basal 
strength (abo)' and driving stress (SDO) ' 

A localized point deficit may not be large enough to 
affect the stabil ity of a slope, and we are interes ted in 
deficits which extend over larger areas. The probability 
that a deficit will exist over an area A is: 

(7) 

where SM A is derived from measurements which have been 
averaged over an area A. 

If the random functions SM 0 and SM A can be 
described by normal distributions, the probabi~ can be 
represented by a standard normal variate. If SM A is the 
mean value of the averaged function , and SM A is the 
standard deviation, then the standard normal variate BA is: 

(8 ) 

The probability of a basal deficit (P A) can then be obtained 
by entering probability tables for normal distributions. As 
the avera~ area increases, the distribution becomes more 
defined (SM A decreases), and the probability of finding a 
deficit which spans that area decreases. 

Risk of slope (or ·system·) failure 
Equation (7) gives the probability of a deficit of area 

A at a specific location . For a slope or system failure, we 
are interested in the probability that a deficit will exist at 
any location over the whole slope. A convenient way to 
view this problem is by a "first-crossing" analysis in which 
crossings of a certain level by the process are considered . In 
our case, we are interested in a crossing of the zero-stress 
level by the safety-margin function. 

The simplest and commonly used model of this 
condition is to consider the crossings/ no-crossings as a 
binary random series which is 0 if the safety margin is 
positive, and I if the safety margin is negative. This type 
of counting process has a binomial probability function and 
is limited to functions which are not correlated (6 ... 0, and 
adjacent values are statistically independent). If the 
probabilities P A for each specific area of deficit (or 
"component") are equally likely, then for a total of N 
components (N = At/ A), the probability that a deficit exists 
somewhere across a slope of total area At is (Harr, 1977): 

(9) 

If adjacent components are correlated, Equation (9) 
gives a low estimate of probability and the correlation 
structure needs to be considered. Rice (1944) derived an 
expression to describe the expected rate of crossings by a 
one-dimensional Gaussian random process. The level to be 
crossed was assumed to be far from the mean value of the 
function which ensures crossings would be rare and 
therefore independent, and so a Poisson distribution can be 
used to describe the crossings. Vanmarcke (I 977[a), [b), 
1983) applied the moving average approach to Rice's work 
and, for an averaged Gaussian function, the mean rate of 
crossings per unit length (lolL) is: 

I ~]~ B 2 W ~ - - exp(- ..::1..). 
L 2rr 6 2 

(10) 

This expression describes crossings by a one-dimensional 
function which has been locally averaged over a length L ; 
BL is the standard variate of this function , and 6 is defined 
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by Equation (2). Over a total length Lt the probability of 
one crossing (or first crossing) by an averaged function is: 

for Lt > L. (11) 

PL is the probability of a local deficit of length L . (For 
derivation and analysis of the first-crossing results, see 
Crandall, and others (1966) and Yanmarcke (1975, 1983». 

Extension of Yanmarcke analysis to two dimensions 
In order to account for variation and correlation 

between properties both across and down slopes, a 
two-dimensional analysis is required. Vanmarcke (1983) 
showed how the moving-average techniques could be 
extended to multi-dimensional processes and still remain 
tractable. For a two-dimensional process, the appropriate 
variance function can be expressed as the product of two 
one-dimensional variance functions, each with a scale 5x 
and 5y- If the two one-dimensional functions are 
separable, for a function averaged over area A, Equation 
(10) may be rewritten to estimate the mean rate of 
crossings per unit area: 

_ BA _~ 
WA - 12 exp( ). 

(n32A6x 5y ) 2 
(12) 

For a total slope area of At, the probability of a crossing 
is: 

for At > A. (13) 

PAis the probability of a local deficit over area A. 
It is clear from either Equation (9) or Equation (13) 

that, for a given probability of a local deficit, the 
probability over the whole slope will increase with the area 
of slope. 

Clustering of crossings 
If the mean value of a random process is close to the 

level to be crossed, the probability of a single crossing 
increases, and crossings may not be independent. In these 
cases, more than one peak may occur during each crossing, 
causing "clumping" or "clustering" of values and the period 
the random function spends above (or below) the level 
increases . Furthermore, the interval between crossings also 
increases and Vanmarcke (1983) showed how the Poisson 
distribution could be adapted by using a "mean rate of 
crossings". In our case, clustering would increase the 
expected size of deficit, especially when BA < 2 . 

ANAL YSIS OF CASE HISTORIES 

Our measurements of basal shear strength (described 
fully in Conway and Abrahamson (1984» were made by 
isolating a column of snow from effects of side shear, 
compressive and tensile hold-up to a depth greater than the 
suspected shear plane, and then applying a force to fracture 
the column. The basal shear strength was taken to be the 
sum of the gravitational stress and the extra stress required 
for fracture. Each measurement (or "point" value) was made 
over an area of about 0.1 m 2 (the area was measured after 
each test) , and the distance between measurements varied 
from 0.6 to 0.89 m. At each site, as well as estimates of 
basal shear strength, we measured the bed-surface angle, 
average slab density, and depth of slab, and a summary of 
these data is shown in the Appendix. 

Measurements had been made on slopes at the head of 
Tasman Glacier (2130 m) in New Zealand. Of the five sets 
of data, one (case I, 19 September 1982) had avalanched 
naturally about 12 h prior to making the measurements, 
three (case 2, 13 July 1982; case 3, I August 1984; case 4, 
28 August 1984) were small avalanches which avalanched 
only after skiing near the crownwall, and the other (case 5, 
I August 1983) fractured locally after ski-loading, but did 
not avalanche. 

Statistical analysis of measurements 
Gubler (1978) suggested a log-normal distribution to 

describe the strength of force conducting elements within a 
snow-pack because strength cannot take negative values and 
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also bond and grain diameters in many sintered materials 
are often characterized by this distribution. However, the 
safety margin is likely to have a complex probability 
density function governed by the relative contributions from 
both the stress and the strength components. To simplify 
the calculations and because of the Central Limit theorem, 
we have used a normal distribution to describe the safety 
margin. 

Our method of measuring basal shear strength had 
definite upper and lower limits. For samples where the 
down- slope gravitational weight of snow exceeded the basal 
shear strength, the column failed before extra loading could 
be applied, and the strength was less than the gravitational 
weight. In some tests, we could not apply sufficient stress 
to fracture the sample. In order to use all measurements, 
including those above and below these stress levels, and still 
arrive at an unbiased estimate of population mean and 
variance, we made use of order statistics and "best linear 
estimate" techniques outlined by Sarhan and Greenberg 
(1962, p. 206-09). The estimates of population mean and 
standard deviation are made by multiplying each observation 
by an appropriate coefficient (tabulated by Sarhan and 
Greenberg for normal distributions of sample size 20 or 
less). Teichroew (in Sarhan and Greenberg, 1962, p. 
190-205) tabled expected values for an ordered normal 
distribution with a specific mean and standard deviation. We 
used these tables to obtain the "censored" values (values 
lying above the upper, and below the lower stress levels), 
and then used a random-number chart to assign the 
censored values to a spatial location on the slope. For these 
slopes, 35 shear measurements (out of a total of 87) were 
censored values. 

The measurements of shear strength are characterized 
by considerable spatial variability, and case 2 is shown as 
an example in Figure la. Point measurements (including 
censored values) are plotted in the upper curve, and the 
lower curves are derived from measurements which have 
been averaged over 2.67 and 6.23 m. Using the five sets of 
point measurements, the pooled standard deviation of the 
shear-strength values was about 50%, which emphasizes that 
a single measurement cannot adequately describe the mean 
value. 

Similar plots can be constructed for the other cases, 
and also for other snow properties. These also vary spatially; 
for example, the pooled standard deviation of the slab-dep.th 
measurements across slopes was about 24%, and this would 
result in variations of the applied gravitational stress. 

Calculations of safety margins 
From Equation (5) the safety margin of a "point" area 

of size Ao is: 

SMgo = [Fs/ Ao + (pghsin 9)01 - (pghsin 9)0' (14) 

The subscript 0 denotes point measurements, Fs is the 
extra load required to shear a column of area Ao' When Fs 
was less than zero (the column fractured without additional 
force) or was greater than our physical limits, the first 
expression in Equation (14) (basal shear strength) was 
estimated using the statistical procedure described above. 
The second term is the gravitational driving force, and 
calculations of the safety margins in this manner effectively 
account for the influence of density, depth, and bed-surface 
angle, as well as basal shear strength. Figure 2 shows a plot 
of point values for each case. Negative values of the safety 
margin indicate areas of basal deficit, while positive values 
indicate areas of basal pinning. 

Point values of the safety margin can be averaged over 
increasing lengths to generate a family of functions, each 
with a reduced standard deviation. Again, we use case 2 as 
an example and show mean values and standard deviations 
of averaged safety margins in Table I. These values were 
calculated considering loading from gravity alone, and point 
measurements were spaced 0.89 m apart. 

Calculations of the standard normal variate and the 
variance ratio (from Equation (1» were made for each 
function, and the analytical model (Equation (2» was fitted 
to the variance ratio. For this case, a scale of fluctuation of 
1.2 m provided the best fit to measured values, indicating 
that adjacent safety-margin values do show some correlation. 
These values are also shown in Table I. 
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Fig. 2. For each case. point yalues of the safety margins 
have been plolled across or down slopes. These 
safety-margin yalues have been calculated from the 
difference between the basal shear stress and the 
grayitational load. A basal deficit exists when the safety 
margin is negative, and basal pinning occurs when the 
safety margin is positive. Additional loading from a skier 
will decrease the safety margin from those shown. 

Probability of a deficit over a slope 
The standard variates in Table I define the probability 

of a local deficit. To extend the analysis to the whole 
slope, we have assumed that the scale of fluctuation 
down-slope was the same as that across-slope, and that the 
length and width of deficit areas are equal. For three of 
the five sets of measurements, the safety margin fluctuated 
rapidly over short distances and the scale of fluctuation was 

Conway and Abrahamson: Snow-slope stability 

shorter than the sampling interval. This means that adjacent 
values were essentially uncorrelated and can be considered 
to be statistically independent (cases I, 4, and 5). In these 
cases, Equation (9) has been used to determine probability 
values for deficits of increasing areas and these are shown 
in Table 11 (the length dimension is shown for convenience). 
Measurements from cases 2 and 3 did show some correlation 
and Equation (13) has been used to determine the 
probabilities (also shown in Table 11). 

Although the probability of a local deficit may be 
small, if the slope size is large, the probability of one such 
deficit may be high. This is especially true in case I where 
the probability of a local deficit 2.8 m long was only 
2 x 10-3 , but the probability of the deficit eXlstlDg 
somewhere over the slope (area = 1.2 x 10· m2) was 0.96. 
Table 11 shows that, as the size of deficit is increased, the 
probability diminishes. We have chosen 95% probability as a 
suitable risk of a large deficit occurring and define this as 
the "likely deficit length". This does not preclude a deficit 
of larger length which could occur either by clumping 
described above or because the 95% probability level is 
arbitary and may be too high. 

The probabilities shown in the second column of Table 
11 have been calculated considering gravitational loading only 
and so represent the probability of a deficit occurring 
naturally. The likely length differed for each slope: 2.9 m 
(case I), 6.2 m (case 2), 2.7 m (case 3), 2.6 m (case 4), and 
about 2.0 m (case 5). Of the five cases, only case I had 
avalanched naturally_ The other cases are considered below, 
but these measurements suggest that a likely deficit 2.9 m 
long was sufficient for avalanching in case I, while likely 
deficit lengths less than 2.7 m were not sufficient to cause 
avalanches in cases 3, 4, and 5. Case 2, with a much 
longer (gravitational) likely deficit, does not fit this pattern, 
and using these arguments should have avalanched naturally. 
It is interesting to note that for case 2, if adjacent areas 
were assumed independent, the likely length was 4.2 m 
rather than 6.2 m, which indicates that neglecting to account 
for the correlation underestimates the size of the basal 
deficit. 

Extra loading from a skier 
In three of the cases we ski-released the avalanches 

from near the crown region. Although it is likely that 
dynamic loading would affect failure mechanisms, we 
consider only static effects by assuming that a skier 
jumping would shock-load an area by about four times his 
body weight. The extra load was taken to be 280 kg 
distributed along a minimum of 2 m (a typical length of 
ski). When considering areas less than 2 m square, we have 
taken the load per unit area to be proportionally less, and 
for larger areas the load was taken to be evenly distributed 
over that area. Extra loading may contribute significantly to 
the driving-stress term, especially when the slab is 
low-density and/ or shallow. This reduces the safety margin 
and small or negative values imply that a local deficit is 
likely at all locations over the slope . 

The three avalanches which were artificially triggered 
(cases 2, 3, and 4) were released by a skier at a random 
location on the slope (near the crownwall zone); he did not 
ski the entire slope but effectively loaded just one 
component. Case 5 was also subjected to similar skier 
loading but did not avalanche. The total probability of a 
deficit in these cases is therefore the sum of the probability 
of the local deficit induced by the skier, plus the 
probability evaluated for the unloaded section of slope. For 
stability estimates in other situations, the length of path 
taken by a skier, and the number of skiers would need to 
be considered in order to determine the number of 
components affected by extra loading. 

These probabilities are listed in the third column of 
Table 11, and comparison with the probabilities in the 
second column shows that skier loading increased the likely 
(0.95 probability) length of deficit from 6.2 m to about 
6.8 m (case 2); 2.7 m to about 7 m (case 3); 2.6 m to about 
4 m (case 4); and 2 m to just greater than 3 m (case 5). 
These results suggest that for these cases avalanching 
occurred if the likely length of deficit was just greater than 
3 m_ 

As previously mentioned, if the probability of a local 
deficit is high, then such areas are likely to cluster to form 
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TABLE. I. VALUES OF THE SAFETY MARGIN (CALCULATED FOR CASE 2 WITH 
GRA YIT A TIONAL LOADING ONLY) ARE SHOWN AS AN EXAMPLE OF THE AVERAGING 
PROCEDURE. POINT VALUES HA YE BEEN A YE RAGED OVER INCREASING LENGTHS TO 
GENERATE A FAMILY OF FUNCTIONS, EACH WITH A REDUCED STANDARD DEVIATION. A 
STANDARD NORMAL VARIATE HAS BEEN CALCULATED FOR EACH FUNCTION, AND THE 
RA TIO OF THE Y ARIANCE OF THE AVERAGED FUNCTION TO THE VARIANCE OF THE 
POINT FUNCTION IS ALSO SHOWN. THE VARIANCE FUNCTION CAN BE APPROX IMATED BY 

AN ANALYTICAL MODEL (EQUATION (2)) AND PROVIDED THE BEST FIT WHEN 6 = 1.2 m 

A veraging Mean saf ety Standard Standard V ariance Analy tical 
length margin d eviation variate ratio model of r 2 

L 
2 

SMg SMg 8g r (6 = 1.2 m) 

m 

0 230 479 0.48 1.0 1.0 
0.89 255 418 0.61 0 .76 1.0 
1.78 273 380 0 .72 0 .63 0 .67 
3.56 327 286 1.14 0.36 0.34 
5.34 355 252 1.41 0 .28 0 .22 
7.12 361 151 2.38 0 .10 0 .17 

T ABLE H. PROBABILITIES THAT A DEFICIT WILL EXIST SOMEWHERE OVER THE SLOPE 
ARE SHOWN FOR DEFICITS OF INCREASING AREA (WE SHOW THE LENGTH DIMENSION FOR 
CONVENIENCE). THE PROBABILITIES IN THE SECOND COLUMN HAVE BEEN DETERMINED 
CONSIDERING GRA VIT A TIONAL LOADING ONL Y, WHILE THE PROBABILITIES IN THE 
THIRD COLUMN ALLOW FOR SKIER LOADING. FOR EACH CASE, THE SLOPE AREA At AND 
THE SCALE OF FLUCTUATION 6 IS ALSO SHOWN. THE CALCULATIONS WERE MADE 
ASSUMING THE LENGTH AND WIDTH OF DEFICIT ZONES ARE EQUAL AND, WHE RE 6 WAS 
SHORTER THAN THE SAMPLING INTERVAL, MEASUREMENTS WERE TAKEN TO BE 
ST A TISTICALL Y INDEPENDENT. OF THESE, CASE 1 A V ALANCHED NA TURALL Y; CASES 2, 3, 
AND 4 A V ALANCHED WITH EXTRA LOADING FROM A SKIER, AND CASE 5 FRACTURED 

LOCALL Y BUT DID NOT A V ALANCHE AFTER SKIER LOADING 

Length of 
deficit 

L 

m 

Case I 2.1 
At = 1.2 x 104 m2 2.8 
6 = 0.2 m 4.2 
). = 0.5 m 

Case 2 
At = 600 m2 

6 = 1.2 m 
). = 3.0 m 

Case 3 
At = 90 m2 

6 = 0.9 m 
). = 2.25 m 

Case 4 
At = 120 m2 

6 = 0.4 m 
). = I m 

Case 5 
At = 108 m2 

6 = 0.2 m 
). = 0.5 m 

5.34 
6.23 
7.12 
8.01 

2.1 
3.5 
5.6 
7.0 

2.4 
3.0 
3.6 
4.2 
5.4 

1.5 
2.25 
3.0 
3.75 
4.5 
5.25 

Probability of deficit 
over the slope 
( gravity load ) 

1.0 
0.96 
0.18 

1.0 
0.95 
0.68 
0.22 

0.97 
0.90 
0.77 
0.65 

0.98 
0.80 
0.52 
0.45 
0.31 

1.0 
0.82 
0.20 
0.19 
0.02 
<10-4 

Probability of defi cit 
over the slope 
( plus extra load ) 

1.0 
1.0 
0.70 
0.22 

1.0 
1.0 
1.0 
0.96 

1.0 
1.0 
1.0 
0.81 
0.56 

1.0 
1.0 
1.0 
0.62 
0.17 
2 x 10-4 
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a deficit area which would be larger than that predicted by 
theory. This condition is especially likely in the cases which 
were loaded by a skier. 

DISCUSSION AND IMPLICA TIONS FOR STABILITY 
ASSESSMENT 

Sampling errors 
It is possible that our measurements around the 

peripheries of avalanched slopes do not adequately represent 
the strength values (and the variability) for the entire slab, 
and our method of testing may induce a bending moment 
at the shear layer. Furthermore, the measurements were 
done with rates, size of sample, etc., which were 
convenient, and not necessarily those applicable to the 
particular avalanche. We hoped to keep the measurements 
self-consistent by making measurements over 0-5 s for 
failure, but snow-strength properties vary significantly with 
strain history and strain-rates. We are uncertain of the 
magnitude of this influence which is likely to provide a 
relatively constant error and for these reasons the strength 
measurements should be considered as an index only. 

We suspect that the error in measuring the force 
required to shear a column and measuring the area of the 
shear plane each to be about 10%. This would result in a 
total measuring error of about 14%, which would fluctuate 
over short scales (between measurements). The pooled 
standard deviation of our estimates of point values of safety 
margin was about 170%, and in some cases the standard 
deviation from the mean was greater than 200%. Although 
both the magnitude and the correlation scale of this error 
would be contained in our estimate of the statistical 
parameters of the safety margins, we expect their influence 
to be small. 

Optimum sampling interval and number of measurements 
In an earlier paper we suggested that spatial variations 

of strength might originate from local air-flow patterns 
occurring at the time of deposition of the snow layer 
(Con way and Abrahamson, 1984). Potential avalanche slopes 
are commonly those lee to a prevailing wind, and above 
such slopes there is considerable turbulence. The nature of 
the turbulence commonly results in complex patterns of 
ripple forms on the snow surface with a variety of spacings 
and orientations. We have measured the wavelength of 
surface snow waves in the range from 10 mm to 15 m (and 
commonly less than 5 m). We suspect that, when such 
ripples are buried by subsequent snowfalls, the pattern may 
be preserved and reflected in the wavelength of the strength 
values. Somewhat different are the large dunes or drifts of 
snow which commonly form behind discontinuities in 
terrain . These are likely to cause changes in both the mean 
strength and the load. 

Equation (3) can be used to calculate an approximate 
wavelength for each of the sets of measurements of shear 
strength and these suggest that the five sets of 
measurements fluctuated with relatively short wavelengths (>.. 
was always less than 3.25 m). We are uncertain whether this 
short-scale fluctuation pattern is typical, but note that 
Sommerfeld (paper in preparation) also found variations over 
short distances (e.g. three-fold variation in measurements 
made over 5 m). The wavelength of shear-strength 
measurements down-slope (case I) did not differ 
significantly from those measured across slopes. Although 
we acknowledge that the pattern may vary depending on 
the orientation and spacing of the ripples or dunes (which 
in turn depend on the local wind direction), we have 
assumed for a first approximation that the strength 
distribution down-slope is similar to that across-slope. 

The pooled standard deviation of our measurements of 
slab depth (about 24%) was less than that of the 
shear-strength measurements (about 50%), and correlation 
scales of the depth measurements were longer (6 varied 
from 0.5 to 2.3 m) than those of the strength measurements 
(0.2-1.3 m). This is expected since slabs generally consist of 
several deposits of snow which would tend to average the 
fluctuations from each layer. The standard deviation and 
correlation scale of the safety-margin values contain 
information about variations in both the depth and shear 
strength, and these suggest that the safety margin also 
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fluctuated over short distances (wavelength less than about 
3 m; see Table Il). 

To estimate the mean, standard deviation, and 
correlation structure of a function, the optimum sampling 
interval needs to be about one-half the wavelength and 
made over at least one wavelength. If one could be certain 
that the mean safety margin was not changing across a 
slope and, if the observed pattern of short-scaled 
fluctuations is typical, these parameters could be estimated 
with a few closely spaced measurements (0.5 m) over at 
least 3 m. However, especially over large slopes, a more 
slowly varying trend in strength or loading may exist 
superimposed on the pattern of rapid fluctuations. For an 
adequate estimate, these cases would require several sets of 
contiguous measurements at intervals of one-half the scale 
associated with the slowly varying trend. In fact, in case 2, 
the mean safety margin changed by about 60% with spatial 
averaging which suggests the data were not strictly 
homogeneous (on the scale of our measurements), and the 
mean changed across the slope. In this case, several closely 
spaced measurements at only one location might have 
resulted in an unreasonably high (or low) estimate of the 
safety margin. 

Size of deficit zones and failure models 
Size 0/ deficit zones 

We acknowledge there are likely to be many factors 
besides the size of basal deficit which will affect the 
stability of a slope. Some of these, such as stress-strain 
properties and history, and dynamic effects, have been 
mentioned briefly. Also of importance may be the 
contribution from within the slab in resisting the loading 
forces. For instance, the tensile stresses required to fracture 
(or initiate fracture) of a deep, high-density slab are likely 
to be higher than for a shallow, low-density slab. The 
critical area of deficit is therefore likely to be different for 
each case, and our calculations do not account for any of 
these factors. We have considered only the area of deficit 
as a criterion for stability. 

In some cases, the probability of occurrence of a 
deficit decreased rapidly as the size of deficit was 
increased . For example in case I, the probability of finding 
a deficit of the same size as the avalanche (1.2 x 104 m2 ) 

was extremely small «<10-4 ) , and the most likely deficit 
area was only 2.9 m square or about 8.5 m2. This suggests 
that the fracture initiated from a small local deficit which 
enlarged to cause the avalanche. It should be noted that this 
was the only case where more than a couple of hours had 
elapsed between avalanching and testing, and it is possible 
that the snow may have strengthened during this interval 
(12 h) . 

The other avalanches were smaller and triggered by 
skier loading which effectively increased the size of the 
basal deficit (loading increased the 95% deficit area by over 
600% in case 3). These areas were always less than 7 m 
square (49 m2), but Table II shows that there is also a 
finite probability that a deficit could have existed over 
larger areas; for example, in case 2 skier loading could be 
expected to produce a deficit of about 64 m2 (22% 
probability), and in case 4, a deficit of about 30 m2 (56% 
probability). Although these areas represent a large 
proportion of the respective slopes, they are small when 
compared with many avalanche slopes and we suspect that, 
in general, avalanches may be triggered by relatively small 
areas of deficit (length less than 7 m and even as small as 
2.9 m). These small deficits would then enlarge by some 
mechanism to cause an avalanche . It would be useful to 
make further measurements to confirm whether this length 
is typical, and it is important to remember that with the 
number of tests being limited practically by time, it will be 
uncommon to find a deficit which spans as far as the 
length calculated. 

Although case 5 did not avalanche, it was very 
unstable. Table II shows that one of the main differences 
between this case and the others which did avalanche after 
skier loading was that the probability of a deficit over 
larger areas was very small (e.g. for a deficit 5.25 m long, 
the probability was 2 x 10-4). This, combined with hold-up 
from the slab or some other mechanism, may have inhibited 
avalanching. 
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Comparison with failure models 
Several models of slope failure have been proposed and 

most require a basal deficit to exist over some length. One 
simple model proposed by Perla and LaChapelle (1970) 
requires that the loss in shear support over half the length 
of a deficit zone is taken up in the tensile region. The 
deficit is pinned at each end and cannot enlarge . If the 
deficit is large and exists over a sufficiently long length, 
the induced stresses may exceed the tensile strength of the 
slab, resulting in a tensile failure. (For details of the model , 
see Perla and LaChapelle, 1970.) Although this model does 
not strictly represent conditions expected within a slab, it 
could be expected to provide an order-of -magnitude 
estimate of the length of deficit required to fracture a slab 
of particular depth and tensile strength. Using estimates for 
the tensile strength and Poisson's ratio of the slab, for the 
above cases these lengths varied from 2.2 to 7 m (before 
additional loading). These lengths are of the same order as 
those found in our probability analysis. 

In many cases, it is unreasonable to expect the size of 
the deficit zone to be fixed, and Palmer and Rice (1973) 
proposed a model for soil slopes which described the 
expansion of a basal shear deficit . The model requires the 
material in the basal zone to weaken or ·shear-strain soften" 
after a slip displacement. A deficit would result in strain 
energy being stored in the slab, and propagation would 
occur if this energy was in excess of that required to 
expand the flaw by further strain-softening. This has been 
applied to snow by McClung (1979, 1981), although he did 
not consider how the mechanism might initiate and he 
considered the case where the shear strength dropped from 
constant peak to residual values. Recently, Abrahamson and 
Con way (paper in preparation) used the J integral method 
proposed by Palmer and Rice to allow for variations of 
basal shear strength. They considered an area of basal 
deficit which was surrounded by a zone of higher strength, 
and calculated the minimum length of deficit which could 
provide sufficient energy to allow expansion through the 
pinned area. (For details of the models see Palmer and 
Rice, 1973; McClung, 1979, 1981; Abrahamson and Conway, 
paper in preparation.) It is unlikely that this model will 
represent conditions exactly either, but we have inserted 
typical values of snow properties in the Abrahamson and 
Conway adaptation, and calculated the minimum lengths 
required for expansion of a deficit. For the above cases, 
these lengths ranged from about 1.8 to 7.2 m before 
additional loading, which further supports the idea that 
avalanches initiate from small zones of deficit. 

CONCLUSIONS 

Stresses in regions surrounding a basal shear deficit will 
increase especially if the deficit exists over a large area. If 
the stresses become sufficiently large, they will cause either 
a local failure or expansion of the deficit and either of 
these mechanisms is likely to inItIate avalanching. By 
comparing applied static loads and basal shear strengths 
from areas beside avalanches, it was found that slopes 
typically contained areas of basal shear deficit and areas of 
basal shear excess (pinned areas) A primary consideration 
for slope stability is the pattern of the deficit and pinned 
areas, and statistical theories have been used to describe the 
variations of strength and stress measured across avalanche 
slopes. 

Measurements made over slopes were used to determine 
a probability distribution for the length of deficit. Several 
of the avalanches were triggered by a skier, and this effect 
was approximated by considering the extra static loading 
expected from a skier. Extra weight increases both the 
magnitude and the length of a deficit, and would be 
particularly significant when the slab was shallow and/ or of 
low density. In this study, slopes which had avalanched 
were estimated to have contained a deficit which spanned 
over at least 2.9 m (95% confidence). For slopes which had 
not avalanched, the expected length of deficit was usually 
shorter than 2.9 m. These lengths are small compared with 
the size of typical avalanche slopes. It should be noted that 
most of the measurements were made around relatively small 
avalanches, and it would be important to determine whether 
this pattern is also typical on larger slopes. 
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Also calculated for each slope studied were the lengths 
of basal shear deficit required to cause (a) tensile fracture 
of the slab; (b) expansion of the deficit through 
surrounding pinning areas. The lengths required for 
instability by these models were of the same order as the 
likely lengths (0.95 probability) calculated from our shear 
measurements. This strongly suggests that the avalanches in 
this study initiated from relatively small zones of deficit, 
and this may be a general feature of slab avalanches. 

The wavelength of the variations of the safety margin 
was less than 3 rn, and adjacent measurements commonly 
differed in magnitude by about 200%. In these cases, a 
single random test would not adequately describe the safety 
margin over the entire slope and a primary concern for 
stability assessment is to evaluate the variance and statistical 
correlations, as well as the mean value. If the pattern we 
have observed is typical, then a reasonable estimate may be 
possible only with several closely spaced tests (sample 
interval of about 0.5 m, and tests spanning at least 3 m). A 
rapid test for obtaining a quantitative measure of shear 
deficit over such a distance has been proposed recently by 
Conway and others (1986). 
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APPENDIX 

SUMMARY OF STRENGTH MEASUREMENTS 

Case 1. 19 September 1982, cornice wall: 19 shear-strength 
measurements (five fractured before the extra load was 
applied, or "fell out") down the flank wall of an avalanche 
that had released naturally about 15-24 h previously. The 
avalanche released naturally and followed a period of 
considerable snowfall and wind transport of snow (new snow 
depths of 1-2 m were measured), and this deposit overlay 
about I mm in diameter faceted crystals which formed a 
layer up to 40 mm thick. The avalanche was about 150 m 
wide and 80 m long. 

Case 2. 13 July 1982, cornice wall: 18 shear-strength 
measurements (nine fell out) across the crown wall of an 
avalanche that had been ski-released . Three tensile-strength 
measurements were also made. This was a medium~oft slab 
and the shear layer consisted of new snow including capped 
columns, columns, stellars, needles, and plate crystals which 
were less than I mm in diameter and partly rimed. The 
fracture occurred within the new snow (no discontinuity was 
observed). Ski-loading near the crown had caused local 
failure of a section about 4 m2 in area, which slid about 
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0.7 m before the rest of the slab fractured . The avalanche 
was about 30 m wide and 20 m long. 

Case 3. August 1984, cornicewall: 19 shear-strength 
measurements (nine fell out) across-slope This small 
avalanche (12.5 m wide and 7 m long) was ski-released from 
near the middle of the crown wall . The slab consisted of 
rounded, wind-affected, partly metamorphosed crystals. The 
slab sheared on some very soft snow (I mm in diameter 
partly rimed capped columns, columns , dendrites, and 
needles). 

Case 4. 28 August 1984, cornicewall: 20 shear-strength 
measurements (seven fell out) made across-slope. This small 
avalanche (12 m x 10 m) required ski-loading for release. 
The slope had been wind- loaded with heavily rimed and 
rounded snow crystals, and the slab slid at the upper 
boundary of a layer of soft low-density snow which also 
contained some I mm diameter faceted crystals. After 
making measurements across the fracture, a further section 
of the slope (about 5 m further north) was released by 
skiing. 

Case 5. 10 August 1983, cornicewall: II shear-strength 
measurements (five fell out) across the slope. Extensive 
jumping on the slope resulted in local failures and slabs 
about 2 m square slid a short distance. The fractures did 
not enlarge to cause an avalanche, but the potential 
avalanche area was about 12 m x 9 m. The shear layer was 
40-50 mm thick and consisted of 0.5- 1.5 mm diameter 
graupel at a temperature of -5.0°C. 

Particular details for each case are listed below: 

Case 1 Case 2 Case 3 Case 4 Case 5 

Spacing between 
measurements (m) 0.7 0.89 0.7 0.6 0 .75 

Bed-surface angle 34
0 

47
0 

35-56
0 

45-49
0 

35-50
0 

Slab density (kg/ m3
) 290 140 180 260 280 

Slab depth (m) 0.93 ± 0.1 0.43 ± 0.09 0.18 ± 0.03 0.25 ± 0.08 0.43 ± 0.16 
Mean poi nt SM go 495 ± 761 230 ± 479 81 ± 159 162 ± 348 238 ± 283 

MS . received 19 January 1987 alld in revised form 27 January 1988 
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