THE LOTOTSKY TRANSFORM AND BERNSTEIN POLYNOMIALS

J. P. KING

The Bernstein polynomials

(1)
$$B_n(f;x) = \sum_{k=0}^n f(k/n) \binom{n}{k} x^k (1-x)^{n-k}$$

associated with a function f defined on [0, 1] have been the subject of much recent research and have been generalized in several directions (1: 2; 5). The generalized Lototsky or $[F, d_n]$ matrix (3) has also been the subject of extensive research. The elements a_{nk} of this matrix are defined by

(2)
$$a_{00} = 1, a_{0k} = 0 (k \neq 0),$$
$$\prod_{i=1}^{n} \frac{y + d_{i}}{1 + d_{i}} = \sum_{k=0}^{n} a_{nk} y^{k},$$

where $\{d_i\}$ is a sequence of complex numbers with $d_i \neq -1$ (i = 1, 2, ...). It is the purpose of this note to point out a connection between the Lototsky matrix and the Bernstein polynomials which gives yet another extension of the latter.

It is convenient to make a change of notation. If we let $h_i = 1/(1 + d_i)$, equation (2) has the form

(3)
$$\prod_{i=1}^{n} (h_i y + 1 - h_i) = \sum_{k=0}^{n} a_{nk} y^k.$$

Now let $\{h_i(x)\}$ be a sequence of functions defined on [0, 1]. Let $a_{nk} = a_{nk}(x)$ be the elements of the Lototsky matrix given by (3) corresponding to the sequence $\{h_i(x)\}$. For each f defined on [0, 1] let

(4)
$$L_n(f;x) = \sum_{k=0}^n f(k/n) a_{nk}(x).$$

It is easy to see that if $h_i(x) = x$ (i = 1, 2, ...), then $L_n(f; x) = B_n(f; x)$. Therefore, in this sense, the functions $L_n(f; x)$ provide an extension of the Bernstein polynomials. The following theorem gives sufficient conditions on the sequence $\{h_i(x)\}$ to insure that $L_n(f; x) \to f(x)$.

THEOREM. For $f \in C[0, 1]$ let $L_n(f; x)$ be defined by (4) and let $\{s_i(x)\}$ denote the (C, 1) transform of the sequence $\{h_i(x)\}$. If $0 \le h_i(x) \le 1$ (i = 1, 2, ...)

Received September 1, 1964.

90 J. P. KING

and if $\{s_i(x)\}\$ converges uniformly to x on [0, 1], then

$$\lim_{n\to\infty} L_n(f;x) = f(x)$$

uniformly on [0, 1].

Proof. According to a theorem of Korovkin (4, p. 14) it is sufficient to show that

$$L_n(1;x) \to 1, \qquad L_n(t;x) \to x, \qquad L_n(t^2;x) \to x^2,$$

uniformly on [0, 1] and that L_n is a positive linear operator. It is clear that L_n is linear. Furthermore, $f \ge 0$ implies that $L_n \ge 0$ since $a_{nk}(x) \ge 0$ whenever $0 \le h_i(x) \le 1$.

We have

$$L_n(1;x) = 1$$
 $(n = 1, 2, ...),$
 $L_n(t;x) = \sum_{k=0}^{n} (k/n)a_{nk}(x),$

and

$$L_n(t^2;x) = \sum_{k=0}^n (k/n)^2 a_{nk}(x).$$

If we let

$$P_n = \prod_{i=1}^n (yh_i(x) + 1 - h_i(x))$$

and

$$r_i(x, y) = \frac{h_i(x)}{yh_i(x) + 1 - h_i(x)}$$
,

we have

(5)
$$P_n' = \sum_{i=1}^n r_i(x, y) \cdot P_n,$$

and

(6)
$$P_{n}^{"} = \left\{ \left[\sum_{i=1}^{n} r_{i}(x, y) \right]^{2} - \sum_{i=1}^{n} r_{i}^{2}(x, y) \right\} \cdot P_{n},$$

where the differentiation is with respect to y. Also

(7)
$$P_{n'} = \sum_{k=0}^{n} k a_{nk}(x) y^{k-1}$$

and

(8)
$$P_{n''} = \sum_{k=0}^{n} k(k-1)a_{nk}(x)y^{k-2}.$$

If we set y = 1 in (5) and (7), we obtain

(9)
$$\frac{1}{n} \sum_{k=0}^{n} k a_{nk}(x) = s_n(x).$$

Similarly, it follows from (6), (8), and (9) that

(10)
$$\frac{1}{n^2} \sum_{k=0}^{n} k^2 a_{nk}(x) = \frac{1}{n} \{ s_n(x) - t_n(x) \} + s_n^2(x),$$

where $\{t_n(x)\}\$ is the (C, 1) transform of the sequence $\{h_n^2(x)\}$.

It is easy to see that $0 \le h_i(x) \le 1$ implies $t_n(x) = O(1)$ so that $t_n(x)/n \rightarrow 0$ uniformly on [0, 1]. This proves the theorem.

COROLLARY. If $0 \le h_i \le 1$ and if $\{h_i(x)\}$ converges uniformly to x on [0, 1], then

$$\lim_{n\to\infty} L_n(f;x) = f(x)$$

uniformly on [0, 1].

Proof. The (C, 1) transform is a regular summability method and preserves uniform convergence so that $s_n(x) \to x$ uniformly on [0, 1].

It seems worth while to give an example of a sequence $\{h_i(x)\}$ that is not convergent to x while its (C, 1) transform is. It is not difficult to see that the following example suffices:

$$h_{i}(x) = \begin{cases} \frac{x}{2} & (0 \leqslant x \leqslant \frac{1}{2}), & \frac{3x}{2} - \frac{1}{2} & (\frac{1}{2} \leqslant x \leqslant 1), & i \text{ odd,} \\ \frac{3x}{2} & (0 \leqslant x \leqslant \frac{1}{2}), & \frac{x}{2} + \frac{1}{2} & (\frac{1}{2} \leqslant x \leqslant 1), & i \text{ even.} \end{cases}$$

The author wishes to express his appreciation to the referee for some helpful suggestions, which include the change of notation at the beginning of the article and the above example.

REFERENCES

- 1. E. W. Cheney and A. Sharma, Bernstein power series, Can. J. Math., 16 (1964), 241-252.
- J. J. Gergen, F. G. Dressel, and W. H. Purcell, Jr., Convergence of extended Bernstein polynomials in the complex plane, Pacific J. Math., 13 (1963), 1171-1180.
- A. Jakimovski, A generalization of the Lototsky method of summability, Michigan Math. J., (1959), 277-290.
- P. Korovkin, Linear operators and approximation theory (translated from Russian edition of 1959, Delhi, 1960).
- 5. W. Meyer-König and K. Zeller, Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89-94.

Lehigh University