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Parameter-test-ideals of Cohen–Macaulay rings

Mordechai Katzman

Abstract

We describe an algorithm for computing parameter-test-ideals in certain local Cohen–
Macaulay rings. The algorithm is based on the study of a Frobenius map on the injective
hull of the residue field of the ring and on the application of Sharp’s notion of ‘special
ideals’. Our techniques also provide an algorithm for computing indices of nilpotency of
Frobenius actions on top local cohomology modules of the ring and on the injective hull
of its residue field. The study of nilpotent elements on injective hulls of residue fields also
yields a great simplification of the proof of the celebrated result in the article Generators of
D-modules in positive characteristic (J. Alvarez-Montaner, M. Blickle and G. Lyubeznik,
Math. Res. Lett. 12 (2005), 459–473).

1. Introduction

This paper deals with various notions originating from the theory of tight closure, which we now
review briefly. Let S be a commutative ring of prime characteristic p; for each ideal J ⊆ S we define
the eth Frobenius power of J , denoted J [pe], to be the ideal of S generated by {ape | a ∈ J}. For
any ideal J ⊆ S we can then define its tight closure, denoted J∗, to be the set of all a ∈ S such
that for some c ∈ S not in a minimal prime of S we have cape ∈ J [pe] for all e � 0. Tight closure
is indeed a closure operation, in the sense that J ⊆ J∗ and J∗∗ = J∗; we refer the reader to the
seminal paper [HH90] and to [Hun96] for a description of tight closure and its properties.

Tight closure has played an important role in many recent advances in commutative algebra.
A short sample of its useful applications could include short proofs to some of the homological
conjectures, the study of singularities, positive-characteristic analogues of multiplier ideals and
many more.

Among the most interesting and useful results obtained early in the development of the theory
of tight closure is the existence of test-elements (cf. [Hun96, ch. 2]). Notice that the element c ∈ S
occurring in the definition of tight closure could depend on the ideal J and the element a. Test-
elements are elements c ∈ S not in any minimal prime such that, for all ideals J ⊆ S and all a ∈ S,
a ∈ J∗ if and only if cape ∈ J [pe] for all e � 0. Notice, for example, that J∗ = J for all ideals J ⊆ S
if and only if 1 is a test-element (in this case we refer to tight closure as being a trivial operation).
Test-elements exist in many rings of interest (e.g. reduced algebras of finite type over excellent local
rings) and they play a vital role. One also defines the test-ideal of S to be the ideal generated by
all test-elements.

In many applications one restricts one’s attention to local rings and to the tight closure of ideals
generated by systems of parameters. One then naturally considers the notion of parameter-test-
ideals: these are elements c ∈ S not in any minimal prime such that, for all ideals J ⊆ S generated
by a system of parameters and all a ∈ S, a ∈ J∗ if and only if cape ∈ J [pe] for all e � 0. It is
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worth noting that when S is a Gorenstein ring, the notions of parameter-test-ideals and test-ideals
coincide (cf. [Hun96, ch. 2]).

The calculation of tight closure is notoriously hard; no general algorithm is known and specific
calculations are carried out with technical ad hoc methods (for example, see [BK06] for such a
calculation of a seemingly simple example which settled a major conjecture). There is not even an
algorithm for deciding whether the tight closure operation in a given ring is trivial.

The main aim of this paper is to provide a description of parameter-test-ideals of local Cohen–
Macaulay rings of prime characteristic p. The nature of this description will be such that it will
allow us to give an algorithm for producing these ideals. As a result one also obtains an algorithm for
deciding whether a ring is F -rational, i.e. whether the tight closure of ideals generated by systems
of parameters is trivial; in the Gorenstein case this property is equivalent to the tight closure of all
ideals being trivial.

The results in this paper will follow from an analysis of Frobenius maps on injective hulls of
the residue fields E of the ring S under consideration, i.e. of additive maps f : E → E which
satisfy f(sm) = spf(m) for all m ∈ E and s ∈ S. This analysis is inspired by Lyubeznik’s work
on F -modules. Indeed, a crucial tool used here, namely, the functors ∆e defined in § 3 below, are
nothing but ‘the first step’ in the construction of Lyubeznik’s H functors in [Lyu97, § 4].

The study of S-modules with Frobenius maps can be elucidated by treating them as left modules
over a certain skew polynomial ring S[T ; f ]. A crucial ingredient in this paper is Sharp’s recent
study of these modules in general, and of the S[T ; f ]-module structure of the top local cohomology
module in particular. In [Sha07] the parameter-test-ideal of S was described in terms of certain
S[T ; f ]-submodules of the top local cohomology of S, and it is this description on which our explicit
description and algorithm is based.

Along the way we gain new insights into the S[T ; f ]-module structure of injective hulls of residue
fields which translate into new results. One such result is an algorithm for computing the index of
nilpotency (in the sense of [Lyu97, § 4]) of top local cohomology modules, which, together with the
results in [KS06], translate into an algorithm for computing the Frobenius closure of parameter
ideals in Cohen–Macaulay local rings and in view of [HKSY06] provide an important ingredient for
the corresponding computation in generalized Cohen–Macaulay rings as well. Another spinoff is a
very simple proof of a crucial ingredient in [ABL05] which together with Corollary 3.6 there gives
an alternative proof of the fact that for a power series ring R of prime characteristic, for all non-zero
f ∈ R, 1/f generates Rf as a DR-module.

2. Frobenius maps

Let S be a commutative ring of prime characteristic p and let M be an S-module. A Frobenius
map on M is a Z-linear map φ : M → M with the property that φ(sm) = spφ(m) for all s ∈ S
and m ∈ M . The fundamental example of a Frobenius map is the Frobenius map f : S → S given
by f(s) = sp. The Frobenius map allows us to endow S with a structure of an S-bimodule: as a
left S-module it has the usual S-module structure whereas S acts on itself on the right via the
Frobenius map. We shall denote this bimodule FS(S) and so, for all a ∈ F (S) and s ∈ S, s · a = sa
while a · s = spa, where · denotes the action of S. We can extend this construction to obtain the
Frobenius functor F sending any S-module M to FS(M) = FS(S) ⊗S M where S acts on FS(M)
via its left action on FS(S), so for s ⊗m ∈ FS(M) and t ∈ S we have t · (s ⊗m) = ts ⊗ m and
(s ⊗ tm) = s · t⊗m = tps ⊗m. We shall repeatedly (and tacitly) use the fact that the functor FS

is exact whenever S is regular [Kun69, Theorem 2.1].
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Iterations

φe = φ ◦ · · · ◦ φ︸ ︷︷ ︸
e times

of Frobenius maps φ : M → M result in maps φe : M → M which satisfy φ(sm) = spe
φ(m) for all

s ∈ S and m ∈M . More generally, we will consider the set Fe(M) of all Z-linear maps ψ : M →M
which satisfy ψ(sm) = spe

ψ(m) for all s ∈ S and m ∈ M . We can give Fe(M) the structure of an
S-module: for any ψ ∈ Fe(M) and a ∈ S we simply let aψ be the map sending m ∈ M to aψ(m).
Furthermore, we can define a product in F(M) := Fe(M) to be composition of Z-linear maps and
thus endow F(M) with the structure of an S-algebra.

The iteration of the Frobenius map on R leads one to the iterated Frobenius functors F i
R(−)

which are defined for all i � 1 recursively by F 1
R(−) = FR(−) and F i+1

R (−) = FR ◦ (F i
R(−)) for all

i � 1. These higher Frobenius functors are also exact whenever S is regular.
In this paper we will be interested in studying Frobenius maps on injective hulls of residue fields

and top local cohomology modules. An example of the latter when S is local and d-dimensional can
be obtained as follows. The top local cohomology module Hd

m(S) can be computed as the direct
limit of

S

(x1, . . . , xd)S
x1·...·xd−−−−−→ S

(x2
1, . . . , x

2
d)S

x1·...·xd−−−−−→ · · · ,

where x1, . . . , xd is a system of parameters of S. We can define a Frobenius map φ ∈ Fe(Hd
m(S)) on

this direct limit by mapping the coset a+ (xn
1 , . . . , x

n
d )S in the nth component of the direct limit to

the coset ape
+ (xnpe

1 , . . . , xnpe

d )S in the npeth component of the direct limit. It is not hard to verify
that this is indeed a well defined map from Hd

m(S) to Hd
m(S) and that it is a Frobenius map. An

important observation used in this paper is the fact that, when S is Cohen–Macaulay, the Frobenius
map φ ∈ F1(Hd

m(S)) described above generates the S-algebra F(Hd
m(S)) (cf. [LS01, Example 3.7]).

A different and fruitful way of thinking about Frobenius maps on M and their iterations is as
left module structures over certain skew-commutative rings. Given any commutative ring S we can
construct a skew commutative ring S[T ; f e] as follows. As an S-module it will be the free module⊕∞

i=0 ST
i and we extend the rule Ts = spe

T for all s ∈ S to a (non-commutative!) multiplicative
structure on S[T ; f e]. Given a Frobenius map φ ∈ Fe(M) on an S-module M , we can then turn
it into a left S[T ; f e]-module by extending the rule Tm = φ(m) for all m ∈ M . The fact that this
gives M the structure of a left S[T ; f e]-module is simply because, for all s ∈ S and m ∈M ,

T (sm) = φ(sm) = spe
φ(m) = spe

Tm = (Ts)m.

This approach has been taken in many previous papers, the most relevant to us being [Sha07].

3. A duality

In this section we set up the main tool, based on Matlis duality, which will enable us to explore
R[T ; f ]-module structures of certain Artinian modules.

Henceforth in this paper (R,m) will denote a complete local regular ring of characteristic p. We
shall denote the injective hull of R/m with E and (−)∨ shall denote the functor HomR(−, E).

Let M be any R-module and, for all m ∈ M , let em ∈ M∨∨ be defined by em(g) = g(m)
for all g ∈ M∨. Matlis duality states that, for all R-modules M which are either Noetherian or
Artinian, the map M → M∨∨ which sends m ∈ M to em is an isomorphism of R-modules. If now
M is an R[T ; f e]-module, this map endows M∨∨ with a structure of an R[T ; f e]-module defined by
Tem = eTm for all m ∈M , so now we may identify M and M∨∨ as R[T ; f e]-modules.

935

https://doi.org/10.1112/S0010437X07003417 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003417


M. Katzman

Since R is complete, a straightforward modification of [Lyu97, Lemma 4.1] provides us with
a natural, functorial isomorphism γe

M : F e
R(M)∨ → F e

R(M∨) defined for all Artinian R-modules.
We shall use this isomorphism repeatedly in this section.

Fix now an ideal I ⊆ R and write S = R/I. Let Ce be the category of Artinian S[T ; f e]-modules.
Let De be the category of R-linear mapsM → F e

R(M) whereM is a finitely generated S-module and

where a morphism between M
a−→ F e

R(M) and N
b−→ F e

R(N) is the following commutative diagram
of S-linear maps.

M

a
��

µ �� N

b
��

F e
R(M)

F e
R(µ)

�� F e
R(N)

In this section we construct a pair of functors ∆e : Ce → De and Ψe : De → Ce in such a way
that, for all M ∈ Ce, the S[T ; f e]-module Ψe ◦ ∆e(M) is canonically isomorphic to M and, for all
D = (N u−→ F e

R(N)) ∈ De, ∆e ◦ Ψe(D) is canonically isomorphic to D.

The functor ∆e is just the ‘first step’ in the construction of Lyubeznik’s functor HR,S, i.e. for
M ∈ Ce we have an R-linear map αM : F e

R(M) → M given by α(r ⊗m) = rTm for all r ∈ R and
m ∈ M . Applying (−)∨ to the map α one obtains an R-linear map α∨

M : M∨ → F e
R(M)∨. We now

define the ∆(M) to be the map

M∨ γM◦α∨
M−−−−−→ F e

R(M∨).

To define Ψe we retrace the steps above. Given a finitely generated S-module N and an R-linear
map a : N → F e

R(N) we define Ψe(−) to coincide with the functor (−)∨ as a functor of S-modules
giving Ψe(N) the additional structure of an S[T ; f e]-module structure as follows.

We apply ∨ to the map a above to obtain a map a∨ : F e
R(N)∨ → N∨. We next obtain a map

ε : F e
R(N∨) → F e

R(N)∨ as the following composition:

F e
R(N∨) ∼= F e

R(N∨)∨∨
(γ∨

N∨ )−1

−−−−−→ F e
R(N∨∨)∨ ∼= F e

R(N)∨.

We now obtain a functorial map b = a∨ ◦ ε : F e
R(N∨) → N∨ and we define the action of T on N∨

by defining Tn = b(1 ⊗ n) for all n ∈ N∨.

Theorem 3.1. The functors ∆e : Ce → De and Ψe : De → Ce are exact. For all M ∈ Ce, the
S[T ; f ]-module Ψe ◦ ∆e(M) is canonically isomorphic to M . For all D = (N u−→ F e

R(N)) ∈ De,
∆e ◦ Ψe(D) is canonically isomorphic to D.

Proof. The exactness of the functors follows from the exactness of the functors HomR(−, E) and F e
R.

To prove the second statement we notice that, for all M ∈ Ce, Ψe ◦ ∆e(M) is M∨∨, which we
identify as an S-module with M by identifying each m ∈ M with the em ∈ M∨∨ which we defined
at the beginning of this section. We want to show that this identification is an isomorphism of
S[T ; f e]-modules, and to do so we now describe Tem for all em ∈ Ψe ◦ ∆e(M). This will be the
image of 1 ⊗ em under the map

F e
R(M∨∨) i1−→ F e

R(M∨∨)∨∨
(γ∨

M∨∨ )−1

−−−−−−→ F e
R(M∨∨∨)∨ i2−→ F e

R(M∨)∨
γ∨

M−−→ F e
R(M)∨∨ α∨∨−−→M∨∨, (1)

where i1, i2 are the isomorphisms induced from the isomorphism of functors (−) ∼= (−)∨∨.
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The functoriality of γ(−) implies that we have the following commutative diagram.

F e
R(M∨∨∨)∨

γ∨
M∨∨

��

i2 �� F e
R(M∨)∨

γ∨
M

��
F e

R(M∨∨)∨∨
i−1
1 �� F e

R(M)∨∨

We may now rewrite the composition in (1) as

F e
R(M∨∨) i1−→ F e

R(M∨∨)∨∨
(γ∨

M∨∨ )−1

−−−−−−→ F e
R(M∨∨∨)∨

γ∨
M∨∨−−−−→ F e

R(M∨∨)∨∨
i−1
1−−→ F e

R(M)∨∨ α∨∨−−→M∨∨,

which simplifies into

F e
R(M)∨∨ α∨∨−−→M∨∨.

If we now start with D = (N u−→ F e
R(N)) ∈ De then

∆e ◦ Ψe(D) : N∨∨ → F e(N∨∨)

is given by the composition

N∨∨ a∨∨−−→ F e
R(N)∨∨ i3−→ F e

R(N∨∨)∨∨
((γ∨

N∨ )−1)∨−−−−−−−→ F e
R(N∨)∨∨∨ i4−→ F e

R(N∨)∨
γN∨−−−→ F e

R(N∨∨), (2)

where i1, i2 are the isomorphisms induced from the isomorphism of functors (−) ∼= (−)∨∨. Now
((γ∨N∨)−1)∨ = (γ∨∨N∨)−1 and the functoriality of γ(−) implies that we have the following commutative
diagram.

F e
R(N∨∨)∨∨

i−1
3

��

(γ∨∨
N∨ )−1

�� F e
R(N∨)∨∨∨

i4
��

F e
R(N∨∨)

γN∨−1

�� F e
R(N∨)∨

We may now rewrite the composition in (2) as

N∨∨ a∨∨−−→ F e
R(N)∨∨ i3−→ F e

R(N∨∨)∨∨
i−1
3−−→ F e

R(N∨∨)
γ−1

N∨−−−→ F e
R(N∨)∨

γN∨−−−→ F e
R(N∨∨),

which simplifies to a∨∨.

Throughout this paper, when e = 1 we will drop the subscript e from our notation. Thus C1 = C,
∆1 = ∆, etc.

As mentioned before, the functor ∆ is a building block for another functor described in [Lyu97,
§ 4 ]. This functor, denoted with HR,S , is a functor from C to the category of F -finite FR-modules
(see [Lyu97, §§ 1–3] for definition and properties) and is obtained as follows. For M ∈ C write
∆(M) = (N u−→ FR(N)). Now HR,S(M) is defined to be the direct limit of

N
u−→ FR(N)

FR(u)−−−−→ F 2
R(N)

F 2
R(u)−−−−→ · · · .

Various useful properties of Lyubeznik’s functor can be found in [Lyu97, § 4].

4. Frobenius maps on injective hulls

Henceforth in this paper we shall fix an ideal I ⊆ R and denote R/I with S.
In this section we will first apply the tools developed in § 3 to yield a description of possi-

ble S[T ; f e]-module structures of ES = ES(S/mS), the injective hull of the residue field of S.
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This description is not new: it is contained in [LS01, Proposition 5.2]. Later in the section we shall
use this description to describe explicitly the nilpotent elements of ES(S/mS).

Proposition 4.1. The S[T ; f e]-module structures on ES are given by

Ψe(R/I
g−→ R/I [pe])

where the map above is given by multiplication by some g ∈ (I [pe] : I).

Proof. Clearly, all R-linear maps R/I → R/I [pe] are given by multiplication by some g ∈ (I [pe] : I).
The proposition now follows from Theorem 3.1 and the fact that E∨ ∼= S.

The bijection between R-linear maps R/I → R/I [pe] and S[T ; f e]-module structures on ES has
been described explicitly in [Bli01, Chapter 3] as follows. First, notice that E, thought of as the
direct limit of

R

(y1, . . . , yn)R
y1·...·yn−−−−−→ R

(y2
1, . . . , y

2
n)R

y1·...·yn−−−−−→ · · · ,

where y1, . . . , yn is a system of parameters for R, has a natural Frobenius map given by

φ(r + (ys
1, . . . , y

s
n)) = rp + (ysp

1 , . . . , y
sp
n ) ∈ R

(ysp
1 , . . . , y

sp
n )R

.

Now if u ∈ (I [p] :R I), then uφ, which is also a Frobenius map on E, will restrict to a Frobenius
map on ES = annE I because, for all m ∈ annE I,

Iuφ(m) ⊆ I [p]φ(m) = φ(Im) = φ(0) = 0.

In [Bli01, Chapter 3] it is shown that all Frobenius maps on ES are obtained in this way.

Henceforth in this section we shall assume that ES has a given S[T ; f ]-module structure. Our next
aim is to describe the S[T ; f ]-submodules of ES . Later in the section we shall use this description to
describe explicitly the nilpotent elements of ES. We start by recalling that the set of S-submodules
of ES is {annES

J | J ⊆ S} (cf. [SV72, Theorem 5.21]). If we now asked for a description of
the S[T ; f ]-submodules of ES , the answer would obviously be ‘all annES

J which happen to be
S[T ; f ]-submodules of ES ’. With this in mind we define the following term.

Definition 4.2. An ideal J ⊆ S is called an ES-ideal if annES
J is an S[T ; f ]-submodule of ES.

An ideal J ⊆ R is called an ES-ideal if it contains I and its image in S is an ES-ideal.

Notice that for an ideal J ⊆ S, being an ES-ideal is equivalent to annES
J = annES

JS [T ; f ]. We
also note that when S is Gorenstein the notion of ES-ideals coincides with that of F -ideals studied
in [Smi95].

Theorem 4.3. Let u ∈ R be such that ∆(ES) is the map

R

I

u−→ R

I [p]
.

The ES-ideals in R consist of all ideals L ⊆ R containing I for which uL ⊆ L[p].

Proof. Assume first that L is an E-ideal. Apply the functor ∆ to the short exact sequence of S[T ; f ]
modules

0 → annES
L→ ES → E/ annES

L→ 0 (3)
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to obtain the following short exact sequence in D

0 �� L

I
��

u
��

R

I
��

u

��

R

L
��

u

��

0

0 �� L
[p]

I [p]
�� R

I [p]
�� R

L[p]
�� 0

(4)

and we must have uL ⊆ L[p].
On the other hand, if uL ⊆ L[p], we can construct the commutative diagram (4), and an

application of the functor Ψ gives back the short exact sequence (3) and we deduce that L is
an ES-ideal.

We now turn our attention to the nilpotent elements of ES , i.e. to the S[T ; f ]-submodule of ES

Nil(ES) = {m ∈ ES | T em = 0 for some e � 0}.
Recall that we can write Nil(ES) as annES

JS [T ; f ] for some ES-ideal J ⊆ R. Also, it is known
that there exists an η � 1 such that T η Nil(ES) = 0 (cf. [HS77, Proposition 1.11] and [Lyu97,
Proposition 4.4]). This invariant of S plays an important role in the study of the Frobenius closure
(see [KS06] and [HKSY06]). We now describe the ideal J and the index of nilpotency η.

Definition 4.4. For all e � 1 write νe = 1 + p+ · · · + pe−1.

Proposition 4.5. Let the map ∆(ES) = (R/I → R/I [p]) be given by multiplication by u ∈ R.
Consider ES as an S[Θ; f e]-module where, for allm ∈ ES , we define Θm = T em. The map ∆e(ES) =
(R/I → R/I [pe]) is given by multiplication by uνe .

Proof. For all e � 1 the R-linear map α : F e(ES) → ES defined by α(r ⊗ m) = rT em can be
factored as α = α1 ◦ · · · ◦αe where, for all 1 � i � e, αi is the R-linear map αi : F i(M) → F i−1(M)
defined by αi(r ⊗m) = r ⊗ Tm. Also, it is not hard to see that αi+1 = F (αi) for all 1 � i � e.

Now for all e � 1, the map ∆e(ES) = (R/I → R/I [pe]) is given by γe
ES

◦ α∨. It follows from the
construction of γe

ES
that, if we identify E∨

S with R/I, then γe
ES

: R/I [pe] → R/I [pe] is the identity
map. Now

α∨ = α∨
e ◦ · · · ◦ α∨

1 = F e−1(u) ◦ · · · ◦ u = upe−1 ◦ · · · ◦ u = uνe .

Theorem 4.6. Let the map ∆(ES) = (R/I → R/I [p]) be given by multiplication by u ∈ R. For

all e � 1 let Je be the smallest ideal of R which contains I and such that uνe ∈ J
[pe]
e . There exists

an α � 1 such that Jα = Jα+1, and for this α, annES
Jα coincides with the S[T ; f ]-module Nil(ES)

of nilpotent elements of ES . Furthermore, the index of nilpotency of Nil(ES), if not zero, is the
smallest such α.

Proof. For all e � 1 let Ne = {m ∈ ES | T em = 0} and write Ne = annES
Le for some ES-ideal Le.

Notice that ∆e(Ne) = (R/Le → R/L
[pe]
e ) and that the previous proposition implies that this map

is given by multiplication by uνe . It follows from the construction of ∆e(Ne) = (R/Le
uνe−−→ R/L

[pe]
e )

that this map is the zero map, i.e. uνe ∈ L
[pe]
e ; now the minimality of Je implies that Je ⊆ Le and

annES
Le ⊆ annES

Je.

On the other hand, the map R/Je
uνe−−→ R/J

[pe]
e is the zero map and so T e kills

Ψe(R/Je
uνe−−→ R/J [pe]

e ) ∼= annES
Je,

hence annES
Je ⊆ Ne = annES

Le and we deduce that annES
Je = Ne.
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Proposition 4.4 in [Lyu97] now implies that Nil(ES) = Nα for some α � 1, and since Nil(ES) is
the union of the ascending chain {Nα}α�1, we see that Nβ = Nα for all β � α. Also, if Nα = Nα+1

but Nil(ES) �= Nα, pick any non-zero m ∈ Nil(ES) \ Nα and let i � 0 be minimal such that
T im /∈ Nα. Now Tα+1(T im) = TαT i+1m = 0 so T im ∈ Nα+1 \Nα, a contradiction.

We shall see in § 5 how to compute this smallest ideal J ⊇ I for which uνe ∈ J [pe].

We conclude this section by exhibiting another ‘naturally occurring’ S[T ; f ]-submodule
of ES .

Theorem 4.7. Let the map ∆(ES) = (R/I → R/I [p]) be given by multiplication by u ∈ R. For all
α � 0 write Lα = (I [pα] :R uνα).

(a) The sequence of ideals {Lα}α�1 is an ascending sequence.

(b) If LA = LA+1 then Lα = LA for all α � A and LA is an ES-ideal.

(c) Let L be the stable value of {Lα}α�1. The quotient ES/ annES
L is nilpotent and, for any

ES-ideal K, ES/ annES
K is nilpotent if and only if K ⊆ L.

Proof. For all α � 1 the map gα : R/I → R/I [pα] given by the composition

R/I
u−→ R/I [p] up−→ R/I [p2] up2

−−→ · · · upα−1

−−−−→ R/I [pα]

is just the map gα : R/I uνα−−→ R/I [pα] given by multiplication by uνα and whose kernel is Lα. These
kernels form an ascending chain, so part (a) follows.

The first statement in part (b) follows from [Lyu97, Proposition 2.3(b)]. To prove the second
statement, we first notice that, since uI ⊆ I [p], upα

I [pα] ⊆ I [pα+1] for all α � 1, hence uναI ⊂ I [pα]

and we deduce that I ⊂ Lα for all α � 1. To show that LA is an ES-ideal it remains to prove that
uLA ⊆ L

[p]
A :

uLA = uLA+1

⊆ (I [pA+1] :R up+p2+···+pA
)

= ((I [pA])[p] :R (uNA)p)

= (I [pA] :R uNA)[p]

= L
[p]
A ,

where the penultimate equality is a consequence of the exactness of FR(−).

Let K be an ES-ideal for which ES/ annES
K is nilpotent and choose some e � 1 for which

T e(ES/ annES
K) = 0. An application of ∆e to the short exact sequence

0 → annES
K → ES → ES/ annES

K → 0

produces the following short exact sequence in De

0 �� K/I

uνe

��

�� R/I ��

uνe

��

R/K

uνe

��

�� 0

0 �� K [pe]/I [pe] �� R/I [pe] �� R/K [pe] �� 0

where the leftmost vertical map is the zero map, i.e. uνeK ⊆ I [pe] and hence K ⊆ Le.
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5. The �-closure

The statements of Theorems 4.6 and 4.7 in the previous section referred to certain smallest ideals
J ⊆ R with the property that J [pe] contains a given ideal. The aim of this section is to establish the
existence of these ideals and to describe an algorithm for computing them.

Throughout this section T will denote a Noetherian regular ring of prime characteristic p.

Definition 5.1. Let e � 1. For any ideal A ⊆ T we define

Ge(A) = {L | L ⊆ T an ideal, A ⊆ L[pe]}
and

Ie(A) =
⋂

L∈Ge(A)

L.

Note that in general there is no reason why Ie(A) should be in Ge(A). Recall that a T -module M
is ∩-flat if it is flat and if, for all sets of T -submodules {Nλ}λ∈Λ of a finitely generated module N ,

M ⊗T

⋂
λ∈Λ

Nλ =
⋂
λ∈Λ

(M ⊗T Nλ)

(cf. [HH94, p. 41]). Notice that free modules are ∩-flat.

Proposition 5.2. Let e � 1 and assume that T 1/pe
is a ∩-flat T -module. Let A ⊆ T be an ideal.

(a) Then Ie(A) ∈ Ge(A) and is the minimal element of Ge(A).
(b) Let B ⊆ T be any ideal. The smallest ideal J ⊆ T which contains both A[pe] and B is Ie(A)+B.

(c) If A = A1 + · · · +As then Ie(A) = Ie(A1) + · · · + Ie(As).

Proof. The first statement is an immediate consequence of the fact that the T -module T 1/pe
is

assumed to be ∩-flat. The second statement is straightforward.
An easy induction reduces the proof of part (c) to the case s = 2. Now A1, A2 ⊆ A so

A1, A2 ⊆ Ie(A)[p
e], and the minimality of Ie(A1) and Ie(A2) now implies Ie(A1), Ie(A2) ⊆ Ie(A),

hence Ie(A1) + Ie(A2) ⊆ Ie(A). On the other hand,

A = A1 +A2 ⊆ Ie(A1)[p
e] + Ie(A2)[p

e] = (Ie(A1) + Ie(A2))[p
e]

and the minimality of Ie(A) implies Ie(A) ⊆ Ie(A1) + Ie(A2).

Notice that if T is a polynomial ring K[x1, . . . , xn] for some field K of characteristic p > 0 or
a localization of it, then T 1/pe

is a free T -module and hence ∩-flat. When T is a power series ring
K[[x1, . . . , xn]], T 1/pe

is a free T -module when K
1/p is a finite extension of K, i.e. when K is F -finite,

but not in general. However, if the coefficients of a set of generators of the ideal A ⊆ T lie in an
F -finite field, the calculation of Ie(A) can be carried out over that field. In the general case we have
the following result.

Proposition 5.3. Let T = K[[x1, . . . , xn]]. The T -modules T 1/pe
are ∩-flat for all e � 1.

Proof. It is enough to prove the statement for e = 1 and we henceforth assume this case.
The fact that T 1/p is T -flat follows from [Kun69, Theorem 2.1].
The rest of this proof follows the idea described in [HH94, p. 41]: we show that if φ : (A, a) →

(B, b) is a flat local map of complete local rings then B is ∩-flat over A. Let N be a finitely generated
A module and let {Nλ}λ∈Λ be a set of submodules of N . We show that

B ⊗A

⋂
λ∈Λ

Nλ =
⋂
λ∈Λ

(B ⊗A Nλ).
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By replacing N with N/
⋂

µ∈ΛNµ and each Nλ with its image in N/
⋂

µ∈ΛNµ while using the fact
that B is A-flat we may assume that

⋂
λ∈ΛNλ = 0; after this reduction we need to show that⋂

λ∈Λ(B ⊗A Nλ) = 0.
If Λ is finite, the result follows directly from the flatness of B so we assume that Λ is infinite.

We now reduce to the case where Λ is countable by constructing a sequence {Ni}i∈N ⊆ {Nλ}λ∈Λ

for which
⋂

i∈NNi = 0. We construct this sequence inductively so that for each j � 0 there exists
an ij � 1 such that N1 ∩ · · · ∩ Nij + ajN =

⋂
λ∈ΛNλ + ajN ; it is easy to do this for j = 0 and,

if for some j � 0 we already defined N1 ∩ · · · ∩ Nij , we use the fact that the module N/aj+1N
satisfies the Descending Chain Condition to pick a finite set N1, . . . , N s ⊆ {Nλ}λ∈Λ such that
N1 ∩ · · · ∩ Nij ∩ N1 ∩ · · · ∩ N s + aj+1N =

⋂
λ∈ΛNλ + aj+1N ; we now extend the sequence to

N1, . . . , Nij , N
1, . . . , N s and set ij+1 = ij + s. For the sequence thus constructed we have⋂

i∈N
Ni + ajN =

⋂
λ∈Λ

Nλ + ajN

for all j � 0 and hence
⋂

i∈NNi =
⋂

λ∈ΛNλ = 0. Assume henceforth that Λ = N; we may replace
each Ni with N1 ∩ · · · ∩Ni and assume further that {Ni}i∈N is decreasing.

We now use Chevalley’s theorem (see [Nor53, Theorem 1 in ch. 5]) to deduce that for all j > 0
there exists an ij such that Nij ⊆ ajN . For all j � 1 we have

B ⊗A

⋂
i∈N

Ni ⊆ B ⊗A ajN ⊆ bjB ⊗A N = bj(B ⊗A N)

so
B ⊗A

⋂
i∈N

Ni ⊆
⋂
j∈N

bj(B ⊗A N) = 0.

Throughout the remainder of this section we will assume that T = K[[x1, . . . , xn]] or that T =
K[x1, . . . , xn] for some field K of prime characteristic p. We also fix an e � 1.

Proposition 5.2 reduces the calculation of Ie(A) to the case where A is principal, and this is the
content of the next proposition. This proposition has been proved in [ABL05] and we reproduce the
proof for the reader’s convenience.
Proposition 5.4. Assume that T is free over T p and let B be a free basis. Let g ∈ T and write
g =

∑
b∈B g

pe

b b where gb ∈ T for all b ∈ B. Then Ie(gT ) is the ideal generated by {gb | b ∈ B}.
Proof. If L ⊆ T is such that g =

∑
b∈B g

pe

b b ∈ L[pe] then we can find 	1, . . . , 	s ∈ L and r1, . . . , rs ∈ T

such that
∑

b∈B g
pe

b b =
∑s

i=1 ri	
pe

i . For all 1 � i � s we can now write ri =
∑

b∈B r
pe

b,ib where rb,i ∈ T
for all b ∈ B and we obtain ∑

b∈B
gpe

b b =
∑
b∈B

( s∑
i=1

rpe

b,i	
pe

i

)
b.

Since these are direct sums, we may compare coefficients and deduce that, for all b ∈ B, gpe

b =∑s
i=1 r

pe

b,i	
pe

i , hence gb =
∑s

i=1 rb,i	i and gb ∈ L. On the other hand, if gb ∈ L for all b ∈ B we clearly

have g =
∑

b∈B g
pe

b b ∈ L[pe], so we have shown that Ie(fT ) is the ideal generated by {gb | b ∈ B}.
The proposition above translates easily into an algorithm. Define

Λ = {(α1, . . . , αn) ∈ N
n | 0 � α1, . . . , αn < pe}

and for each λ = (α1, . . . , αn) ∈ Λ let xλ denote the monomial xα1
1 · · · · · xαn

n . Observe next that, if
Θ is a finite basis of K as a K

pe
-vector-space, then

B = {θxλ | θ ∈ Θ, λ ∈ Λ}
is a free basis for the T pe

-module T .
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We can now restate one of the statements of Theorem 4.6 as follows. The index of nilpotency of
ES , if not zero, is the index at which the descending sequence of ideals {Ie(uνeR+I)+I}e�1 stabilizes.
We can exploit this observation to give a very simple proof, pointed out to me by Lyubeznik, of a
crucial ingredient used in [ABL05]. Given any g ∈ R, consider the R[T ; f ]-module structure on ER

given by Ψ(R
gp−1

−−−→ R) (here we are taking I = 0 and S = R). The observation above now implies
that the descending chain

{Ie(gνe(p−1)R)}e�1 = {Ie(g(pe−1)R)}e�1

stabilizes. If we combine this with [ABL05, Corollary 3.6] we obtain an alternative proof of the fact
that for a power series ring R of prime characteristic, for all non-zero f ∈ R, 1/f generates Rf as
a DR-module.

More generally, if G is any m×m matrix with entries in R, we may endow Em
R with an R[T ; f ]-

module structure given by Ψ(Rm G−→ Rm). Denote the (i, j) entry of Gνe with g(e)
ij . It is not hard to

see now that, for all 1 � i, j � m,

{Ie(g(e)
ij R)}e�1

is a descending chain of ideals which stabilizes.
Before proceeding we notice that when T is a polynomial ring and W ⊂ T is a multiplicative

set, Proposition 5.4 implies that, for any ideal A ⊂ T , Ie(W−1A) = W−1Ie(A). Similarly, if m is the
irrelevant ideal of T and T̂ denotes the completion of T with respect to m, then Ie(AT̂ ) = Ie(A)T̂ .

Definition 5.5. Fix any u ∈ T . For any ideal A ⊆ T we define a sequence of ideals as follows:
A0 = A and Ai+1 = Ie(uAi) + Ai for all i � 0. Clearly this sequence is an ascending chain and as
T is Noetherian it stabilizes to some ideal which we denote with A�eu.

Proposition 5.6. Fix any u ∈ T and let A ⊆ T be an ideal. If B ⊆ T is an ideal containing A and
if uB ⊆ B[pe] then A�eu ⊆ B.

Proof. Let {Ai}∞i=0 be the sequence of ideals as in Definition 5.5. We show by induction that
Ai ⊆ B for all i � 0. Since A0 = A and A ⊆ B the claim is true for i = 0; assume that i � 0
and that Ai ⊆ B. Now uAi ⊆ uB ⊆ B[pe] and the minimality of Ie(uAi) + Ai now implies that
Ai+1 = Ie(uAi) +Ai ⊆ B.

The regular local ring R at the focus of this paper is a power series, hence it is of the form
K[[x1, . . . , xn]] for some field K of prime characteristic p. When A is expanded from the polynomial
ring T = K[x1, . . . , xn] and u ∈ T we want to compute A�eu by performing calculations in T rather
than R. Proposition 5.7 below shows how to do that.

Proposition 5.7. Let A be an ideal of T = K[x1, . . . , xn] and let u ∈ T . We have (AR)�
eu =

(A�eu)R.

Proof. Let {Bi}i�0 and {Ci}i�0 be the sequences introduced in Definition 5.5 whose stable values
are (AR)�

eu and A�eu, respectively. We will show that Bi = CiR for all i � 0 using induction on i.
First, C0R = AR = B0, so assume that i > 0 and that Bi−1 = Ci−1R. Now notice that since

uCi−1 ⊆ C
[pe]
i and Ci−1 ⊆ Ci we have uB i−1 = uCi−1R ⊆ C

[pe]
i R = (CiR)[p

e] and Bi−1 = Ci−1R ⊆
CiR, so the minimality of Bi implies that Bi ⊆ CiR. On the other hand, uCi−1R = uB i−1 ⊆ B

[pe]
i

implies that uCi−1 = uCi−1R ∩ T ⊆ B
[pe]
i ∩ T = (Bi ∩ T )[p

e] and Ci−1R = Bi−1 ⊆ Bi implies
that Ci−1 = Ci−1R ∩ T ⊆ Bi ∩ T , and the minimality of Ci implies that Ci ⊆ Bi ∩ T , hence
CiR ⊆ (Bi ∩ T )R ⊆ Bi.
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6. ES-ideals and special ES-ideals

Following [Sha07], we call an ideal K ⊆ S[T ; f ] a graded two-sided ideal if K =
⊕∞

i=0KiT
i for

ideals K0,K1, . . . of S. An important example is K = LS [T ; f ] for some ideal L ⊆ S. Let G be an
S[T ; f ]-module. An S[T ; f ]-submodule M ⊆ G is a special annihilator submodule if M = annGK
for some graded two-sided ideal K ⊆ S[T ; f ].

For any S[T ; f ]-submodule M ⊆ G we define the graded annihilator of M , denoted
gr-annS[T ;f ]M , to be the largest graded two-sided ideal contained in annS[T ;f ]M .

We call an ideal L ⊆ S a G-special ideal whenever LS [T ; f ] is the graded annihilator of some
S[T ; f ]-submoduleM ⊆ G, in which case LS [T ; f ] = gr-ann(annG LS [T ; f ]) (cf. [Sha07, Lemma 1.7];
notice that we extended slightly the definition of special ideals to the case where G is not necessarily
T -torsion-free).

Proposition 6.1. Assume that R is complete and that ES is T -torsion-free. An ideal L ⊆ R which
contains I is an ES-ideal if and only if LS is E-special.

Proof. Assume first that L is ES-special, i.e. LS [T ; f ] = gr-annN for some S[T ; f ]-submodule N of
ES , and since ES is assumed to be T -torsion-free, we have gr-annN = (0 :R N)S[T ; f ] (cf. [Sha07,
Definition 1.10]). We can also write N = annES

L′ for some ES-ideal L′ and

LS [T ; f ] = (0 :R annES
L′)S[T ; f ]

= (0 :R (R/L′)∨)S[T ; f ]
= (0 :R R/L′)S[T ; f ]
= L′S[T ; f ]

so L = L′ and is an ES-ideal.
If, on the other hand, L is an ES-ideal, i.e. if annES

L = annES
LS [T ; f ], then

gr-ann annES
LS [T ; f ] = (0 :R annES

LS [T ; f ])S[T ; f ]
= (0 :R annES

LS )S[T ; f ]
= (0 :R (R/L)∨)S[T ; f ]
= (0 :R R/L)S[T ; f ]
= LS [T ; f ]

and so L is ES-special.

7. The S[T ;f ]-module structure of HdimS
mS (S) and the induced structure on ES

In what follows we describe a natural S[T ; f ]-module structure on Hdim S
mS (S) and show how this

induces an S[T ; f ]-module structure on ES ; the following section will describe its relevance to test-
ideals.

We shall assume henceforth that S is Cohen–Macaulay with canonical module ω ⊆ S.
The short exact sequence 0 → ω → S → S/ω → 0 yields a surjection Hdim S

mS (ω) � HdimS
mS (S);

for any system of parameters x1, . . . , xd for S this map can also be described as the map

lim−→i�0
ω

xi
1ω + · · · + xi

dω
→ lim−→i�0

S

xi
1S + · · · + xi

dS

induced by the maps
ω

xi
1ω + · · · + xi

dω
→ S

xi
1S + · · · + xi

dS
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given by a + (xi
1ω + · · · + xi

dω) �→ a + (xi
1S + · · · + xi

dS). The natural action of Frobenius on
Hdim S
mS (S) given by

f(a+ (xi
1S + · · · + xi

dS)) = ap + (xip
1 S + · · · + xip

d S)

now lifts to an action on

ES
∼= lim−→i�0

ω

xi
1ω + · · · + xi

dω

given by

f(a+ (xi
1ω + · · · + xi

dω)) = ap + (xip
1 + · · · + xip

d ω)

and this S[T ; f ]-module structure on ES clearly makes the surjection ES � HdimS
mS (S) described

above into an S[T ; f ]-linear map.
If we apply ∆ to the S[T ; f ]-linear surjection ES � HdimS

mS (S) and identify E∨
S with R/I we

obtain the following commutative diagram with exact rows

0 �� HdimS
mS (S)∨ ��

u

��

R

I

u

��

0 �� FR(HdimS
mS (S)∨) �� R

I [p]

(5)

where u ∈ R, the second vertical map is multiplication by u and the first vertical map is given by
restriction of the second, i.e. also by multiplication by u. We deduce that, under the identification
of E∨

S with R/I, Hdim S
mS (S)∨ is identified with J/I for some ideal J ⊆ R containing I. This ideal J

must then satisfy uJ ⊆ J [p].
Our next step is to compute J and u effectively. Let Ω be the full pre-image of ω in R. Working

over R, the surjection ES = Hdim S
mS (ω) � HdimS

mS (S) can be written as ES = Hdim S
m (Ω/I) �

Hdim S
m (R/I). Write δ = dimR − dimS; recall that local duality states that the functors Hdim S

m (−)
and ExtδR(−, R)∨ are isomorphic and the surjection above is induced by applying either of these
functors to the inclusion ω ⊆ S. Applying the latter and a further application of (−)∨ yields the
injection ExtδR(R/I,R) ⊆ ExtδR(Ω/I,R) and so J/I ∼= ExtδR(R/I,R). This Ext-module can be
computed effectively and J can be recovered by computing a minimal presentation of this module.

To find the map u in (5) we use the fact that F(HdimS
mS (S)) is the R-algebra with one generator

corresponding to the S[T ; f ]-module structure defined above (cf. [LS01, Example 3.7]). Hence the
S-linear maps ExtδR(R/I,R) → FR(ExtδR(R/I,R)) form a rank-one S-free module and the generator
u of this free module can be computed explicitly from the generator of

(I [p] :R I) ∩ (J [p] :R J)
I [p]

(cf. [Bli01, ch. 3] and § 4).

8. The computation of parameter-test-ideals

Throughout this section we will assume that S = R/I is Cohen–Macaulay with canonical module
ω ⊆ S. We shall write H = HdimS

mS (S) and we will assume that ES is T -torsion-free. This last
assumption implies that H, being a quotient of ES by a special annihilator submodule, is also
T -torsion-free (cf. [Sha07, Lemma 3.1]). Recall now that [Sha07, Corollary 4.6] now states that
the parameter-test-ideal of S is the smallest H-special ideal of S of positive height. In this section
we relate the H-special ideals to ES-special ideals and describe an algorithm for computing the
parameter-test-ideal of S.
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First we note the following result.

Theorem 8.1. Assume that ES is T -torsion-free and write

H := HdimS
mS (S) ∼= ES

annES
J

where J ⊆ R is an ES-ideal. The H-special ideals are

{(L : J) | L ⊆ R is a ES-special ideal contained in J}.
Proof. This follows from Proposition 6.1 and [Sha07, Proposition 3.3].

We are now ready for the main theorem in this section.

Theorem 8.2. Assume that ES is T -torsion-free. Let c ∈ R be such that its image in S is a
parameter-test-element. The parameter-test-ideal τ of S is given by ((cJ + I)�u :R J)S.

Proof. Notice that (cJ + I)�u is an ES-ideal and that, since c ∈ ((cJ + I)�u : J), we have

ht((cJ + I)�u : J)S > 0.

Now

τ =
⋂

{K | K ⊂ S is an H-special ideal,htK > 0}
=

⋂
{(L :R J) | L ⊂ J is an ES-ideal,ht(L :R J)S > 0}

=
(⋂

{L | L ⊂ J is an ES-ideal,ht(L : J)S > 0} : J
)
,

so we see that τ ⊆ ((cJ + I)�u : J).
Also, c ∈ τ hence cJ ⊆ L for all ES-ideals L for which ht(L : J)S > 0 and Proposition 5.6

implies that (cJ + I)�u ⊆ L and hence that ((cJ + I)�u : J) ⊆ (L : J) for all ES-ideals L for which
ht(L : J) > 0. We conclude that ((cJ + I)�u : J) ⊆ τ .

In the case where ES is T -torsion-free, if we are given one parameter-test-element, we can now
compute the entire parameter test ideal of S as follows.

(i) Find the element u ∈ R as described in § 7 and use Theorem 4.6 to determine whether ES is
T -torsion-free. If ES is T -torsion-free proceed as follows.

(ii) Find the ideal I ⊆ J ⊆ R as described in § 7.
(iii) Given one parameter-test-element c, compute L = (cJ + I)�u as described in § 5.
(iv) The parameter-test-ideal of S is (L :R J)S.

We also note that the verification of whether ES is T -torsion-free is also algorithmic: the proof
of Theorem 4.6 shows that ES is T -torsion-free if and only if I1(u) + I = R.

9. Applications and examples

A particularly simple instance of the results of the previous chapters is the case where S is a complete
intersection, i.e. the case where I is generated by a regular sequence u1, . . . , us ∈ R. Now S = R/I
is Gorenstein, ES = HdimS

mS (S) (so the surjection described at the beginning of § 7 is an equality)
and ∆(ES) = (R/I → R/I [p]) is given by multiplication by u = (u1 · · · · · us)p−1 whose image in the
S-module (I [p] :R I)/I [p] generates it.

We call S F -injective if the natural Frobenius map on ES = Hdim(S)
mS (S) is injective, i.e. if

Nil(ES) = 0. We now recover Fedder’s criterion ([Fed83, Proposition 2.1]) which states that, with S
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as in the previous paragraph, S is F -injective if and only if u /∈ m[p] where u = (u1 · · · · ·us)p−1. The
crucial fact here is that ∆(ES) is the map R/I

u−→ R/I [p]. As in the proof of Theorem 4.6 consider
N1 = {m ∈ ES | Tm = 0} and write ∆(N1) = (R/L u−→ R/L[p]) for some ES-ideal L. We saw that
this map is the zero map, i.e. u ∈ L[p]. Fedder’s condition u /∈ m[p] is equivalent to the non-existence
of a proper ideal L ⊂ R for which u ∈ L[p] so it implies that N1 = annES

R = 0. If, on the other
hand, u ∈ m[p] then um ⊆ m[p], so m is an ES-ideal and, since the map R/m

u−→ R/m[p] is the zero
map, TΨ(R/m u−→ R/m[p]) = 0 and S is not F -injective.

We now describe a specific calculation performed using the methods in the previous sections.
All calculations described below were performed with Macaulay [GS08].

Let K be the field of two elements, R = K[x1, x2, x3, x4, x5], let I be the ideal of R generated by
the 2 × 2 minors of (

x1 x2 x2 x5

x4 x4 x3 x1

)
and let S = R/I. This quotient is reduced, two-dimensional, Cohen–Macaulay and of Cohen–
Macaulay type 3; we produce a canonical module by computing

Ext3R(S,R) ∼= Coker


x2 x1 0 0 x3 + x4 x4 x5 x4

0 0 x3 x4 0 0 x1 0
x5 x5 x5 x5 0 x2 0 x1


 ;

this is isomorphic to the ideal ω ⊂ S which is the image in S of the ideal Ω ⊂ R generated by
x1, x4, x5.

We now take J = Ω and compute the generator u of the S-module

(I [2] :R I) ∩ (J [2] :R J)
I [2]

;

this turns out to be

u = x3
1x2x3 + x3

1x2x4 + x2
1x3x4x5 + x1x2x3x4x5 + x1x2x

2
4x5 + x2

2x
2
4x5 + x3x

2
4x

2
5 + x3

4x
2
5.

We compute I1(uν1R) = R, hence ES is T -torsion-free. Now the parameter-test-ideal τ is computed
as ((cJ + I)�u : J) where c is randomly chosen to be in the defining ideal of the singular locus of S
and not in a minimal prime of I. This calculation yields τ = (x1, x2, x3 +x4, x4x5)R and we deduce
that S is not F -rational.
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