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Stratification in drying films: a
diffusion–diffusiophoresis model
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This research is motivated by the desire to control the solids distribution during the drying
of a film containing particles of two different sizes. A variety of particle arrangements in
dried films has been seen experimentally, including a thin layer of small particles at the top
surface. However, it is not fully understood why this would occur. This work formulates
and solves a colloidal hydrodynamics model for (i) diffusion alone and (ii) diffusion plus
excluded volume diffusiophoresis, to determine their relative importance in affecting the
particle arrangement. The methodology followed is to derive partial differential equations
(PDEs) describing the motion of two components in a drying film. The diffusive fluxes are
predicted by generalising the Stokes–Einstein diffusion coefficient, with the dispersion
compressibility used to produce equations valid up until close packing. A further set of
novel equations incorporating diffusiophoresis is derived. The diffusiophoretic mechanism
investigated in this work is the small particles being excluded from a volume around
the large particles. The resulting PDEs are scaled and solved numerically using a finite
volume method. The model includes the chemical potentials of the particles, allowing
for incorporation of any interaction term. The relative magnitudes of the fluxes of the
differently sized particles are compared using scaling arguments and via numerical results.
The diffusion results, without any inter-particle interactions, predict stratification of large
particles to the top surface. Addition of excluded volume diffusiophoresis introduces a
downwards flux on the large particles, that can result in small-on-top stratification, thus
providing a potential explanation of the experimental observations.

Key words: colloids, coating

1. Introduction

This work concerns stratification in drying films, examining how a mixture of differently
sized particles arranges itself upon drying. It is seen experimentally that smaller particles
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Figure 1. Schematic of the drying of a film containing two types of particles.

typically preferentially accumulate at the top surface, but it is not fully understood why
(Routh 2013). Understanding this could have applications across a wide range of industries,
from the surface of catalyst pellets, to coating surfaces with biocides (Mardones et al.
2019). It may have significance in the development of cheaper and more sustainable
materials, as the drying process can be engineered such that expensive components are
only located where they are required.

As solvent evaporates from a film, the top surface, initially at height H, descends at
velocity Ė. The situation and coordinate system used are depicted in figure 1, where z is the
spatial coordinate, ξ is the transformed spatial coordinate (see § 3.2) and t is time. Particles
which are unable to diffuse away from the top are collected by the top surface. Whether
or not the particles can diffuse sufficiently quickly away from the surface is characterised
by the Péclet number, Pe = 6πηRĖH/kT , where R is the particle radius, η is the solvent
viscosity, k is the Boltzmann constant and T is the temperature (Routh & Zimmerman
2004). Hence it is expected that drying dispersions with different size particles will lead
to different particle arrangements in the dried film. On the basis of diffusional arguments
alone, it would be expected that larger particles stratify to the top surface.

In light of experimental observations of small particles at the top surface, it is
thought that a simple diffusional model may not suffice. The terminology small-on-top
stratification is used in this work to describe a layer, including just a thin layer, of small
particles at the top surface, and likewise for large-on-top stratification. This work derives
a fluid mechanics model for both the simple diffusion case, and the case that adds a type
of diffusiophoresis: an excluded volume effect. The aim is to use the numerical results to
determine whether diffusiophoresis could explain these experimental observations. It will
be shown that diffusiophoresis may result in small-on-top stratification, including a thin
layer of small particles at the top surface.

A literature review is carried out in § 1.1 to explain the context of the work and
the existing hypotheses. In § 2, the relevant theory is derived, then in § 3, the solution
methodology is explained. The results of the simulations are presented and discussed in
§ 4. Asymptotic solutions are outlined in § 5, before drawing conclusions in § 6.

1.1. Literature review
Different approaches have been taken in the literature to model the drying of particulate
films and attempt to explain the particle arrangements seen experimentally. Key works
which have used thermodynamic models include (i) Routh & Zimmerman (2004), who
derived equations for the drying of a film containing just one species of particles
and solved them numerically; and (ii) Trueman et al. (2012b), who extended Routh &
Zimmerman’s work to a film containing particles of two different sizes.
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Stratification in drying films

In the expression for the solute chemical potential, μi, Trueman et al. (2012b) included
only an entropic contribution, μi = μ0

i + kT ln φi, where μ0
i is the reference chemical

potential and φi is the solute volume fraction. Zhou, Jiang & Doi (2017) took a similar
approach to Trueman et al., but also included a binary interaction term in the chemical
potential. This cross-interaction term in the chemical potential accounts for enthalpic
effects, i.e. inter-particle interactions. Zhou et al. (2017) include these up to the order

μi = μ0
i + kT

⎡
⎣ln φi +

∑
j

(Ri + Rj)
3

R3
j

φj

⎤
⎦ . (1.1)

This can predict that the small particles end up on top of the larger particles. However,
it does not explain why some images suggest that only a thin layer at the top is made up
of small particles (Trueman et al. 2012a). A further shortcoming is that the form of the
interaction terms used by Zhou et al. does not account for the change in interactions as the
film approaches close packing, i.e. as the solution becomes more concentrated. Zhou et al.
consider this to be acceptable, arguing that most of the stratification is formed before the
film approaches close packing. Following the approach of Russel, Saville & Schowalter
(1989) and Routh & Zimmerman (2004), Trueman et al. (2012b) form particle chemical
potential expressions that are valid even in non-dilute systems by using an expression
for the solvent chemical potential that diverges at close packing. Having an accurate
expression for the solvent chemical potential allows the chemical potentials of the two
particles, μ1 and μ2, to be related through the Gibbs–Duhem equation. Therefore, only μ1
or μ2 needs to be specified to fully describe the system. In this work we choose to specify
∇μ1/∇μ2. The approach of Russel et al. will be adopted in this present work, so that the
model can be run to close to the end of drying.

An alternative to the thermodynamic approach described above is using molecular
dynamics. Simulations of this type include diffusiophoresis because they simulate every
particle, and do not allow the particles to overlap. In this way, excluded volume, including
the small particles being excluded from around the large ones, is part of these models.
These simulations can be divided into two types, implicit solvent models, where only
the non-solvent particles are directly simulated, and explicit solvent models, where the
solvent particles are included. This allows the hydrodynamic interactions to be simulated,
resulting in greater accuracy, but at significant computational expense. This present
work models volume fraction evolution, rather than every colloidal particle. In doing so,
diffusiophoresis is modelled at a coarser level than, for example, molecular dynamics, at
which level implicit/explicit solvent methods become important. This is intended to allow
different insights to be obtained with the benefit of analytic expressions and without the
computational expense.

Considering implicit solvent models, Fortini et al. (2016) used Langevin dynamics with
a short-range repulsive interaction. This method predicts layers of small particles on top,
but not a single layer of small particles. Fortini et al. argue that this stratification is due to
the gradient in osmotic pressure. Similar results were obtained by the Langevin dynamics
simulations of Howard, Nikoubashman & Panagiotopoulos (2017a). Note that they obtain
film profiles with a thin layer of large particles at the very top surface, which is present
in their equilibrium film profiles before commencing drying. They argue that this is due
to volume exclusion of the large particles at the interface. This is a well-known entropic
effect near a boundary, as, for example, shown by Roth & Dietrich (2000) in comparing
Rosenfeld density functional calculations with simulations. Directly beneath is a stratified
layer of small particles, which grows over time. In addition to the Langevin dynamics
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Figure 2. Schematic of the exclusion zones around the larger particles, which give rise to diffusiophoresis.

simulations, Howard et al. outline, and subsequently simulate (Howard, Nikoubashman &
Panagiotopoulos 2017b), a model based on density functional theory. This can be thought
of as an extension to the approach of Zhou et al. (2017), using a high-accuracy equation of
state to calculate the chemical potentials. This would be valid for concentrated solutions.

Tang, Grest & Cheng (2018) carried out molecular dynamics simulations that model
the solvent explicitly, obtaining a modified threshold for the occurrence of small-on-top
stratification. Statt, Howard & Panagiotopoulos (2018) argue that hydrodynamic
interactions which are modelled in an explicit solvent model are important for reliably
predicting stratification: small-on-top stratification is predicted using the implicit solvent
method, but not with the explicit solvent one. In contrast, Tang, Grest & Cheng (2019)
also compare implicit and explicit solvent models, although with limitations on the film
thicknesses that can be assessed with the computationally expensive explicit solvent
models. For the systems they studied, the implicit solvent model was found to be sufficient,
as both the implicit and explicit solvent models predicted small-on-top stratification.

Adequate modelling of the solvent is important for assessing the effect of
diffusiophoresis. A recent hypothesis for explaining the accumulation of small particles
at the top surface concerns a type of diffusiophoresis. Diffusiophoresis is the migration
of particles along a concentration gradient of a different solute species, which could be
either ionic or non-ionic (Anderson & Prieve 1984). Whilst diffusiophoresis can be used
as a general term, covering different mechanisms which result in such particle migration,
including electrophoresis and chemiphoresis, the hypothesis in this work concerns a
specific non-ionic type of diffusiophoresis. Other phoretic terms could be easily added
to the model in this work if desired: this model requires an expression for the total flux, so
other flux contributions can be added.

The non-ionic type of diffusiophoresis considered is an excluded volume effect, relevant
in a mixture of small (component one) and large particles (component two). The small
particles are excluded from a layer of solvent of thickness RDP around each of the large
particles. For the case of hard spheres, RDP is expected to equal the radius of a small
particle, R1. However, this work will explore what happens as RDP varies, which may
correspond to, for example, non-spherical particles. The situation is depicted in figure 2.
The radius of each large particle is R2. Note that there will also be excluded volume effects
between particles of the same type but, by definition, these are not diffusiophoresis, and
are excluded in the present study.

Sear & Warren (2017) outline a simple model for this type of diffusiophoresis in a drying
film. It is an idealised model, assuming that particles do not interact and that the particle
size ratio is infinite. Diffusion of the larger particles is ignored, on the assumption that
it is small compared with the diffusiophoretic flux. Diffusion of the smaller particles is
included, by finding the concentration gradient of an ideal gas diffusing between two
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Stratification in drying films

impenetrable walls, and then calculating the diffusiophoretic flux due to this concentration
gradient.

Whilst Sear & Warren (2017) obtain elegant approximate analytical solutions, which are
useful for gaining understanding, their model’s applicability is limited to dilute solutions
and very large size ratios. To aid insight into less idealised situations, particularly where
the particle size ratio is not infinite, diffusion of both particles should be included. This
allows identification of criteria for when diffusiophoresis is important. To allow the entire
drying process to be modelled, not just the early stages, the model could be adapted to be
valid up to close packing, again using the approach of Russel et al. (1989).

Diffusiophoresis with different relative strengths of diffusion of the large and small
particles was modelled by Ault et al. (2017). The geometry that they chose, particle
injection into or withdrawal from a semi-infinite or finite domain, is simpler than the
drying geometry and has static boundaries. They formed advection–diffusion equations
which are valid for dilute solutions. For the case where the diffusivity of the larger particles
is neglected, Ault et al. obtain an analytical solution using the method of characteristics.
This is compared with the numerical results which include diffusion of the larger
particles. They found that ignoring diffusion of the larger particles accurately predicted
the trajectories of the particle fronts, but not the particle concentrations around the fronts.
Diffusiophoresis has also been modelled and imaged in a dead-end channel geometry
(Shin et al. 2016). This present work will seek to establish the relative importance of
diffusion and diffusiophoresis in the geometry of a drying film.

Experimentally, it is difficult to determine whether the top layer is a monolayer of small
particles, or thicker. It requires the ability to take measurements throughout the film depth,
not just at the top surface. Small-angle X-ray scattering (SAXS) measurements have shown
enrichment of small particles in the top several hundred layers of particles (Liu et al.
2019). Existing works which include diffusiophoresis (Fortini et al. 2016; Howard et al.
2017a,b) predict a growing layer of small particles at the top surface, in agreement with
this. Experimental observation of a monolayer of small particles would support a different
mechanism, such as interfacial effects. Atmuri, Bhatia & Routh (2012) added a surface
interaction term to the model of Trueman et al. (2012b) to demonstrate this theoretically.

The review article by Schulz & Keddie (2018) compared predicted stratification regimes
based on the interaction potential model of Zhou et al. (2017), and the diffusiophoresis
models of Sear & Warren (2017) and Sear (2018), with experiments from the literature.
Sear’s model considers a jammed layer of small particles at the top surface, with
diffusiophoretic drift of the large particles occurring just beneath it. This produces a simple
criterion for small-on-top stratification: the speed of the jammed layer must be smaller than
that of diffusiophoresis. Good agreement was found between experimental data for drying
dilute dispersions and Zhou et al.’s predictions, but less so for concentrated ones. This
suggests that a model which is valid for more concentrated solutions but allows input of
Zhou et al.’s chemical potential expressions, could improve the agreement. Such a model
is developed in this present work. Noting that there was a lack of experimental data in
the range required to test the predicted stratification regimes of Sear & Warren and Sear,
Schulz et al. (2020) subsequently carried out experiments with films containing colloid
and polymer. The data obtained agree qualitatively with the predictions of Sear & Warren
and Sear, but not with the exact position of the transition to small-on-top stratification.

It is clear from this survey that several hypotheses could explain the small-on-top
observations, although existing simulations seem to predict a thicker final layer than is
sometimes seen experimentally (Atmuri et al. 2012). Whilst diffusiophoresis has been
suggested as an explanation, it has not been directly modelled in a drying film. This work
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seeks to address this, adopting a fluid mechanics partial differential equation (PDE) model,
since its simple formulation allows insight to be gained.

2. Derivation

2.1. Diffusion
To make explicit how the theory outlined here compares with previous work, whilst (2.7)
in § 2.2 was also used by Trueman et al. (2012b), (2.12)–(2.14) correct the hydrodynamics
implementation. These equations are given here in their most general forms. Also,
(2.8)–(2.11) add clarification regarding diffusion reference frames. Equations (2.18)–(2.23)
are reproduced from the work of Trueman et al., but they are subsequently substituted into
the general conservation equation derived in § 2.2. §§ 2.3, 3.1 and 3.2 follow the same
approach as Trueman et al., although again following through with the general equations.

2.1.1. Explanation of hydrodynamics correction
Using the thermodynamic approach in this present work, it is found that the extension
from the one-component case of Routh & Zimmerman (2004) to the two-component case
is non-trivial. The Stokes–Einstein diffusion coefficient, DSE, was originally derived for a
single particle in infinite solvent, so it needs to be determined how to use DSE in a system
that is no longer infinitely dilute. According to Batchelor (1976), DSE applies to a force-free
solvent. Hence instead of deriving that the diffusive flux of particles in a one-component
film, j1, is

j1 = −DSE∇μ1, (2.1)

where −∇μ1 is the force acting on component one due to its chemical potential, μ1,
Batchelor derives

j1 = −DSE

(
1

1 − φ1

)
∇μ1, (2.2)

where φ1 is the volume fraction of component one. The factor of 1/(1 − φ1) results from
a force correction. This force correction could be expressed as

(∇μ1)eff = ∇μ1 −
4
3πR3

1

νs
∇μs, (2.3)

where (4/3)πR3
1 is the volume of a particle of component one, νs is the volume of a particle

of the solvent and μs is the chemical potential of the solvent. The subscript eff denotes the
effective driving force for diffusion. Since the ratio of particle volumes is a constant, (2.3)
could be equivalently written as

μ1,eff = μ1 −
4
3πR3

1

νs
μs. (2.4)

This correction appears in the equations of Routh & Zimmerman (2004). Trueman et al.
(2012b) incorrectly extended this by writing

μ1,eff = μ1 −
4
3πR3

1

νs

(
1 − φ1 − φ2

1 − φ1

)
μs −

(
R1

R2

)3 (
φ2

1 − φ1

)
μ2, (2.5)

where φ2 is the volume fraction of component two, and μ2 is its chemical potential. Whilst
this appears to be a logical extension of (2.4), (2.3) is still correct for a film with any
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Stratification in drying films

number of components, following the reasoning of Batchelor (1976). Equation (2.3) should
therefore be used to replace the erroneous (2.5) in the work of Trueman et al.

In a multicomponent solution, (2.3) is used to form an expression for ji by summing
over the contributions from all components in the mixture

ji = φi
∑

j

Bij

6πηRi
(∇μj)eff , (2.6)

where Bij is the bulk mobility coefficient, which is generally a function of all φj and ratios
of Rj. Substituting in expressions for Bij allows an equation of the form of (2.12) to be
derived (Batchelor 1983).

This present work will use the methodology of Trueman et al. (2012b), but with the
corrected (2.12). The numerical results of Trueman et al. solved diffusion fluxes of the
same leading order in Pe1 and Pe2 as the equations in this present work, and so the results
in § 4.1 are expected to show the same qualitative behaviour.

2.2. Governing equations
The conservation equation for one type of particles can be written as

∂φ1

∂t
+ ∇ · N1 = 0, (2.7)

where N1 is the total flux of particles of component one. Following the approach of
Cussler (2009), the total flux can be arbitrarily split up into a convective and diffusive
flux

N1 = ja
1 + φ1Ua = φ1U1, (2.8)

where the volume average velocity of type one particles is U1, and their diffusive flux ja
1

relative to the reference velocity Ua is

ja
1 = φ1(U1 − Ua) = −Da

11
kT

∇μ1 − Da
12

kT
∇μ2. (2.9)

The chemical potential of component i in the two-component film is denoted by μi, and
the diffusion coefficient of particles of type one in particles of type i, using a reference
velocity Ua, is denoted by Da

1i. It is convenient to choose the volume average velocity
Uvas Ua, since Uv = 0 in a static film. Hence (2.7) becomes

∂φ1

∂t
+ ∇ · (φ1U1) = ∂φ1

∂t
+ ∇ · jv1 = 0, (2.10)

and diffusion coefficients using a volume-fixed reference frame are required.
For a volume-fixed reference frame,

N1 = jv1 + φ1Uv = −Dv
11

kT
∇μ1 − Dv

12
kT

∇μ2 = φ1U1, (2.11)

so expressions for Dv
11 and Dv

12 are required. It is desired to relate these to the
Stokes–Einstein diffusion coefficient of component one, DSE,1 = kT/6πηR1.
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Hydrodynamic effects are taken into account via K11(φ1, φ2) and K12(φ1, φ2), which are
referred to as sedimentation coefficients by analogy with sedimentation (Batchelor 1976).
It is expected that these will be functions of R1 and R2 as well as φ1 and φ2. This gives

U1 = − 1
6πηR1

[K11(φ1, φ2)∇μ1 + φ2K12(φ1, φ2)∇μ2]. (2.12)

Defining the sedimentation coefficients such that U1 is a velocity relative to the volume
average velocity, and so can be used in (2.10) and (2.11), the conservation equation for
component one becomes

∂φ1

∂t
= 1

6πηR1
∇ · [φ1K11(φ1, φ2)∇μ1 + φ1φ2K12(φ1, φ2)∇μ2]. (2.13)

Hence, Dv
11 and Dv

12 can be found in relation to DSE,1 by comparison with the
sedimentation coefficients. Note that, in this work, the diffusive fluxes are written in terms
of chemical potential gradients, as opposed to concentration gradients. This is why we
divide DSE,1 by kT in the flux expressions, (2.12) and (2.13), and why a factor of φ1 appears
in front of the ∇μ1 term in (2.13), and likewise for the φ2 term in front of the ∇μ2.

Expressions for K11(φ1, φ2) and K12(φ1, φ2) for rigid spheres with zero interaction
potential in dilute solution can be found in Batchelor’s work (1983). However, it is desired
to use generalised forms of these expressions to run the model up to close packing. A factor
of φ1 is included in front of the ∇μ2 term in (2.13) in order to match the leading-order
coefficients in (φ1, φ2) for dilute solution. Batchelor’s (1983) dilute expressions will need
to be adapted such that the sedimentation coefficients fall to zero as the mixture approaches
close packing, due to hydrodynamic hindrance (Russel et al. 1989). Steric effects could be
incorporated into the chemical potential terms if desired.

We consider the case of one-dimensional drying with the top surface decreasing
normally to the substrate. By scaling with ẑ = z/H and t̂ = tĖ/H, (2.13), in one dimension,
becomes

∂φ1

∂ t̂
= ∂

∂ ẑ

[
1

6πηR1ĖH

[
φ1K11(φ1, φ2)

∂μ1

∂ ẑ
+ φ1φ2K12(φ1, φ2)

∂μ2

∂ ẑ

]]
. (2.14)

2.2.1. Evaporation rate
For the purpose of (2.14), Ė needs only to be a constant, characteristic evaporation
velocity used for non-dimensionalising. When evaporation at the top surface is included
in the boundary condition (§ 3.2), it is assumed that the evaporation rate is approximately
constant. Evaporation is driven by the thermodynamic driving force between the vapour
pressure of the solvent at the top of the film and the vapour pressure of the gas above
the film. The vapour pressure of the gas above the film is affected by the time scale for
diffusion from the layer of saturated vapour directly above the film to the bulk gas. This
time scale is orders of magnitude smaller than the evaporation time (Popòv 2005), leading
to a quasi-static problem (Routh 2013).

Routh & Russel (1998) derived an expression for Ė,

Ė = km
νs(pvap − p∞

vap)

kT
, (2.15)

where km is the gas-side mass transfer coefficient, pvap is the vapour pressure of the solvent
at the top of the film and p∞

vap is the vapour pressure of the bulk gas.
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Stratification in drying films

The chemical potential of the solvent is related to the osmotic pressure, Π , as

Π = −μs − μ0
s

νs
=
(

φ1
4
3πR3

1

+ φ2
4
3πR3

2

)
kTZ(φ1, φ2), (2.16)

where μ0
s is the solvent reference potential and Z(φ1, φ2) is the compressibility, which

accounts for the non-ideality of the osmotic pressure at high volume fractions. Relating
the chemical potential to the solvent pressure through μs − μ0

s = kT ln(pvap/p0
vap), where

p0
vap is the solvent reference vapour pressure, and extending the approach of Routh &

Russel (1998) to a two-component mixture, (2.16) is substituted into (2.15), giving

Ė = km
νs

kT

[
p0
vapexp

[
−νs

(
φ1

4
3πR3

1

+ φ2
4
3πR3

2

)
Z(φ1, φ2)

]
− p∞

vap

]
. (2.17)

Since νs � (4/3)πR3
1, and νs � (4/3)πR3

2, as long the film has not yet reached close
packing, we obtain Ė ∼ kmνs( p0

vap − p∞
vap)/kT , which is independent of film composition.

In other words, the driving force is dominated by the humidity of the gas. In this
one-dimensional drying model, a large surface area of film is assumed, so geometric edge
effects are not applicable (Routh 2013). When the film is close packed, Z(φ1, φ2) diverges.

This work models drying up until the film is close packed throughout. There are stages
of drying beyond this (deformation and aging) that lead to film formation (Sonzogni
et al. 2018), but it is the first part of drying, where the particles can move throughout
the film, that affects their arrangement in the dried film. If the particles are colloids, as
they would be in many common examples of films (Routh 2013), then they are assumed
to be colloidally stable. However, the model would also be valid for particles smaller than
the colloidal range until the composition at which they precipitate.

2.3. Derivation of the spatial derivative of the chemical potential
The chemical potential of component one can be written as a function of φ1 and φ2, such
that ∂μ1/∂ ẑ = f (φ1(ẑ), φ2(ẑ)), and likewise for the chemical potential of component two,
μ2. These expressions could be directly inputted into (2.14). However, it is difficult to
find expressions for the chemical potential of the solutes that are valid as the solution
approaches close packing. One means of resolving this is to relate μ1 and μ2 to the
chemical potential of the solvent, μs, for which an expression that diverges at close packing
can be found.

For a system which contains n1 = φ1/(4/3)πR3
1 particles of component one, n2 =

φ2/(4/3)πR3
2 particles of component two and ns = (1 − φ1 − φ2)/νs particles of solvent

per unit volume, conservation of volume can be expressed as
4
3πR3

1n1 + 4
3πR3

2n2 + νsns = 1. (2.18)

The Gibbs–Duhem equation relates the chemical potentials in the system at constant
temperature and pressure as

n1∇μ1 + n2∇μ2 + ns∇μs = 0. (2.19)

The Gibbs–Duhem equation (2.19), in one dimension, can be rearranged, giving

∂μ1

∂ ẑ
= − 1

νs

∂μs

∂ ẑ
(1 − φ1 − φ2)(

φ1
4
3 πR3

1

+ φ2
4
3 πR3

2

∂μ2/∂ ẑ
∂μ1/∂ ẑ

) , (2.20)
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and
∂μ2

∂ ẑ
= − 1

νs

∂μs

∂ ẑ
(1 − φ1 − φ2)(

φ1
4
3 πR3

1

∂μ1/∂ ẑ
∂μ2/∂ ẑ + φ2

4
3 πR3

2

) . (2.21)

Using the spatial derivative of (2.16), plus the relationship R1/R2 = Pe1/Pe2, (2.20) and
(2.21) become

∂μ1

∂ ẑ
= (1 − φ1 − φ2)(

φ1 +
(

Pe1
Pe2

)3
φ2

∂μ2/∂ ẑ
∂μ1/∂ ẑ

) ∂

∂ ẑ

[(
φ1 +

(
Pe1

Pe2

)3

φ2

)
kTZ(φ1, φ2)

]
, (2.22)

and

∂μ2

∂ ẑ
= (1 − φ1 − φ2)((

Pe2
Pe1

)3
φ1

∂μ1/∂ ẑ
∂μ2/∂ ẑ + φ2

) ∂

∂ ẑ

[((
Pe2

Pe1

)3

φ1 + φ2

)
kTZ(φ1, φ2)

]
. (2.23)

The purpose of rewriting the chemical potential gradients as in (2.22) and (2.23) is to
obtain the advantages, discussed below, of expressing them as functions of ∂μs/∂ ẑ and
(∂μ1/∂ ẑ)/(∂μ2/∂ ẑ). The chosen model formulation intends for the effects of concentrated
solution to be addressed via the divergence in solvent chemical potential, μs, and the
particle interactions to be input via (∂μ1/∂ ẑ)/(∂μ2/∂ ẑ). Hence, this extends approaches
that are valid only for more dilute solution, for example, Zhou et al. (2017). Since the
ratio of the chemical potential gradients is determined physically by the inter-particle
interactions, the chemistry of the types of particles that are used to form the film, such
as their surface charge, will be relevant (Atmuri et al. 2012).

Note that the Gibbs–Duhem equation (2.19) relates μ1, μ2 and μs. Equation (2.16) gives
an expression for μs which diverges at close packing. Hence, only one of μ1 and μ2, or a
relationship between them, can also be specified. Since (2.20) and (2.21) give ∂μ1/∂ ẑ
and ∂μ2/∂ ẑ only as implicit functions to be inserted into the conservation equation,
different rearrangements of the Gibbs–Duhem equation could have been chosen instead.
The particular rearrangements in (2.20) and (2.21) were chosen since their right-hand sides
depend on ∂μs/∂ ẑ and the ratio (∂μ1/∂ ẑ)/(∂μ2/∂ ẑ). The solvent chemical potential is
measurable up to close packing, where it diverges. This means that ∂μ1/∂ ẑ and ∂μ2/∂ ẑ
also diverge at close packing, in an unknown fashion. An expression chosen for the ratio
(∂μ1/∂ ẑ)/(∂μ2/∂ ẑ) is more likely to be valid approaching close packing than expressions
that could be put forward for each particle separately. Equations (2.20) and (2.21) are also
of the same form as each other, as desired.

Equation (2.16) for the osmotic pressure is used to generate an expression for μs only,
rather than being used as an equation of state to also generate the other chemical potentials.
The thermodynamic consistency of this approach with respect to the Maxwell relations is
further explained in § S6 of the supplementary material (SI) available at https://doi.org/10.
1017/jfm.2021.800.

In summary, a thermodynamically consistent approach is achieved by satisfying the
Gibbs–Duhem equation. In choosing to specify Z(φ1, φ2), as a proxy for ∂μs/∂ ẑ,
and (∂μ1/∂ ẑ)/(∂μ2/∂ ẑ), the system chemical potentials are fully specified. As
formulated, the right-hand sides of (2.22) and (2.23) require input of an expression for
(∂μ1/∂ ẑ)/(∂μ2/∂ ẑ). Although the chemical potential expressions given in (2.22) and
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Stratification in drying films

(2.23) appear complicated, they are merely (2.16) combined with rearrangements of the
Gibbs–Duhem equation, in the same way as Russel et al. (1989) and Trueman et al.
(2012b).

2.4. Diffusiophoresis
The governing conservation equation (2.7) requires an expression for the total flux. In this
section, the aim is to investigate the effect of diffusiophoresis. The total flux is written as
the sum of two terms, one described as the diffusion term, and the other described as the
diffusiophoresis term.

The deviation of osmotic pressure from ideality, and hence Z(φ1, φ2) from unity,
accounts for the total excluded volume (Russel et al. 1989). However, this model uses
the same form of Z(φ1, φ2) for the diffusion term, for both the flux of component one and
two. In not differentiating between the expressions used for the two fluxes, this form of
equation will not give rise to diffusiophoresis. It will give a diffusional model in the sense
of the fluxes of both particle types remaining inversely proportional to their particle radius.
The flux contribution that is due to diffusiophoresis can be found from first principles for
a dilute solution, and written as a separate term. The language of this paper refers to this
as the diffusiophoresis term.

Excluded volume effects are more general than diffusiophoresis resulting from excluded
volume, since the latter specifically refers to one component moving in response to the
concentration gradient of another, whereas in general a component can have volume
excluded by both itself and other components. An alternative approach could write the
total flux as one term, with a form of Z(φ1, φ2) from an equation of state that would
include the diffusiophoretic flux. However, the approach taken here allows the effect of
diffusiophoresis to be identified separately.

With this approach, a model including diffusiophoresis is constructed, assuming R2 �
R1. The particles of type one are modelled using an extension of the Asakura–Oosawa
model to concentrated solution. Under the Asakura–Oosawa model, the type one particles
are assumed to be excluded from a layer of solvent of thickness RDP around each particle
of type two. Using this model, in a dilute solution, the drift velocity of the large particles
due to diffusiophoresis, UP , in a static film is given by

UP = −3φ1kT
8πη

R2
DP

R3
1

∇ ln φ1 = Γ1∇ ln φ1, (2.24)

where Γ1 is the diffusiophoretic drift coefficient (Anderson & Prieve 1984; Sear & Warren
2017). Following the approach of Marbach, Yoshida & Bocquet (2017), this is extended to
concentrated solution via invoking the osmotic pressure (SI, § S1.2), to obtain

UP = − 3φ1

8πη

R2
DP

R3
1

∇μ1. (2.25)

This is taken to be the extra slip velocity, in addition to that due to diffusion, between
the particles of component two and the solvent. For the case of hard spheres, which is
considered here, RDP = R1. Since UP gives the relative diffusiophoretic velocity between
type two particles and the solvent, this needs to be converted to a velocity relative to the
volume average velocity, Uv . Note that the result in (2.24) is the correct diffusiophoretic
drift velocity for dilute solution, expected to agree with explicit solvent models. This
contrasts with the result of implicit solvent methods which neglect the solvent dynamics,
and consequently may overpredict the diffusiophoretic velocity (Sear & Warren 2017).
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The velocity of each type of particle i is split up into a component due to diffusion
(denoted by the superscript D), which has been found in § 2.2, and a component due to
diffusiophoresis (denoted by the superscript P)

Ui = UD
i + UP

i . (2.26)

The local average velocities of the type one, type two and solvent particles are denoted by
U1, U2 and Us, respectively.

It is necessary to obtain relationships between UP
1 , UP

2 and UP
s . First, note that for a

static film, Uv = 0, so

Uv = φ1U1 + φ2U2 + (1 − φ1 − φ2)Us = 0. (2.27)

The components of the velocities due to diffusion already obey

Uv,D = φ1UD
1 + φ2UD

2 + (1 − φ1 − φ2)UD
s = 0. (2.28)

Hence, subtracting equation (2.28) from (2.27), provides

Uv,P = φ1UP
1 + φ2UP

2 + (1 − φ1 − φ2)UP
s = 0. (2.29)

The velocity of component two and the velocity of the solvent are related by

UP
2 − UP

s = UP . (2.30)

Under the assumptions of this model, diffusiophoresis does not affect the velocity of
component one relative to the solvent,

UP
1 = UP

s . (2.31)

This is the case in an idealised model and is therefore used as a starting point for a
non-ideal model, with finite size ratios. Although deviation from this will be expected
when the particle size ratio is finite (Howard & Nikoubashman 2020), it would not be
expected to be large. Solving (2.29)–(2.31) simultaneously, and including sedimentation
coefficients, KP1(φ1, φ2) and KP2(φ1, φ2), obtains

UP
1 = UP

s = −φ2UP = 3φ1φ2KP1(φ1, φ2)

8πηR1
∇μ1, (2.32)

and

UP
2 = (1 − φ2)UP = −3φ1(1 − φ2)KP2(φ1, φ2)

8πηR1
∇μ1. (2.33)

To satisfy continuity, it is required that KP2(φ1, φ2) = KP1(φ1, φ2) = KP(φ1, φ2). Note
that this is not a general result; it is just a result of how this model chooses to write
the total flux as two separate terms. Addressing the more general question of whether
K12(φ1, φ2) = K21(φ1, φ2), these are not equal, as can be seen from analytical expressions
for dilute solution (Batchelor 1983). However, equating these expressions would be a
reasonable approximation for generating example solutions. Kij(φ1, φ2) and KP(φ1, φ2) are
both denoted with ‘K’ since they are both sedimentation coefficients, i.e. they represent the
same physical phenomenon of hydrodynamic hindrance. The different subscripts identify
the terms for which these are the coefficients.

Equation (2.32) can be interpreted as showing that component one and the solvent
move backwards compared with the diffusiophoretic motion of component two, in order
to conserve volume. Using (2.12), which gives UD

1 , and the analogous expression for
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Stratification in drying films

UD
2 , the complete expressions for the component velocities including both diffusion and

diffusiophoresis are

U1 = − 1
6πηR1

[K11(φ1, φ2)∇μ1 + φ2K12(φ1, φ2)∇μ2]

+3φ1φ2KP(φ1, φ2)

8πηR1
∇μ1,

(2.34)

and

U2 = − 1
6πηR2

[K22(φ1, φ2)∇μ2 + φ1K21(φ1, φ2)∇μ1]

−3φ1(1 − φ2)KP(φ1, φ2)

8πηR1
∇μ1.

(2.35)

Including diffusiophoresis, the conservation equation for particles of type one is now

∂φ1

∂t
= ∇ ·

[[
φ1

6πηR1
K11(φ1, φ2) − 3(φ1)

2φ2KP(φ1, φ2)

8πηR1

]
∇μ1

+ φ1

6πηR1
φ2K12(φ1, φ2)∇μ2

]
,

(2.36)

and that for particles of type two becomes

∂φ2

∂t
= ∇ ·

[[
φ2

6πηR2
φ1K21(φ1, φ2) + 3φ1φ2(1 − φ2)KP(φ1, φ2)

8πηR1

]
∇μ1

+ φ2

6πηR2
K22(φ1, φ2)∇μ2

]
.

(2.37)

Note that the divergence of the total flux should reflect the total excluded volume, which is
incorporated into Z(φ1, φ2), hence all the flux terms, including the diffusiophoresis terms,
should diverge in the same form as Z(φ1, φ2). Since all of the flux terms contain a factor of
∇μ1 or ∇μ2, which diverge via Z(φ1, φ2) through the formulations for (2.22) and (2.23),
(2.36) and (2.37) obtain suitable divergence at close packing.

3. Methodology

3.1. Scaling
Equations (2.22) and (2.23), the spatial derivatives of the chemical potentials, are
substituted into (2.36), and scaled in one dimension, to form the conservation equation
for component one,

∂φ1

∂ t̂
= 1

Pe1

∂

∂ ẑ
[(1 − φ1 − φ2)⎡

⎢⎢⎢⎢⎣

[
φ1K11(φ1, φ2) − 9

4
(φ1)

2φ2KP(φ1, φ2)

]
(

φ1 +
(

Pe1

Pe2

)3

φ2
∂μ2/∂ ẑ
∂μ1/∂ ẑ

) + φ1φ2K12(φ1, φ2)((
Pe2

Pe1

)3

φ1
∂μ1/∂ ẑ
∂μ2/∂ ẑ

+ φ2

)(Pe2

Pe1

)3

⎤
⎥⎥⎥⎥⎦

∂

∂ ẑ

[(
φ1 +

(
Pe1

Pe2

)3

φ2

)
Z(φ1, φ2)

] ]
. (3.1)
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For component two, substituting equations (2.22) and (2.23) into (2.37) and scaling gives

∂φ2

∂ t̂
= 1

Pe2

∂

∂ ẑ

[
(1 − φ1 − φ2)⎡

⎢⎢⎢⎢⎣
(

Pe1

Pe2

)3

⎡
⎢⎢⎢⎢⎣

φ1φ2K21(φ1, φ2) + 9
4

(
Pe2

Pe1

)
φ1φ2(1 − φ2)KP(φ1, φ2)(

φ1 +
(

Pe1

Pe2

)3

φ2
∂μ2/∂ ẑ
∂μ1/∂ ẑ

)
⎤
⎥⎥⎥⎥⎦

+ φ2K22(φ1, φ2)((
Pe2

Pe1

)3

φ1
∂μ1/∂ ẑ
∂μ2/∂ ẑ

+ φ2

)
⎤
⎥⎥⎥⎥⎦

∂

∂ ẑ

[((
Pe2

Pe1

)3

φ1 + φ2

)
Z(φ1, φ2)

]]
. (3.2)

A key observation is that the only dimensionless groups appearing in (3.1) and (3.2) are
Pe1 and Pe2 i.e. no further dimensionless groups appear due to diffusiophoresis, as would
be expected from dimensional analysis.

3.2. Coordinate transform
In order to create a static top boundary, the conservation equations are transformed using
ξ = ẑ/(1 − t̂) and τ = t̂. This results in

∂φ1

∂τ
+ ξ

1 − τ

∂φ1

∂ξ
= 1

Pe1(1 − τ)2
∂

∂ξ
[(1 − φ1 − φ2)

⎡
⎢⎢⎢⎢⎣

[
φ1K11(φ1, φ2) − 9

4
(φ1)

2φ2KP(φ1, φ2)

]
(

φ1 +
(

Pe1

Pe2

)3
φ2

∂μ2/∂ξ

∂μ1/∂ξ

) + φ1φ2K12(φ1, φ2)((
Pe2

Pe1

)3
φ1

∂μ1/∂ξ

∂μ2/∂ξ
+ φ2

)(Pe2

Pe1

)3

⎤
⎥⎥⎥⎥⎦

∂

∂ξ

[(
φ1 +

(
Pe1

Pe2

)3
φ2

)
Z(φ1, φ2)

] ]
, (3.3)

and

∂φ2

∂τ
+ ξ

1 − τ

∂φ2

∂ξ
= 1

Pe2(1 − τ)2
∂

∂ξ

[
(1 − φ1 − φ2)⎡

⎢⎢⎢⎢⎣
(

Pe1

Pe2

)3

⎡
⎢⎢⎢⎢⎣

φ1φ2K21(φ1, φ2) + 9
4

(
Pe2

Pe1

)
φ1φ2(1 − φ2)KP(φ1, φ2)(

φ1 +
(

Pe1

Pe2

)3

φ2
∂μ2/∂ξ

∂μ1/∂ξ

)
⎤
⎥⎥⎥⎥⎦
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Stratification in drying films

+ φ2K22(φ1, φ2)((
Pe2

Pe1

)3

φ1
∂μ1/∂ξ

∂μ2/∂ξ
+ φ2

)
⎤
⎥⎥⎥⎥⎦

∂

∂ξ

[((
Pe2

Pe1

)3

φ1 + φ2

)
Z(φ1, φ2)

]]
. (3.4)

This is the coordinate transform that is classically used in solving problems with this
geometry, as in Routh & Zimmerman (2004), Trueman et al. (2012b) and Howard et al.
(2017b). The boundary conditions are no flux of particles at both the top and bottom
boundaries (see Section S1.1 of the SI). For the top boundary condition, the evaporation
rate is assumed to be constant, as explained in § 2.2.

Setting KP(φ1, φ2) = 0 in (3.3)–(3.4) gives a system of PDEs to describe a
diffusion-only model that neglects diffusiophoresis. This can be compared with the
diffusion–diffusiophoresis model, with non-zero KP(φ1, φ2), to observe the effect of
diffusiophoresis. Discussion regarding satisfying the Onsager reciprocal relations with
each model is provided in the SI, § S3.3.

3.3. Numerical method
The system of (3.3)–(3.4) can be solved if φ1,t=0, φ2,t=0, Pe1, Pe2 and the maximum
volume fraction, φm, which could be a function of φ1 and φ2, are specified. Appropriate
forms of K(φ1, φ2) and Z(φ1, φ2) can be taken from the literature. Also needing to be
specified is the ratio of the chemical potential gradients, as explained in § 2.3.

The compressibility is taken to be Z(φ1, φ2) = φm(φm − φ1 − φ2)
−1 (Trueman

et al. 2012b). The canonical concentrated extension of the dilute form of K(φ)

for the one-component case, 1 − 6.55φ, is (1 − φ)6.55 (Russel et al. 1989). For
the two-component case, this is extended to Kij|i,j=1 or 2(φ1, φ2) = (1 − φ1 − φ2)

6.55

(Trueman et al. 2012b). This is adopted for the example results in this work. The particle
concentration up to which this is applicable is discussed in § S3.1 of the SI. It is shown in
§ S3.2 of the SI that the stratification results are minimally affected by how the form of K
is extended.

A code was written in MATLAB to solve the PDEs numerically. The governing PDEs
are of a similar form to diffusion–advection equations, where ξ/(1 − τ) is the effective
advection velocity, but the effective diffusion coefficient is a complicated function of φ1
and φ2. The PDEs are solved numerically using a finite volume method for the transformed
diffusion term. This conserves mass by construction and is an appropriate choice for results
containing sharp fronts. Due to the ξ -dependence of its coefficient, the quasi-convective
term cannot be formulated using the finite volume method, so finite differences are
employed instead. Since the ∂φ/∂ξ term represents advection due to the stretching of the
coordinate frame, this term is coded using backward finite differences. This ensures that
information travels from upstream to downstream, avoiding potential stability issues that
might result from using forward or central finite differences instead. The Euler method
is used for time-stepping. The numerical results are verified by checking the final mass
balance for each component, and by comparison with asymptotic solutions for high Pe
(§ 5).

928 A15-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.800


C.R. Rees-Zimmerman and A.F. Routh

4. Results and discussion

4.1. Diffusion
Figure 3 shows the diffusion-only model results for Pe2/Pe1 = 2, as the geometric mean
of the Péclet numbers is increased from less than one, to one, to greater than one. The
initial volume fractions are φ1,t̂=0 = φ2,t̂=0 = 0.10, and the maximum packing fraction
is taken as φm = 0.64, the value for randomly packed monodisperse spheres. Any drying
film, regardless of its initial volume fraction, will go through higher concentrations in the
course of drying. It is most interesting to show examples where the film is initially not
too concentrated, since then there is time for the particles to rearrange themselves before
movement becomes too hydrodynamically hindered. Hence why φ1,t̂=0 = φ2,t̂=0 = 0.10
is chosen for these examples. Drying an initially more concentrated film involves the same
phenomena as starting from a more dilute film: what changes (when diffusiophoresis is
included) is the proportions of the drying time when different phenomena are dominant
(see § S4 in the SI). § S5 in the SI demonstrates that there is minimal effect on the
stratification results as φm is varied. From a mass balance on the particles, the end of
drying would be at τf = t̂f = 0.6875.

The model allows input of any form of Kij. To run an example with numerical
ease, and due to not being able to analytically derive the cross-terms for concentrated
solution, Kij|i /= j(φ1, φ2) = 0 is used. The same model could be rerun with K12(φ1, φ2),
K21(φ1, φ2) /= 0, if desired. For example, Kij|i /= j(φ1, φ2) = (1 − φ1 − φ2)

6.55 would be
expected to give similar results. This is because the fluxes for the cross-terms are small.

In addition to modifying for hydrodynamic hindrance via K(φ1, φ2), the diffusion-only
model, as run in these examples, also differs from that of Zhou et al. (2017) in the
expressions used for the chemical potential: (i) not including the cross-interaction terms
in the chemical potential expressions; and (ii) writing the chemical potentials via the
osmotic pressure so that they are valid for concentrated solution. For the ratio of
the chemical potential gradients, (∂μ1/∂ ẑ)/(∂μ2/∂ ẑ), a non-interacting expression is
chosen: (∂(ln φ1)/∂ ẑ)/(∂(ln φ2)/∂ ẑ). Whilst this expression is chosen for these example
numerical results, the model is general, and can be run with input of any form of
(∂μ1/∂ ẑ)/(∂μ2/∂ ẑ), for example, from different equations of state (EoS), including the
Boublík–Mansoori—Carnahan—Starling–Leland EoS for hard sphere mixtures (Heyes &
Santos 2016).

The parameter values used are collected in table 1. To give an idea of a physical
system that could be represented with these Péclet numbers, Liu et al. (2018) estimated
evaporation rates of Ė = 2.0 × 10−8 m s−1 at T = 296 K and 60 % humidity. For a film
of initial height H = 1.0 mm, and a solvent of viscosity η = 0.001 Pa s, particles of size
{7.5, 15} nm would correspond to Péclet numbers of {0.7, 1.4}. Silica particles, for example,
of this size can be readily obtained.

The temporal and spatial resolutions, in (ξ = ẑ/(1 − t̂), τ = t̂) coordinates, are selected
in order to give mass balance errors of < 1 % in each component by near the end of drying.
For example, figure 3(a) used 
ξ = 0.01 and 
τ = 10−8, giving a mass balance error of
0.17% in φ1 and 0.42% in φ2 at τ = 0.683. Increasing Pe requires smaller 
ξ in order
to resolve the increasing sharpness of the curves, and correspondingly smaller 
τ for
stability. It is checked that the change on further improving the resolution is acceptably
small. For example, halving the 
ξ used for figure 3(a) roughly halves the mass balance
errors to 0.08% in φ1 and 0.21% in φ2. Halving the 
τ used in figure 3(a) produces a
negligible change in the mass balance errors. The resolutions used to generate each figure
are tabulated in § S1.3 of the SI.
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Stratification in drying films

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.2 0.4
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Figure 3. Volume fraction of each component as a function of height for: (a) Pe1 = 0.175 and Pe2 = 0.35.
Large-on-top stratification is predicted, shown by the blue lines being above the red lines in the upper part
of the film, as expected for a diffusion-only model; (b) Pe1 = 0.70 and Pe2 = 1.40. As the Péclet numbers
now straddle one, there is a greater difference between the volume fractions of the two components at the top
surface, compared with (a); (c) Pe1 = 2.8 and Pe2 = 5.6. Péclet numbers greater than one cause there to be
a sharp transition in volume fraction between the lower and upper parts of the film. (a) Pe1, Pe2 < 1(Pe =
6πηRĖH/kT), (b) Pe1 < 1, Pe2 > 1 and (c) Pe1, Pe2 > 1.

4.1.1. Diffusion only
In figure 3, the films become more concentrated over time. The volume fraction profiles
show the large particles stratifying to the top surface, as expected for a purely diffusional
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Parameter Value or function

φ1,t̂=0 0.10
φ2,t̂=0 0.10
Pe1 {0.175, 0.7, 2.8}
Pe2 {0.35, 1.4, 5.6}
φm 0.64
K11(φ1, φ2), K22(φ1, φ2) (1 − φ1 − φ2)

6.55

K12(φ1, φ2), K21(φ1, φ2) 0
Z(φ1, φ2) φm/(φm − φ1 − φ2)

(∂μ1/∂ ẑ)/(∂μ2/∂ ẑ) (∂(ln φ1)/∂ ẑ)/(∂(ln φ2)/∂ ẑ)

Table 1. Parameter values used to obtain the example results.

model: the diffusive flux of component one in (3.3) scales as 1/Pe1, whilst that of
component two in (3.4) scales as 1/Pe2.

In figure 3(a), since Pe1, Pe2 < 1, the film remains fairly uniform over the course of
drying, but with the film concentration increasing towards the top surface. As

√
Pe1Pe2

is increased from 0.25 (figure 3a) to 1.0 (figure 3b), the degree of stratification increases,
and the concentration profiles sharpen. Increasing

√
Pe1Pe2 again from 1.0 (figure 3b) to

4.0 (figure 3c), further sharpens the profiles, starting to form a sharp transition between
the volume fractions at the top and bottom of the film. This sharpening is due to slower
diffusion relative to the evaporation rate, such that the lower parts of the film do not ‘see’
the effect of the evaporating top surface.

4.2. Diffusiophoresis
The same sets of parameters are run as in figure 3, but now with the addition of the
diffusiophoresis term. The form used for KP(φ1, φ2) is taken as (1 − φ1 − φ2)

6.55, which
is the same as for Kii(φ1, φ2). The exact functional forms used for Kii(φ1, φ2) and
KP(φ1, φ2) do not significantly impact the numerical results. Interestingly, if Kii(φ1, φ2)
and KP(φ1, φ2) are equal, then the functional form does not affect the relative fluxes, which
is the important factor when determining the importance of diffusiophoresis, relative to
diffusion.

The resulting volume fraction profiles are shown in figure 4.

4.2.1. Non-enhanced diffusiophoresis
In contrast to the diffusion-only results, at all Pe modelled, including diffusiophoresis
results in the film being almost uniform in composition. By t̂ = 0.60, the films are now
only slightly large-on-top stratified, with the exception of the film with low Pe (figure 4a),
which has just transitioned from slightly large-on-top stratified to slightly small-on-top
stratified. As is discussed in § S4 of the SI, the films in figures 4(b) and 4(c) will also
transition to slightly small-on-top stratified even later than the latest time shown on these
graphs. These results therefore suggest that diffusiophoresis acts against large-on-top
stratification, such that the effects of the diffusion and diffusiophoresis terms largely
counteract each other. As in the diffusion-only case, increasing

√
Pe1Pe2 results in sharper

profiles, as shown in figures 4(b) and 4(c).
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Stratification in drying films

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.2 0.4
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Figure 4. Volume fraction of each component as a function of height, predicted by the model including
diffusiophoresis, for: (a) Pe1 = 0.175 and Pe2 = 0.35. There is little difference between the red and the
blue curves throughout drying, indicating that the film is nearly uniform in composition; (b) Pe1 = 0.7 and
Pe2 = 1.4. The film profiles are sharper than in (a), due to the higher Péclet numbers, but there is still little
stratification between the two components; (c) Pe1 = 2.8 and Pe2 = 5.6. As in (b), little stratification between
the two components develops, although the film profiles are sharper than (b) due to the Péclet numbers being
increased again. (a) Pe1, Pe2 < 1(Pe = 6πηRĖH/kT), (b) Pe1 < 1, Pe2 > 1 and (c) Pe1, Pe2 > 1.

4.2.2. Increased diffusiophoresis
To verify that it is diffusiophoresis in the model which is promoting small-on-top
stratification, the model is run with an increased diffusiophoretic drift coefficient.
From (2.25), this corresponds to a larger value of RDP, i.e. a larger excluded volume.
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For example, non-spherical particles, such as polymers, may be excluded from a distance
equal to their radius of their gyration. The radius R1 in this case would correspond to
the radius of a sphere with the equivalent volume. The ratio RDP/R1 would therefore
be expected to be greater than unity for a non-spherical particle. However, in order to
accurately model non-spherical particles, the other parameters, Kij(φ1, φ2) and Z(φ1, φ2),
would also need adapting. As merely an example of increasing diffusiophoresis alone,
results for the case RDP/R1 = (4π/3)1/2 are shown in figure 5.

At small Pe (figure 5a), the stratification increases over time, as small particles
accumulate at the top surface. As the Pe numbers are increased (figure 5b), the
stratification develops at a greater rate, until the top surface is almost entirely small
particles. At large Pe numbers (Pe1, Pe2 > 1, figure 5c), a thin layer of small particles
at the top surface rapidly develops at early drying times. The thickness of this layer grows
over time. Directly beneath this layer, φ1 falls sharply to a much smaller value (∼0.15), as
φ2, at ∼0.49, dominates this region of this film. Over the lower region of the film, where
the effect of evaporation from the top surface is yet to significantly manifest, the volume
fractions of both components fall to their initial values.

Continuing this present model to the end of drying predicts a film of two regions: an
upper layer of almost entirely small particles, at an approximately constant concentration,
and a lower layer with a majority of large particles, at an approximately constant
concentration. A drawback of these results is that the form of Kii used allows particle
rearrangement within the close-packed region (SI, § S3.1). This, numerically, allows
the layer of small particles to grow into the close-packed region beneath it. However,
physically, such a degree of rearrangement is unlikely.

4.2.3. Key mechanism
The results can be understood by considering the scaling of (3.3) and (3.4). The
diffusiophoretic flux of component two has an extra order of (φ1, φ2) in its coefficient,
compared with the diffusive flux of component two, which is only just compensated for by
the prefactors (Pe2/Pe1) and 9/4. Hence the results for hard spheres with diffusiophoresis
in figure 4 show minimal stratification. Noting this concentration dependence of the
relative importance of diffusiophoresis, in the SI, § S4, the effect of varying the initial
concentration on the film structure is presented.

For figure 5, the ratio RDP/R1 can be considered as a geometric factor, relating the
excluded distance of the small particles around the large particles, to the radius of the small
particles. With the value of RDP/R1 adopted for this figure, the extra order of (φ1, φ2) in
the coefficients of the diffusiophoretic flux of component two is more than compensated
for by its other coefficients. This is sufficient to make the magnitude of the total diffusive
and diffusiophoretic flux of component two greater than that of component one, resulting
in small-on-top stratification. Note that the scaling of the ratio of the diffusiophoretic
flux to the diffusive flux of component two increases with φ2. Hence just beneath the
front of small particles, where φ2 is at its largest value in the film, there is a strong
driving force for more small particles to travel to the top surface. This is seen most clearly
in figure 5(c).

To illustrate the relative magnitudes of the different fluxes across the film, figure 6 is
plotted. The fluxes are plotted against ẑ for Pe1 = 0.7 and Pe2 = 1.4, so the flux profiles
can be compared against the concentration profiles given in figures 4(b) and 5(b). An early
time, t̂ = 0.17, when the profiles are forming, is chosen for this illustration. The cases with
non-enhanced and enhanced diffusiophoresis are shown for comparison. In figure 6(a), the
non-enhanced case, the total fluxes for components one and two are similar throughout the
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Stratification in drying films
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t̂ = tĖ/H = 0.17

Figure 5. Volume fraction of each component as a function of height, predicted by the model including
enhanced diffusiophoresis, for: (a) Pe1 = 0.175 and Pe2 = 0.35. Small-on-top stratification develops over time,
as seen by the increasing difference between the volume fractions of the two components at the top surface as t̂
increases; (b) Pe1 = 0.7 and Pe2 = 1.4. Small-on-top stratification develops more rapidly than in (a), as can be
seen by the greater distance between the red and blue lines at the top surface. This is due to the increase in the
Péclet numbers; (c) Pe1 = 2.8 and Pe2 = 5.6. Significant stratification between the two components develops
rapidly, as can be seen from the large volume fraction difference at the top surface at t̂ = 0.17. The depth of
the layer enriched in small particles at the top surface grows over time. (a) Pe1, Pe2 < 1(Pe = 6πηRĖH/kT),
(b) Pe1 < 1, Pe2 > 1 and (c) Pe1, Pe2 > 1.
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Figure 6. Flux contributions from diffusion and diffusiophoresis, calculated using (3.3) and (3.4), for both
components. Examples for Pe1 = 0.7 and Pe2 = 1.4 at t̂ = tĖ/H = 0.17 are shown, with (a) non-enhanced
diffusiophoresis, as in figure 4(b), and (b) enhanced diffusiophoresis, as in figure 5(b).

film, hence a nearly uniform film results in figure 4(b). The total flux for each component
is in the negative ẑ-direction, consistent with the solvent evaporating from top surface.
The magnitude of the diffusive flux of component one (the smaller particles) is larger
than that of component two, despite the gradients being similar, since this is proportional
to 1/Pe.

In figure 6(b), at the uppermost part of the film, which corresponds to the small
particles-enriched section in figure 5(b), the magnitude of the total flux of component two
is less than that of component one. These total fluxes are both in the negative ẑ-direction.
However, the mechanism that causes the layer of small particles to continue to build,
occurs below this layer, where the magnitude of the total flux of component two is greater
than that of component one. This change in the component with the greatest total flux
is due to the maximum in the concentration profile of component two, which changes
the direction of its diffusive flux. The large diffusiophoretic flux of component two and
diffusive flux of component one are in the negative ẑ-direction, since these act down the
concentration gradient of the component one particles. The component one flux labelled
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Figure 7. Summary of the results in figures 3–5 for each of t̂ = 0.17, 0.34, 0.51 and 0.60.

diffusiophoresis is backflow due to the diffusiophoretic flux of component two ((2.30) and
(2.31)).

4.3. Scenario comparison
For ease of comparison, the results from figures 3–5 are summarised in figure 7. The
degree of stratification, defined by (4.1), is plotted against the geometric mean of the
component Péclet numbers at selected times throughout drying, for the diffusion-only,
diffusiophoresis and enhanced diffusiophoresis cases.

There are different possible stratification measures that can be used, but the one below,
similar to the average separation measure used by Tang et al. (2018), is deemed to be
appropriate here

β = 2
[

ẑ1 − ẑ2

ẑ(H)

]
= 2

[
∫1

0 φ1ξ dξ

∫1
0 φ1 dξ

− ∫1
0 φ2ξ dξ

∫1
0 φ2 dξ

]
, (4.1)

where ẑ1 denotes the average position of particles of component one up the scaled
height of the film. Hence ẑ1 − ẑ2 is a measure of the average vertical distance between
component one and component two particles in the film. This is normalised by the
height of the film at the end of drying, ẑ(H) = (1 − t̂f ) = (1 − τf ), in order to be
able to compare different close-packing fractions (§ S5). The scaling factor of 2 is
included such that β varies between −1 (a layer of large particles on top of a layer
of small particles) and +1 (vice versa) in the final dried film, beginning from equal
concentrations.
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From the summary figure, it can be clearly seen that the diffusion-only model
leads to large-on-top stratification, whilst adding diffusiophoresis promotes β in the
direction of small-on-top. In the diffusion-only and enhanced diffusiophoresis cases,
the greatest magnitudes of β are reached as the Péclet numbers straddle one, and β

increases with time. The non-enhanced diffusiophoresis results remain negligibly stratified
throughout.

4.4. Model discussion

4.4.1. Effect of cross-interactions
Similarly to figure 5, Howard et al. (2017a) obtain a growing layer of small particles,
although they did not run both Pe1, Pe2 < 1. The particle size ratios explored by Howard
et al., Pe2/Pe1 = {4, 6, 8}, were larger than the Pe2/Pe1 = 2 studied here, but based on
scaling arguments, similar trends would be expected. Howard et al. found faster rate of
growth of the layer of small particles at higher Pe2/Pe1, and that would also be found from
this model. Fortini et al. (2016) obtain a growing layer of small particles, although they
only present simulations for Pe2/Pe1 = 7. The large Péclet numbers tested may explain
why they predicted such a sharp stratification.

Whilst the work of Howard et al. and Fortini et al. give similar small-on-top
stratification to figure 5 with enhanced diffusiophoresis, they differ from the approximately
uniform films predicted in figure 4, for hard spheres. The work of Zhou et al. (2017)
demonstrates that cross-interaction terms alone, in the absence of diffusiophoresis, can
also give rise to small-on-top stratification. Note also that Howard et al. (2017a,b) use
models accurate to higher order, and in doing so account for cross-interaction terms.
Since their models combine these EoS with diffusiophoresis, it suggests that both
diffusiophoresis and cross-interaction terms contribute to small-on-top stratification. From
figure 4, which did not include cross-interaction terms, in order to see the effect of
diffusiophoresis separately, diffusiophoresis alone seems not to be sufficient to give rise
to significant small-on-top stratification. Figure 5 suggests that in cases with enhanced
volume exclusion, diffusiophoresis can cause small-on-top stratification in the absence of
cross-interactions. Cross-interaction terms could be incorporated into this model by using
(1.1) to form an expression for (∂μ1/∂ ẑ)/(∂μ2/∂ ẑ), to replace the example in table 1 which
only includes entropy.

Further comparing these results with the work of Zhou et al. (2017), the term in the Zhou
et al. model which is responsible for the small-on-top stratification is the cross-interaction
term; diffusiophoresis could also be thought of as a cross-interaction term. Zhou et al.
argue that the flux of large particles due to the cross-interaction term must be greater than
the flux due to diffusion of the large particles down their own concentration gradient, in
order to observe small-on-top stratification. A more general explanation of the condition,
applicable to this diffusiophoresis model also, would be that the cross-interaction term
must be sufficiently large to make the total flux of the large particles exceed that of the
small particles. Zhou et al.’s cross-interaction term disproportionately affected the flux
of the larger particles, and that is also the case with the diffusiophoresis term in this
model.

One similarity between this model and the Langevin dynamics simulations of Fortini
et al. (2016) and Howard et al. (2017a) is that diffusiophoresis results from a short-range
repulsive interaction between the two particle types, whilst Fortini et al. use the
Yukawa interaction, and Howard et al. adopt the Weeks–Chandler–Andersen potential.
As explained in § 2.4, an alternative approach to adding diffusiophoresis to the diffusion
model in (2.13) would be to include the exclusion potential in the chemical potential term.
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4.4.2. Finite large particle R2 size effects
Note also that the diffusiophoresis term is idealised, assuming infinite size ratio between
the two particle sizes, yet is it being used to model a finite size ratio (Sear & Warren 2017).
The results in figure 4 therefore give an upper bound for the predicted effect of
diffusiophoresis. This is because the surface of a component two particle of finite radius
will not all be able to get as close to the surface of a component one particle, compared with
the case of infinite-sized component two particles. Whilst this upper bound will provide
insight into the importance of diffusiophoresis, and it is likely to be most important when
R2 � R1, an improved model would include the R2-dependence for the case where R2 is
finite. In this work, Pe2/Pe1 = 2 was run as an example. The model can be run with a
larger size ratio, such as Pe2/Pe1 = 10, in which case the infinite size ratio assumption
becomes more accurate, as long as the dispersion remains colloidally stable.

There are various approaches to correcting the model for when R2 is finite. The simplest
correction is that by Anderson, Lowell & Prieve (1982), which still models the small
particles as a solute in a fluid but corrects the geometry to include the finite size of
R2. Including the correction term to first order in Pe1/Pe2 results in the diffusiophoretic
velocity being 2/3 of that given in (2.24). This suggests the order of magnitude of the error
that is introduced from using the Asakura–Oosawa model. Brady (2011) derives equations
for a colloidal system that no longer requires the small particles to be much smaller than the
large ones, showing that the continuum and colloidal approaches agree in the limit where
this requirement is satisfied. Whilst being valid for any particle size ratio, Brady notes
that the approach is analytically limited to dilute solution. Marbach, Yoshida & Bocquet
(2020) derive a similar expression to Brady, by considering Stokes flow around a large
particle and the force-free particle condition for diffusiophoretic motion. In addition, for
the case of finite particle size ratio, the present model could be improved to accurately
model the remaining excluded volume/diffusiophoresis effects. Besides small particles
being excluded from large particles (small–large), there are also large–large, small–small
and large–small exclusions to consider.

4.4.3. Other model comments
Other possible improvements to the model include making φm a function of Pe2/Pe1, φ1
and φ2, to model how particles of two different sizes pack. The deviation from φm = 0.64
will be more significant as Pe2/Pe1 is increased, but assuming a constant value should be
a reasonable approximation for Pe2/Pe1 = 2, as in figures 3–5.

The dilute limit of the equations can be inferred by construction of the model:
the leading order of the diffusion velocities is just −(kT/6πηRi)Kii∇ ln φi, and
the leading order of the diffusiophoretic drift velocity for the large particles is
−(3φ1kT/8πηR1)KP∇ ln φ1.

5. Asymptotic solution for large Pe

As Pe1 and Pe2 are increased, the shapes of the curves appear to attain a sharp transition
front with constant shape. This suggests that an asymptotic solution could be sought in the
regime of high Pe1 and Pe2, with Pe2 > Pe1. Physically, this corresponds to a film dried
with a fast evaporation rate, such that the diffusive processes do not have time to flatten
the shape of the transition front. The method of Russel et al. (1989), for one particle type,
also adopted by Trueman et al. (2012b) for two particle types, is followed.

It is expected that the total particle volume fraction at the top of the film will be φm,
as fast evaporation will lead to this being quickly obtained, whilst the volume fractions
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at the bottom of the film will be φ1(τ = t̂ = 0) and φ2(τ = 0). As the Péclet numbers
are increased, there will be a sharper transition between these values. The position of this
transition is denoted as P(τ ).

The method is outlined here, with further details given in § S2 of the SI. The general
strategy is to use the change of variable X = [ξ − P(τ )]Pe2 to expand the region around
the transition. In the case of the diffusion-only model, there is only one transition
front, so the solution method is that found in the supplementary material of Trueman
et al. (2012b), but with the governing hydrodynamics equations corrected. In the case
of the diffusion–diffusiophoresis model with strong diffusiophoresis, a second transition
appears, which complicates the solution, as will be outlined in § 5.2.

To leading order in Pe2, the PDEs in (3.3)–(3.4) reduce to ordinary differential equations
(ODEs) for dφ1/dX and dφ2/dX, describing the shape of the transition front. The position
of the front P(τ ) is found from integrating the ODEs across the discontinuity from X =
−∞ to X = ∞ and summing

P(τ ) =
1 − φm

φm−(φ1,τ=0+φ2,τ=0)
τ

1 − τ
. (5.1)

This is the same result as for the one component case, and as would be obtained from a
mass balance across the drying film, assuming a sharp discontinuity at P(τ ). Interestingly,
it was necessary to assume large Pe1 as well as large Pe2, for the assumption of a sharp
discontinuity in φ1 at P(τ ) to be valid.

5.1. Diffusion
For the case where K12(φ1, φ2) = K21(φ1, φ2) = 0 and the chemical potentials are
just determined by entropy, dμ1/dμ2 = d ln φ1/d ln φ2, and employing the limit where
(Pe2/Pe1)

3 � 1, it is shown in the SI that there is a unique relation linking φ1 and φ2

φ1 − φ1,τ=0
φmφ1,τ=0

(φ1,τ=0+φ2,τ=0)
− φ1,τ=0

=
⎡
⎣ φ2 − φ2,τ=0

φmφ2,τ=0
(φ1,τ=0+φ2,τ=0)

− φ2,τ=0

⎤
⎦

Pe1/Pe2

. (5.2)

This can be compared with numerical results. Note that (5.2) is independent of
K11(φ1, φ2), K22(φ1, φ2), Z(φ1, φ2) and τ .

The result in (5.2) can be substituted into the expression for dφ1/dX and dφ2/dX,
giving X(φ1) or X(φ2). For the boundary condition, we arbitrarily set X = 0
at (φ1,X=0 + φ2,X=0) = [(φ1,τ=0 + φ2,τ=0) + (φ1,X→∞ + φ2,X→∞)]/2. This sets the
asymptotic coordinate system to be centred at the transition.

The resulting asymptotic solution for an example set of Péclet numbers is shown in
figure 8. In the transition region, there is excellent agreement between the asymptotic and
numerical solutions. This validates the numerical code used to generate figures 3–5. When
φ1,τ=0 = φ2,τ=0, the asymptotic solution predicts that φ1,X→∞ = φ2,X→∞ (SI). Whilst
there is therefore disagreement in the values at the top surface, these do tend to the values
given by the asymptotic solution over time. The small excess of large particles at the top
surface, a diffusive effect, counterbalances the excess of small particles in the rest of the
film (see (5.2)), to satisfy the mass balance.

5.2. Diffusiophoresis
As for the diffusion-only results, the diffusiophoresis results at high Pe1 and Pe2 appear
to be curves of constant shape moving through the film. The numerical code is verified
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Figure 8. Volume fraction of each component as a function of height for Pe1 = 10 and Pe2 = 20, with

φ1,t̂=0 = φ2,t̂=0 = 0.10 and φm = 0.64. Both the numerical and asymptotic solutions are shown for
comparison.

using the equations with enhanced diffusiophoresis. This is because the main purpose of
this asymptotic solution is to specifically verify the coding of the diffusiophoresis term.

The approach to deriving the asymptotic solution for the non-enhanced diffusiophoresis
case is very similar to that described in § 5.1. However, there are two key transitions in the
curves for the enhanced diffusiophoresis case: The first is the position of the particle front
i.e. the front of total volume fraction. This is denoted by P(τ ), as in the diffusion-only
case. The second is between the region of constant high φ1 and low φ2 values and the
region of constant high φ2 and low φ1. The position of this transition is denoted by Q(τ ).
The transitions are annotated on figure 9. This section seeks to construct an asymptotic
solution for all parts of the film:

• the position of both transitions, P(τ ), as already described, and Q(τ );
• the concentration profiles around P(τ ); and
• the values of φ1 and φ2 either side of Q(τ ).

The full derivation is shown in the SI from § S2.2. Briefly, the change of variable X =
[ξ − P(τ )]Pe2 forms differential equations for X(φ1, φ2), which can be solved to give the
profile in the film region around P(τ ), from the bottom of the film up to just beneath Q(τ ).

Unlike the diffusion case, in the limit (Pe2/Pe1)
3 � 1, the ODEs cannot be

approximated further. Since, from the numerical results, dφ2/dφ1 appears to be large,
the product (Pe1/Pe2)

3φ2(dμ2/dX)/(dμ1/dX) cannot be neglected. For the same
reason, it cannot be assumed that |(Pe2/Pe1)

3φ1(dμ1/dX)/(dμ2/dX)| � φ2. For the
case K12(φ1, φ2) = K21(φ1, φ2) = 0 and K11(φ1, φ2) = K22(φ1, φ2) = KP(φ1, φ2), and
no enthalpic contribution to the chemical potentials, dμ1/dμ2 = d ln φ1/d ln φ2, equating
the asymptotic expressions for dφ1/dX and dφ2/dX yields a quadratic in dφ1/dφ2.
This equation is independent of Kij(φ1, φ2), KP(φ1, φ2), Z(φ1, φ2) and τ . The quadratic
equation can be solved for dφ1/dφ2. The resulting solution for dφ1/dφ2 is integrated
numerically to give φ1(φ2) around P(τ ).

Finding the values of φ1 and φ2 either side of the transition Q(τ ) will provide a boundary
condition for integrating dφ1/dφ2 around P(τ ), as well as allowing the asymptotic solution
for the upper part of the film to be constructed. The change of variable Y = [ξ − Q(τ )]Pe2
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Figure 9. Volume fraction of each component as a function of height for Pe1 = 10 and Pe2 = 20,
with φ1,t̂=0 = φ2,t̂=0 = 0.10 and φm = 0.64. Both the numerical and asymptotic solutions are shown for
comparison. The model includes enhanced diffusiophoresis. The positions of P(τ ) and Q(τ ) at τ = 0.34 are
indicated as examples.

is used to expand around this transition. It is assumed that Q(τ ) takes the form

Q(τ ) = 1 − vτ

1 − τ
, (5.3)

which is a front travelling at constant speed v in (ẑ, t̂) coordinates. The speed v at
which Q(τ ) travels can be found by integrating the equation for dφ1/dY or dφ2/dY
across the transition (SI, S2.2.6). This is equivalent to a mass balance on φ1 or φ2 across
Q(τ ). Physically, both the diffusion and diffusiophoretic fluxes work to propel this front,
changing (φ1, φ2) from the values on one side of the front to those on the other. Note that
it is expected that v < φm/[φm − (φ1,τ=0 + φ2,τ=0)], since Q(τ ) is located higher in the
film than P(τ ).

The ODEs for dφ1/dY and dφ2/dY can be integrated, and are combined for the case
where K12(φ1, φ2) = K21(φ1, φ2) = 0, K11(φ1, φ2) = K22(φ1, φ2) = KP(φ1, φ2) and the
particle chemical potentials are purely entropic, dμ1/dμ2 = d ln φ1/d ln φ2. In the upper
region of the film, φ1 + φ2 ≈ φm. Substituting in φ2 = φm − φ1 gives a quadratic equation
for the values of φ1 either side of Q(τ ).

Using K11(φ1, φ2) = (1 − φ1 − φ2)
6.55 and Z(φ1, φ2) = φm(φm − φ1 − φ2)

−1, figure 9
is obtained, which compares the resulting asymptotic solution with the numerical results.
Figure 9 uses Pe1 = 10 and Pe2 = 20 i.e. the same parameters as figure 8, but now with
the diffusiophoresis term included.

There is reasonably good agreement between the numerical and asymptotic solutions,
although the asymptotic solution slightly overpredicts the sharpness of the transition
around P(τ ). Using the numerical results for φ1 to reconstruct the φ2 curves with the
asymptotic solution, and vice versa, gives excellent agreement. Therefore, the small
discrepancy that does arise is mostly from the step of finding X(φ1).

At fixed values of φ1,τ=0, φ2,τ=0 and φm, the asymptotic solution for v shows minimal
variation with Pe1 and Pe2. This allows a schematic diagram to be drawn for the regions
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Figure 10. Schematic of the regions of the asymptotic solution for large Pe, when φ1,t̂=0 = φ2,t̂=0 = 0.10 and
φm = 0.64. The unreachable region is shaded in grey.

in the film, as exemplified in figure 10 for the set of φ1,t̂=0, φ2,t̂=0 and φm values that were
used in figure 9.

Aside from verifying the numerical code, the asymptotic solutions shed insight into the
large Pe regime. Remembering the definition of the Péclet number, Pe = 6πηRĖH/kT ,
this corresponds to evaporation being fast compared with diffusion. Highly stratified films
are predicted in this regime, with the asymptotic solutions allowing prediction of the
composition of each region of the film. Figure 10 shows the depths of both (i) the region
between the top surface and Q(τ ), and (ii) the region between Q(τ ) and P(τ ), increasing
linearly with t̂. The depth of the region between the top surface and Q(τ ) is the predicted
thickness of the layer of small particles at the top surface. It can be seen in figure 10
that this small particle-rich layer is thinner than the large particle-rich layer beneath it,
as a result of the relative speeds at which the top surface, Q(τ ) and P(τ ) recede. These
fronts recede at speeds of 1, v and φm/[φm − (φ1,τ=0 + φ2,τ=0)], respectively, in (ẑ, t̂)
coordinates. The speeds are presented as the magnitudes of the gradients of the diagonal
lines separating the regions in figure 10. Hence the schematic diagram may provide an
explanation for why a thin layer of small particles can form at the top surface of a drying
film.

6. Conclusions

PDE models were successfully derived to describe the volume fraction evolution of
two components in a drying film, for both diffusion-only and diffusion–diffusiophoresis
cases. The diffusion term is written in a general form, allowing input of sedimentation
coefficients and the compressibility, and can be used with different chemical potential
expressions.
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Both the scaling and the numerical results of the diffusion-only model predict
large-on-top stratification. This model was run without interactions, but these
could be included in future work. In contrast, the numerical results from the
diffusion–diffusiophoresis model demonstrate that diffusiophoresis is a feasible
explanation of the experimental observations of a thin layer of small particles at the top
surface of a dried film, but it is dependent on the size of the excluded volume. The results
suggest that diffusiophoresis combined with another effect, such as cross-interactions,
may be necessary. Whether it is diffusiophoresis causing this will therefore need to be
experimentally verified. Diffusiophoresis is typically investigated by setting up a gradient
of salt and observing the motion of colloidal particles along this gradient, for example
in dead-end microfluidic channels (Shin et al. 2016; Singh et al. 2020). This could be
adapted with two colloidal particle sizes. In addition, the idealised diffusiophoresis term
in this model will need to be adapted to predict whether diffusiophoresis is still expected
to be significant with finite R2. Nevertheless, this simple PDE model, that allows the
diffusiophoresis term to be switched on and off, gives clear insight into what aspect of
more complex models – namely, a repulsive cross-interaction, with short range being
sufficient – leads to their predictions of small-on-top stratification.

In the enhanced diffusiophoresis model, the layer of small particles at the top surface
is predicted to grow over time, similarly to the results of Langevin dynamics simulations
in the literature (Fortini et al. 2016; Howard et al. 2017a), and at faster rates at higher Pe
numbers. This suggests that in order to obtain a top surface film of a desired component,
such as a biocide, fast drying rates should be used. Asymptotic solutions were found for
this regime.
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