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BRAGG RESONANCES IN A TWO-LAYER FLUID
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Abstract

Equations are derived to approximately describe the propagation of small amplitude surface
and interfacial waves across small irregularities in depth in a two-layer fluid. When the
irregularities are sinusoidal, Bragg interaction effects between an incident surface wave
and the bottom corrugations can lead to a large-amplitude reflected interfacial wave or a
large-amplitude transmitted interfacial wave if the incident surface wave is relatively long
and the lower layer shallow in comparison with the upper layer.

1. Introduction

Over the past decade, the subject of Bragg reflection of water waves propagating
across corrugated bottoms has received much attention from both a theoretical and
an experimental point of view. Put simply, Bragg reflection in this context is an
enhanced reflection which occurs when the wavenumber of an incident surface wave
is approximately one half the wavenumber of the corrugations in the bottom. This
phenomenon has attracted some interest in the coastal engineering community as
a possible means of protection against wave damage. There is also the intriguing
suggestion that the mass transport in the bottom boundary layer due to the partially
standing nature of the wavetrain when Bragg reflection is operating may in some
way be responsible for the growth and maintenance of the sandbars forming the
corrugations in the bottom. The reader is referred to Mei [3], Mei, Hara and Naciri [4]
and Kirby [1] for the theoretical background and to O'Hare and Davies [5] for some
comparisons between theory and experiment.

This paper will consider wave propagation in a system consisting of two superposed
fluids overlying a corrugated bottom. It will be assumed that the amplitudes of the
bottom corrugations are small compared with the depth of the lower layer. This
system supports two types of wave motion - surface and interfacial. In the former,
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the motion decays as we move away from the upper surface whereas the motion
for the latter decays away from the interface. In most situations, the upper surface
is virtually unaffected by the interfacial wave motion. The interfacial waves are
shorter and slower than surface waves of the same frequency. When a surface wave
encounters a patch of ripples on the bottom, some of its energy will be reflected back
and the remainder will propagate beyond the patch. Both the reflected and transmitted
parts of the wave motion will in general contain both surface and interfacial wave
components. One instructive way of thinking about Bragg effects is in terms of triad
resonances between the wavy medium (in this case the bottom corrugations) and two
waves travelling through the medium. For an homogeneous fluid, there is only one
Bragg resonance - that between the forward- and backward-travelling surface waves.
But in a two-layer fluid, there are also possible resonances involving the interfacial
waves as well. We will be considering the situation where an incoming surface wave is
specified. The additional Bragg resonances of interest will therefore be one involving
this wave with a reflected interfacial wave and, perhaps a little surprisingly, another
involving the incident wave and a transmitted interfacial wave.

This paper will first describe the two wave modes and then derive the coupled
equations which approximately govern the changes in amplitude of the modes as they
propagate across small irregularities in an otherwise horizontal bed. Our approach will
basically follow that used by Kirby [1] for an homogeneous fluid. Kirby's derivation
actually allows the bottom to vary on two lateral scales, one much longer than the
wavelength of the waves and another of the same order as the wavelength. The
present work could readily be generalised to consider this case. These amplitude
equations will then be applied to study the Bragg resonances, both numerically and
via a 'modulated wavetrains' approach. Our fundamental finding is that if the incident
surface wave is relatively 'long', so that the surface wave 'feels' the bottom and
the lower layer is relatively shallow compared with the upper layer, so that the
interfacial wave also 'feels' the bottom, then reflected or transmitted interfacial waves
of quite large amplitude may occur in the neighbourhood of the appropriate Bragg
condition. Although the interface displacements associated with these may be much
larger than the displacement of the upper surface caused by the incident surface wave,
the amount of energy contained in these interfacial waves is generally quite small.
The relevance of these findings to both laboratory and oceanographical situations will
then be discussed.

2. The two wave modes

The fluid system under consideration consists of two superposed fluids of different
densities. We use the subscript 1 to denote quantities in the upper layer, and the
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subscript 2 to denote those in the lower layer. The layers have thicknesses H\ and
H2 and densities px and fa. The x- and z-axes are taken horizontally with the v-
axis vertically down. The upper surface is at v = 0 and the bottom at v = H, where
H = Hi + H2. Initially, H2 will be taken as a constant but will later be allowed to vary.
If po is the constant atmospheric pressure, the pressures in the absence of any motion
will be &x = po + Pi gy in the upper layer and &>2 = Po + fhgy + 8 H\ (Pi - Pi) in the
lower layer. We now consider wave motions in which all perturbation quantities are
proportional to exp(—icot) where w > 0. If px and p2 are the perturbation pressures in
each layer, and r]i and r)2 are the displacements of the upper surface and the interface
respectively, it is readily shown that the linearised equations are

V2/>, = 0 for .7 = 1,2,

subject to
dpi co2

-f- + —P] = 0 at y = 0
dy 8

and
^ = 0 at y = H, + H2.dy

In linear theory, the perturbation pressure in each layer is related to the velocity
potential <pj by Pj = icopjfy. The linearised kinematic condition at the interface may
be written

(ozPj ay

while the linearised condition expressing the continuity of the total pressure across
the interface is

8 dpi 8 dP2
pi + —2ir = pi + —2ir

 a t y = Hi-
co2 dy co2 dy

If we nondimensionalise perturbation pressures with respect to P\ga, where a is a
typical upper-surface displacement due to an incident surface wave, and lengths with
respect to H = Hx + H2, the governing nondimensional equations are now

V2
Pj=0 for y = 1,2,

t*p. + KPl=0 at v = 0,
dy

d-El = ^-Pl at y = D,
ay ay

^ i + KPl=^ + Kp2 at y = D,
dy ay
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where D = HJH, K = co2H/g and A =
This system has two propagating modes and an infinite number of evanescent ones.

The pressure eigenfunction for the propagating modes is given by

<$>i(y) = a(coshrv — Kx~x sinhr)>)

in the upper layer and

( K coshr D — x sinhrZA
^ity) = a A • u /i ™— coshr(l - y)

\ r A s i n h r ( l - D ) /
in the lower layer, where a is a constant and r satisfies the dispersion relation (see
Article 231 of Lamb [2])

(T2(l-A) + A/i:2)tanhTDtanhT(l-D)-/i:r(tanhTD+tanhT(l-D)) + A:2 = 0.

Without loss of generality, we may take the real roots of this to be positive. There are
two of these. The smaller, ii, is the surface wave root and the larger, T2, is the interfacial
wave root. The subscripts on these refer to the modes, not the layers. It is convenient
to choose the constant a to make the dimensionless upper-surface displacement unity
for the surface-wave mode (a = 1) and the dimensionless interface displacement
unity for the interfacial mode (or = coshr2D — r2K~i sinhr2D). The evanescent
modes have purely imaginary values of r and will not be considered further.

From now on, the surface wave mode will be indicated by a second subscript 1
and the interfacial wave mode by a second subscript 2 so that 3>i2, for example, is the
pressure eigenfunction in the upper layer for the interfacial wave mode. The surface
and interfacial wave modes are orthogonal in the sense that

f <t>ik(y)<t>ij(y)dy + A f <t>u(y)<i>2j(y)dy = NkSkj, (1)
./O JD

The normalisation constants Nk are readily found and will not be reproduced here.

3. Derivation of the amplitude equations

We now consider the effects of small bottom irregularities on the propagation of
the surface and interfacial waves. The bottom is taken to be y = 1 + 8(x, z) in
dimensionless variables, where |<S| 4C 1. The linearised bottom boundary condition,
correct to O(S) may be written

V r (SV2p2) at y = l, (2)
dy
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where V2 is the horizontal gradient operator.
The basic assumption to be made is that, because the bottom irregularities are

small, the vertical structure of the motion is adequately described by the propagating
wave eigenfunctions appropriate to water of constant depth unity. This is thus a
straightforward generalisation of the ideas of Kirby [1] to the two-layer case. The
evanescent modes are neglected. Thus, we assume that the wave pressure in each
layer is given by

k=\

The amplitude Ak must be the same in each layer because the matching conditions at
the interface must hold for all x and z.

To investigate how the amplitudes vary, we consider the following integral which
is zero because the pressures Pj are harmonic:

= / S/2p^xm{y)dy + A f
J0 J D

1
'2.^ P2^>2m(y)dy.

Jo JD

Clearly

Im =Tv2
2AkNkSmk + f LE±4>lm(y)dy + A f ^ O 2 m ( v ) d y . (4)

frf Jo °y JD °y

The terms involving the y-derivatives on the right of (4) may be integrated by parts
twice. The terms that then arise from the boundary condition at the upper surface and
from the interface matching conditions all cancel out and one of the terms from the
bottom boundary condition is found to be zero. Thus

= Nmy\Am + fj Pl ̂ ^ dy+A £ Pl
d^- dy + A[<D2mV2-(SV2p2)]y=l.

Using (1) and (3), we find that the lateral variations of the mode amplitudes are
governed by

2

V\Am + r2Am = -Sm J^ PkVr(.SV2Ak) (5)

for m = 1, 2, where Pk = cDM(l) and Sm = AAT'/V
Equation (5) can the thought of as a generalisation of (3.8) of Kirby [1] to the case

of a two-layer fluid. The two modes are coupled together by the term on the right.
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4. Bragg resonances

We consider the situation where the bottom irregularities consist of a patch of
sinusoidal corrugations of the form

\ € sin Xx for —mn/X < x < 0,
8(x,z) = \ .

} 0 otherwise.

To avoid discontinuities, it will be assumed that m is an integer. A surface wave
Ai = exp(—izix) is normally incident from x = +oo and encounters the patch. The
solutions for x > 0 will therefore be

A\ = exp(—ix\x) + Rsexp(iiix), A2 = /?/exp(/r2;t),

and for x < —mn/X

A, = rsexp(-/ri.*), A2 = T,exp(-ir2x),

where R and T mean reflection and transmission coefficients respectively and sub-
scripts S and / refer to surface and interfacial waves respectively. Because of the
normalisation adopted for the eigenfunctions, \RS\ and \TS\ give the ratios of the
maximum upper surface elevation in the reflected and transmitted surface waves to
that of the incident wave, whereas | /?/1 and | T/ \ give the analogous ratios for the
displacement of the interface to that of the upper surface due to the incident wave.
Energy conservation in this context is

With the incident surface wave specified, there are three Bragg resonances of
relevance.

1. Incident surface wave - reflected surface wave. The Bragg condition for this is
2TI = X. This problem has been extensively studied for the case of an homogen-
eous fluid and will not be pursued further here.

2. Incident surface wave - reflected interfacial wave. The Bragg condition for this is
r, + r2 = X.

3. Incident surface wave - transmitted interfacial wave. The Bragg condition for this
is r2 — Tt = X.

In most situations of oceanographical interest, A is very close to unity which
means that r2 3> X\. This, in turn, implies that the last two resonances are very close
together. This is illustrated in Figure 1 for A = 0.97, K = 0.25, m = 20, € = 0.05
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FIGURE 1. The magnitudes of the reflection and transmission coefficients for the surface and interfacial
waves as functions of A = A./(*i + T2) in the case A = 0.97, K = 0.25, m = 20, e = 0.05 and D = 0.8.

andD = 0.8. This density ratio corresponds roughly to the case of fresh water over sea
water while the value of K means that the incident surface wave is relatively long and
so 'feels' the bottom corrugations. The lower layer is also relatively shallow, so the
interfacial wave also 'feels' the bottom corrugations. The abscissa is A = A./(Ti + xi)
so the resonance of type 2 occurs in the neighbourhood of A = 1. This, and the
other numerical solutions to be presented later, were obtained by finding the four
linearly independent solutions of (5) numerically. Imposing continuity of Au A2 and
their derivatives at x = 0 and x = —mn/k enables the reflection and transmission
coefficients to be found. Energy conservation was checked numerically. The peak
in \RS\ and dip in \TS\ at about A = 0.06 represent Bragg reflection of the incident
surface wave as a reflected surface wave. Although the peaks in \Tt\ and \Rr\ appear
large, the amount of energy in the interfacial wave motions is quite small, as evidenced
by the fact that |7S| is very close to unity in this region. One lesson from this example
is that a small change in the parameters can lead to a large change in the nature of the
interfacial wave from large reflection to large transmission.

5. Modulation solutions

It is possible to obtain a simplified description of the behaviour of the system near
resonance in terms of modulated wavetrains. For the case of an homogeneous fluid,
this has been done by Mei [3] and Mei, Hara and Naciri [4] among others.

When the resonance is between an incident surface wave and a reflected interfacial
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wave, we assume that the appropriate Bragg condition is almost satisfied, and so define
a detuning parameter E by

T, + T2 = X

where E measures departures from the Bragg condition. We seek an approximate
solution of (5) of the form

i4, = F(Jc)exp(-ir,Jc), (6)

A2 = B(x)exp(ir2x), (7)

where x = ex. Substituting these into (5), neglecting all terms of O(e2) and above
and retaining only the resonant terms in the standard manner leads to

dF/dx = HFB exp(2/£x) (8)

and
dB/dx = iiBFexp(-2iEx), (9)

where the interaction coefficients ixF and \JLB are given by fiF — \S\P2x2 and \iB =
^S2Pit\. It follows from the definitions of the Sk and Pk that IXF/J.B > 0. The
boundary conditions are that F = 1 at x = 0 (thereby matching to the incident wave)
and B = 0 at x = —mne/X (the radiation condition that there is no incoming wave
in x < -mn/X). We are interested in Ts = F(—mn€/X) and R, = 5(0). Equations
(8) and (9) are readily solved for F and B subject to the given boundary conditions.
We find the following.

1. When E2 < fiFf^B, the case of 'small' detuning

fMCxp(—imneE/X)
T

— iE tanh v' \x cosh v — iE sinh u'

where /A = y/fMF(MB — E2 and v = mne^/X.
2. When E2 = fAF/xB, the case of 'critical' detuning

mnefiB exp(—imn€E/X)

X — iEmne' X — iEmne

3. When E2 > fj.Ffj,B, the case of 'large' detuning

crexp(—imntE/X)_ _a cos rjr — iE sin ^ ' a cos rfr — iE sinx/r'

where a = y/E2 — /J,FfiB and \\r = mneo/X.
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Figure 2 shows | Rt | for this modulation theory (broken line) and for the numerical
solution (solid line) when K = 0.25, m = 20, A = 0.97, e = 0.05 and D = 0.75.
In this example, the transition from small to large detuning occurs at about A =
1 ± 0.0005. This example also illustrates the extreme sensitivity of R, to the depth of
the lower layer. Comparing with Figure 1, we see that changing the depth of the lower
layer from 0.2 to 0.25 has reduced the maximum value of \Rj | from 1.66 to 0.74.

0.5

FIGURE 2. The magnitude of the reflection coefficient for the interfacial wave as a function of
A = X/Ui + r2) when A = 0.97, K = 0.25, m = 20, e = 0.05 and D = 0.75. The solid line was
obtained by numerically integrating (5) and the broken line from the modulation theory.

It is also instructive to ask what happens as m —> oo, that is, when the incident
surface wave encounters a semi-infinite patch of corrugations. In the cases of small
detuning and critical detuning, it is readily shown from the above expressions that
Ts —> 0 and | /?, | -> -J^-FI^B- In these cases, all the incident surface wave energy is
reflected back as an interfacial wave. For the case of large detuning this is not so and
\R, | has no limiting value as m —»• oo and can lie anywhere between 0 and \fj,B/E\.

When the resonance is between an incident surface wave and a transmitted inter-
facial wave, the analysis is similar except that the detuning parameter is now defined
by T2 - t! = A. - 2eE. Then with

Ax =F(i)exp(-iT,jc), (10)

(11)

we again derive (8) and (9), except that the interaction coefficient \xB is now given by
fxB = — \S2P\T:\- In this case (J-F^B < 0 and the boundary conditions are F = 1 and
B = 0a t* = 0 . We find

T, — B(—mne/k)) = — Gu,fi/v) s'm(m7i€v/\)exp(imn€E/X),
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Ts = F(—mn€/k)) = [cos (mnev/k) — (i E/v) s\n(mn€v/k)]exp(-imne E /k),

where v =
At perfect tuning (E = 0), it is clear from these expressions that it is possible

for some parameter values for \TS\ to be zero. In this instance, all the energy of the
incoming surface wave is transferred to the transmitted interfacial wave. Neither 1771
nor \TS\ has any limit as m —> oo. Some results for \T/\ when A = 0.8, K = 0.5,
m = 10, D = 0.6 and € = 0.1 are shown in Figure 3. The modulation theory results
are shown by a broken line and the numerical solution by a solid line. The density ratio
corresponds roughly to a laboratory situation of kerosene over water. The abscissa is
r = k/(z2 — ti) and hence the Bragg condition here is satisfied at F = 1.

0.5

FIGURE 3. The magnitude of the transmission coefficient for the interfacial wave as a function of
T = A/(r2 - ri) when A = 0.80, K = 0.5, m = 10, e = 0.1 and D = 0.6. The solid line was obtained
by numerically integrating (5) and the broken line from the modulation theory.

6. Further numerical results and discussion

The mechanism discussed in this paper provides a means for generating very short
interfacial waves at surface-wave frequencies. It is clear that the prerequisites for
relatively large amplitude reflected or transmitted interfacial waves to be produced
from an incident surface wave by Bragg resonance effects with bottom corrugations is
that the incident surface wave be relatively long and the lower layer be relatively thin
compared with the upper layer. These points are illustrated in Figures 4 and 5 which
show contours of \R,\ as functions of A and K or D. Results for \Tt\ as a function
of F are broadly similar and will not be reproduced. In Figure 4, A = 0.97, m = 15,
e = 0.05 and D = 0.8. In Figure 5, A = 0.8, m = 15, e = 0.05 and K = 0.75. In
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the latter case, the incident wave is not particularly 'long' so the reflection is relatively
weak.

FIGURE 4. Contours of the magnitude of the reflection coefficient for the interfacial wave as a
function of AT and A when A = 0.97, m = 15, e = 0.05 and D = 0.8. The contour levels are
\R,\ =0.1,0.3,0.5, 1.0, 3.0 and4.0.

The question now arises as to the relevance of these results and the situations where
the Bragg effects discussed here might be expected to be of importance. Reverting to
dimensional variables, if T is the wave period in seconds, then H = KgT2/An2 ~
KT2/A metres. For the parameters used in Figure 3, a wave period of 2 seconds
corresponds to a depth H = 0.5 metres. The two dimensionless wavenumbers are
Tt = 0.7876 and T2 = 4.6438 approximately. The bottom wavelengths required for
Bragg effects to produce a large reflected or transmitted wave are then approximately
7r/(r2 ± ri) metres, that is, 0.587 metres and 0.814 metres respectively. These are both
entirely reasonable figures for a laboratory situation. For the more oceanographically
relevant cases depicted in Figure 1, the values Ti and T2 are 0.52295 and 16.43992
respectively. A wave period of T = 8 seconds and total water depth of H = 4 metres
gives K = 0.25 approximately. The appropriate bottom corrugation wavelengths
for the Bragg resonances are then SK/(T2 ± Ti) metres, that is, 1.48 and 1.58 metres
respectively. Again, these are reasonable figures. The requirement for the bottom
layer to be relatively thin would occur, for example, in the situation where salty water
intrudes under fresh water.

The extension of this work to obliquely-incident waves is immediate. If 6 is
the angle of incidence, the z wavenumber of both waves will be n = Ti sin#. The x
wavenumber of the surface wave mode is then ox = T\ cos 8 and that for the interfacial
wave mode is a2 = In the Bragg conditions, a, replaces r,. There are
corresponding changes to all the relevant formulae, the most important being that, in
the modulation theory expressions for fiF and fj.B, Ti is replaced by ox — n2/<r2 and r2

by a2 — n2/o\. It is worth noting that, because T2 is generally much greater than xx, a2
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0.5 1.0

FIGURE 5. Contours of the magnitude of the reflection coefficient for the interfacial wave as a
function of D and A when A = 0.80, m = 15, e = 0.05 and K = 0.75. The contour levels are
\R,\= 0.1,0.3, 0.5, 0.7,0.9 and 1.1.

will be relatively insensitive to changes in 6 so the transmitted and reflected interfacial
waves will have their crests almost parallel to the bottom contours, irrespective of the
angle of incidence of the surface wave.
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