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Multi-modal sensing and analysis of poster
conversations with smart posterboard
tatsuya kawahara, takuma iwatate, koji inoue, soichiro hayashi, hiromasa yoshimoto
and katsuya takanashi

Conversations in poster sessions in academic events, referred to as poster conversations, pose interesting, and challenging topics
on multi-modal signal and information processing. We have developed a smart posterboard for multi-modal recording and
analysis of poster conversations. The smart posterboard has multiple sensing devices to record poster conversations, so we can
review who came to the poster and what kind of questions or comments he/she made. The conversation analysis incorporates
face and eye-gaze tracking for effective speaker diarization. It is demonstrated that eye-gaze information is useful for predicting
turn-taking and also improving speaker diarization. Moreover, high-level indexing of interest and comprehension level of the
audience is explored based on the multi-modal behaviors during the conversation. This is realized by predicting the audience’s
speech acts such as questions and reactive tokens.
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I . I NTRODUCT ION

Multi-modal signal and information processing has been
investigated primarily for intelligent human–machine
interfaces, including smart phones, KIOSK terminals,
and humanoid robots. Meanwhile, speech and image-
processing technologies have been improved so much that
their target now includes natural human–human behaviors,
which are made without being aware of interface devices.
In this scenario, sensing devices are installed in an ambient
manner. Examples of this kind of direction include meeting
capturing [1] and conversation analysis [2].

We have been conducting a project which focuses on
conversations in poster sessions, hereafter referred to as
poster conversations [3, 4]. Poster sessions have become a
norm in many academic conventions and open laborato-
ries because of the flexible and interactive characteristics. In
most cases, however, paper posters are still used even in the
ICT areas. In some cases, digital devices such as LCD and
PCprojectors are used, but they donot have sensing devices.
Currently, many lectures in academic events are recorded
and distributed via Internet, but recording of poster sessions
is never done or even tried.

Poster conversations have a mixture characteristics of
lectures and meetings; typically a presenter explains his/her
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work to a small audience using a poster, and the audi-
ence gives feedbacks in real time by nodding and verbal
backchannels, and occasionally makes questions and com-
ments. Conversations are interactive and also multi-modal
because participants are standing and moving unlike in
meetings. Another good point of poster conversations is
that we can easily make a setting for data collection which
is controlled in terms of familiarity with topics and other
participants and yet is “natural and real”.

The goal of this study is signal-level sensing and high-
level analysis of human interactions. Specific tasks include
face detection, eye-gaze detection, speech separation, and
speaker diarization. These will realize a new indexing
scheme of poster session archives. For example, after a long
session of poster presentation, we often want to get a short
review of the question-answers and feedbacks from the
audience.

We also investigate high-level indexing of which segment
was attractive and/or difficult for the audience to follow.
This will be useful in speech archives because people would
be interested in listening to the points other people liked.
However, estimation of the interest and comprehension
level is apparently difficult and largely subjective. Therefore,
we turn to speech acts which are observable and presumably
related with these mental states. One is prominent reactive
tokens signaled by the audience and the other is questions
raised by them. Prediction of these speech acts from multi-
modal behaviors is expected to approximate the estimation
of the interest and comprehension level. The scheme is
depicted in Fig. 1.
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Fig. 1. Proposed scheme of multi-modal sensing and analysis.

The primary technical contribution of this paper is to
figure out the effect of eye-gaze information onprediction of
turn-taking events and then on speaker diarization inmulti-
party conversations. The secondary novelty is to investi-
gate the relationship between eye-gaze information and the
speech acts which are related with the interest and compre-
hension level. In this work, backchannel information is not
addressed. It was addressed in our previous work [5].

In the remainder of the paper, the steps in Fig. 1 are
explained after a brief description of the multi-modal cor-
pus in Section II. Section III gives a process overview
of audio-visual sensing of conversation participants and
their speech using the ambient devices installed in the
posterboard (green lines). In Section IV, the relationship
between the eye-gaze events and turn-taking is analyzed. In
Section V, a novel multi-modal speaker diarizationmethod
using eye-gaze information is presented and evaluated. In
Section VI, speech acts and mental states of the audience
is analyzed to define the interest and comprehension level
(blue lines), and then prediction of the concerned speech
acts from the audience’s multi-modal behaviors (red lines)
is addressed.

I I . MULT I -MODAL CORPUS OF
POSTER CONVERSAT IONS

We have recorded a number of poster conversations for
multi-modal interaction analysis [3, 6]. In each session, one
presenter (labeled as “A”) prepared a poster on his/her own
academic research, and there was an audience of two per-
sons (labeled as “B” and “C”), standing in front of the poster
and listening to the presentation. Each poster was designed
to introduce research topics of the presenter to researchers
or students in other fields. The audience subjects were not
familiar with the presenter and had not heard the presen-
tation before. The duration of each session was 20–30min.
Some presenters made a presentation in two sessions, but to
a different audience.

For the ground-truth annotation, special multi-modal
sensing devices such as a motion capturing system were
used, while every participant wore a wireless head-set
microphone and an eye-tracking recorder. Eye-gaze infor-
mation was derived from the eye-tracking recorder and
the motion capturing system by matching the gaze vector

against the position of the other participants and the poster.
The detected eye-gaze events are verified by a human anno-
tator. We also introduced the magnetometric sensor, worn
by every participant, to measure the head position and
orientation accurately.

All speech data were segmented into Inter-Pausal Unit
(IPUs) and sentence units with time and speaker labels,
and transcribed according to the guideline of the Corpus of
Spontaneous Japanese (CSJ) [7]. Fillers, laughter, and verbal
backchannels were also manually annotated. While fillers
are usually followed by utterances by the same speaker,
backchannels are uttered by themselves.

I I I . MULT I -MODAL SENS ING WITH
SMART POSTERBOARD

A) Smart posterboard
We have designed and implemented a smart posterboard,
which can record poster sessions and sense human behav-
iors. Since it is not practical to ask every participant to wear
special devices such as a head-set microphone and an eye-
tracking recorder and also to set up any devices attached to
a room, all sensing devices are attached to the posterboard,
which is actually a 65-inch LCD screen. Specifically, the dig-
ital posterboard is equipped with a 19-channel microphone
array on the top, and attached with Kinect sensors. An out-
look of the smart posterboard is given in Fig. 2. A more
lightweight and portable system is realized by only using
Kinect sensors, which captures audio and video signals.

B) Multi-modal sensing
Detection of participants and their multi-modal behaviors
such as eye-gaze and speech using the smart posterboard is
elaborated in Fig. 3.

The image processing is based on Kinect sensors to
detect the persons of the audience by their face and then
track their eye-gaze. The information is used in audio pro-
cessing of speaker localization and voice activity detection,
which are collectively referred to as speaker diarization.
First, the location information of the persons can be used as

Fig. 2. Outlook of smart posterboard.
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Fig. 3. Process flow of multi-modal sensing.

a constraint in the speaker localization. This is a straightfor-
ward multi-modal integration in speaker diarization [8, 9].
In this study, furthermore, we investigate the use of eye-
gaze information for speaker diarization as it is shown in
Section IV that eye-gaze information is useful for predicting
turn-taking by the audience.

In Section VI, the eye-gaze information is also used to
predict and classify speech acts by the audience, which are
related with the interest and comprehension level of the
audience.

C) Face and eye-gaze detection
Kinect sensors are used to detect the participants’ face and
their eye-gaze. As it is difficult to detect the eye-ball with
the Kinect’s resolution, the eye-gaze is approximated with
the head orientation. The process of the face and head
orientation detection is as follows [10]:

(i) Face detection:
Haar-like features are extracted from the color and
time-of-flight (ToF) images to detect the face of the
participants. Multiple persons can be detected simul-
taneously even if they move around.

(ii) Head model estimation:
For each detected participant, a three-dimensional
shape and colors of the head are extracted from the
ToF image and the color image, respectively. Then, a
head model is defined with the polygon and texture
information.

(iii) Head tracking:
Head tracking is realized by fitting the video image into
the head model. A particle filter is adopted to track the
three-dimensional position of the head and its three-
dimensional orientation.

(iv) Identification of eye-gaze object:
From the six-dimensional parameters, an eye-gaze vec-
tor is computed in the three-dimensional space. The
object of the eye-gaze is determined by this vector and
the position of the objects. In this study, the eye-gaze
object is limited to the poster and other participants.

The entire process mentioned above can be run in real
time by using a GPU for tracking each person. In order to
verify the accuracy of the head position and orientation esti-
mated by the abovemethod, we compared the result against
the measurement by the magnetometric sensor for 16 sub-
jects. The mean error of head position is 12.2mm and that
of the head orientation is 5.21 degrees.

I V . PRED ICT ION OF TURN -TAK ING
FROM MULT I -MODAL BEHAV IORS

Turn-taking in conversations is a natural behavior in human
activities. Studies on turn-taking have been convention-
ally focused on dyadic conversations between two persons.
While there are a number of studies conducting analysis on
the turn-taking patterns [11–14], some studies investigated a
predictionmechanism for a dialogue system to take or yield
turns based on machine learning [15–18].

Recently, conversational analysis and modeling have
been extended to multi-party interactions such as meetings
and free conversations by more than two persons. Turn-
taking in multi-party interactions is more complicated than
that in the dyadic dialog case, in which a long pause sug-
gests yielding turns to the (only one) partner. Predicting
whom the turn is yielded to or who will take the turn is
significant for an intelligent conversational agent handling
multiple partners [19, 20] as well as an automated system to
beamform microphones or zoom in cameras on the speak-
ers. Studies on computational modeling on turn-taking in
multi-party interactions are very limited so far. Laskowski
et al. [21] presented a stochastic turn-taking model based
on N-gram for the ICSI meeting corpus. Jokinen et al. [22]
investigated the use of eye-gaze information for predicting
turn-holding or giving in three-party conversations.

This section deals with turn-taking behaviors in poster
conversations. Conversations in poster sessions are different
from those in meetings and free conversations addressed in
the previous works, in that presenters hold most of turns
and thus the amount of utterances is very unbalanced.How-
ever, the segments of audiences’ questions and comments
are more informative and should not be missed. Therefore,
the goal of this work is to predict turn-taking by the audi-
ence in poster conversations, and, if that happens, which
person in the audience will take the turn to speak.

We approach this problem by combining multi-modal
information sources. While most of the aforementioned
previous studies focused on prosodic features of the cur-
rent speakers, it is widely known that eye-gaze informa-
tion plays a significant role in turn-taking [23], and the
works by Jokinen et al. [22] and by Bohus and Horvitz [19]
exploited that information in their modeling. The existence
of posters, however, requires different modeling in poster
conversations as the eye-gaze of the participants are focused
on the poster in most of the time. This is true to other
kinds of interactions using somematerials such asmaps and
computers. Several kinds of parameterization of eye-gaze
patterns including the poster object are investigated for
effective features related with turn-taking.
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In this section, four poster sessions are used. They
are provided with the accurate eye-gaze annotation as
explained in Section II. The ground-truth data are used in
the analysis of this section. In majority of utterances (IPUs)
of the presenter (“A”), the turn was held by himself/herself.
The ratio of turn-taking by the audience (either “B” or “C”)
is only 11.9. In this work, therefore, prediction of turn-
taking is formulated as a detection problem rather than a
classification problem. The evaluation measure should be
recall and precision of turn-taking by the audience, not the
classification accuracy of turn-holding and yielding by the
presenter. This is consistent with the goal of the study.

A) Analysis on eye-gaze in turn-taking
First, statistics of eye-gaze events are investigated on their
relationship with turn-taking by the audience.

Distribution of eye-gaze
The object of the eye-gaze of all participants is identified
at the end of the presenter’s utterances. The target object
can be either the poster or other participants. The statistics
are shown in Fig. 4 in relation with the turn-taking events.
It is observed that the presenter is more likely to gaze at
the person in the audience right before yielding the turn to
him/her. We can also see that the person who takes the turn
is more likely to gaze at the presenter, but the ratio of the
turn-yielding by the presenter is not higher than the average
over the entire data set.

The duration of the eye-gaze is also measured. It is mea-
sured within the segment of 2.5 s before the end of the
presenter’s utterances because the majority of the IPUs are
less than 2.5 s. It is listed in Table 1 in relation with the
turn-taking events. We can see that the presenter gazed at
the person right before yielding the turn to him/her sig-
nificantly longer than other cases. However, there is no
significant difference in the duration of the eye-gaze by the
audience according to the turn-taking events.

Joint eye-gaze events
Next, joint eye-gaze events by the presenter and the audi-
ence are defined as shown in Table 2. In this table, nota-
tion of “audience” is used, but actually these events are

Fig. 4. Statistics of eye-gaze and its relationship with turn-taking (ratio).

Table 1. Duration of eye-gaze and its relationship with turn-taking (s).

Turn taken by audience
Turn held by
Presenter A B C

A gazed at B 0.220 0.589 0.299
A gazed at C 0.387 0.391 0.791

B gazed at A 0.161 0.205 0.078
C gazed at A 0.308 0.215 0.355

Table 2. Definition of joint eye-gaze events by presenter and audience.

Presenter

Who Gazes at Audience (I) Poster (P)

Audience Presenter (i) Ii Pi
Poster (p) Ip Pp

Table 3. Statistics of joint eye-gaze events by presenter and audience in
relation with turn-taking (ratio of occurrence frequency).

#Turn taken by audience
#Turn held by
Presenter A () Self () Other () Total

Ii 3.1 0.4 0.1 3.6
Ip 7.9 1.8 0.6 10.3
Pi 4.7 0.3 0.2 5.2
Pp 73.7 3.6 3.6 80.9

defined for each person in the audience. Thus, “Ii” means
the mutual gaze by the presenter and a particular person
in the audience, and “Pp” means the joint attention to the
poster object.

Statistics of these events at the end of the presenter’s
utterances are summarized in Table 3. Here, the counts of
the events are summedover the twopersons in the audience.
They are classified according to the turn-taking events, and
turn-taking by the audience is classified into two cases: the
person involved in the eye-gaze event actually took the turn
(self), and the other person took the turn (other). It is con-
firmed that the joint gaze at the poster is most dominant
(around 80) in poster conversations. The mutual gaze
(“Ii”) is expected to be related with turn-taking, but its fre-
quency is not so high. The frequency of “Pi” is not high,
either. The most potentially useful event is “Ip”, in which
the presenter gazes at the person in the audience before giv-
ing the turn. This is consistent with the observation in the
previous subsection.

B) Prediction of turn-taking by audience
Based on the analysis in the previous subsection, features for
predicting turn-taking by the audience are parameterized.
The prediction task is divided into two sub-tasks: detection
of speaker change and identification of the next speaker.
In the first sub-task, we predict whether or not the turn is
yielded from the presenter to (someone in) the audience,
and if that happens, then we predict who in the audience
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takes the turn in the second sub-task.Note that these predic-
tions are done at every end-point of the presenter’s utterance
(IPU) using the information prior to the next utterance
of the current speaker (=turn-holding) or speaker change
(=turn-yielding).

Prediction experiments were conducted based on
machine learning using the data set in a cross-validation
manner; one session is tested using the classifier trained
with the other sessions, and this process is repeated by
changing the training and testing set.

Prediction of speaker change
For the first sub-task of prediction of speaker change,
prosodic features are adopted as a baseline. Automatic
speech recognition of natural conversations is very diffi-
cult, so is detection of the end of utterances based on the
lexical and syntactic analysis. Therefore, prosodic features,
which are extracted robustly, have been used in the previous
works (e.g. [18, 22]). Specifically, F0 (mean, max, min, and
range) and power (mean and max) of the presenter’s utter-
ance is computed prior to the prediction point. Each feature
is normalized by the speaker by taking the z-score; it is sub-
tracted by themean and then divided by the variance for the
corresponding speaker.

Eye-gaze features are defined as below:

(i) Eye-gaze object
For the presenter, (P) poster or (I) audience;
For (anybody in) the audience, (p) poster, (i) presenter,
or (o) other person in the audience.

(ii) Joint eye-gaze event: “Ii”, “Ip”, “Pi”, “Pp”
These can happen simultaneously for multiple persons
in the audience, but only one is chosen by the priority
order listed above.

(iii) Duration of the above 1. ((I) and (i))
A maximum is taken over persons in the audience.

(iv) Duration of the above 2. (except “Pp”).

Note that these parameters can be extended to any number
of the persons in the audience, although only two persons
were present in this data set.

Support vector machines (SVM) and logistic regression
(MaxEnt) model are used for machine learning, but they
show comparable performance. The result with SVM is
listed in Table 4.

Here, recall, precision and F -measure are computed for
speaker change, or turn-taking by the audience. This case
accounts for only 11.9 and its prediction is a very challeng-
ing task, while we can easily get an accuracy of over 90 for

Table 4. Prediction result of speaker change.

Feature Recall Precision F -measure

Prosody 0.667 0.178 0.280
Eye-gaze 0.461 0.216 0.290
Prosody+ eye-gaze 0.706 0.209 0.319

Table 5. Prediction result of the next speaker.

Feature Accuracy ()

1. Eye-gaze object 53.8
2. Joint eye-gaze event 53.8

1.+2. 55.8
3. 1.+2.+ duration 66.4

prediction of turn-holding by the presenter.We are particu-
larly concerned on the recall of speaker change, considering
the nature of the task and application scenarios.

As shown in Table 4, the prosodic features obtain a
higher recall while the eye-gaze features achieve a higher
precision and F -measure. In the table, combination of all
four kinds of the eye-gaze parameterization listed above
is adopted, however, using one of them is sufficient and
there is not a significant difference in performance among
them. Combination of the prosodic features and eye-
gaze features is effective in improving both recall and
precision.

Prediction of next speaker
Predicting the next speaker in a multi-party conversation
(before he/she actually speaks) is also a challenging task,
and has not been addressed in the previous work. For this
sub-task, the prosodic features of the current speaker are
not usable because it does not have information suggesting
who the turn will be yielded to. Therefore, the eye-gaze fea-
tures described in the previous subsection are adopted, but
they are computed for individual persons in the audience,
instead of taking the maximum or selecting among them.

In this experiment, SVM performs slightly better than
the logistic regression model; thus the prediction accuracy
obtained with SVM is listed in Table 5. As there are only
two persons in the audience, random selection would give
an accuracy of 50.

The simple eye-gaze features focused on the prediction
point (1. and 2.) obtains an accuracy slightly better than
the chance rate, but incorporating duration information (3.)
significantly improves the accuracy.

V . SPEAKER D IAR IZAT ION US ING
EYE -GAZE INFORMAT ION

Speaker diarization is a process to identify “who spoke
when” in multi-party conversations. A number of diariza-
tion methods [24–26] have been investigated based on
acoustic information. In real multi-party conversations,
the diarization performance is degraded by adversary
acoustic conditions such as background noise and dis-
tant talking. To solve the problem, some studies tried to
incorporate multi-modal information such as motion and
gesture [14, 26].

Based on the finding of Section IV, we propose a novel
method of speaker diarization by incorporating eye-gaze
information. Although it is known that eye-gaze informa-
tion can be used to predict participants’ utterances, it has
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not been integrated in speaker diarization tasks. In the
proposed multi-modal diarization method, acoustic and
eye-gaze features are extracted and integrated in a stochastic
manner to detect utterances.

In this study, eight poster sessions are used. For these
sessions, eye-gaze information are not provided with the
ground-truth annotation, but automatically captured by
Kinect sensors as explained in Section III.

Since utterances by the audience are not frequent, it is
difficult to detect these utterances accurately.

A) MUSIC method using microphone array
Conventional speaker diarization methods have used Mel-
Frequency Cepstral Coefficients (MFCCs) and directions of
arrival (DOA) of sound sources [24, 26]. An acoustic base-
line method in this study is based on sound source local-
ization using DOAs [27–30] derived from the microphone
array.

To estimate a DOA, we adopt the MUltiple SIgnal Clas-
sification (MUSIC) method [31], which can detect multiple
DOAs simultaneously. The MUSIC spectrum Mt(θ) is cal-
culated based on the orthogonal property between an input
acoustic signal and a noise subspace. Note that θ is an angle
between the microphone array and the target of estimation,
and t represents a time frame. The MUSIC spectrum rep-
resents DOA likelihoods, and the large spectrum suggests a
sound source in that angle. To calculate the spectrum, it is
needed to determine the number of sound sources. In this
study, the number of sound sources is predicted with SVM
using the eigenvalue distribution of a spatial correlation
matrix [32].

The proposed method incorporates eye-gaze informa-
tion to speaker diarization. Themethod first extracts acous-
tic and eye-gaze features to compute a probability of speech
activity respectively, then it combines the two probabil-
ities for the frame-wise decision. The process is con-
ducted independently on every time frame t and for each
participant i .

The acoustic features are calculated based on theMUSIC
spectrum.We can use the i th participant’s head location θi ,t

tracked by the Kinect sensors. The possible location of the
participant is constrainedwithin a certain range (±θB ) from
the detected location θi ,t . The acoustic features �ai ,t of the
i th participant on the time frame t consist of the MUSIC
spectrum in the range:

�ai ,t =
[
Mt

(
θi ,t − θB

)
, · · · , Mt

(
θi ,t

)
, · · · , Mt

(
θi ,t + θB

)]T
.

(1)

B) Eye-gaze features
The eye-gaze features �gi ,t for the i th participant on the time
frame t are same as those used in Section B, except that
unigram and bigram of the eye-gaze objects and the joint
eye-gaze events are added.

C) Integration of acoustic and eye-gaze
information
The acoustic features �ai ,t are integrated with the eye-gaze
features �gi ,t to detect the i th participant’s speech activity
vi ,t in the time frame t. Note that the speech activity vi ,t is
binary: speaking (vi ,t = 1) or not-speaking (vi ,t = 0). Here,
a linear interpolation is adopted to combine probabilities
independently computed by the two feature sets [26]:

fi ,t(�ai ,t , �gi ,t) = α p(vi ,t = 1|�ai ,t)

+ (1− α) p(vi ,t = 1|�gi ,t). (2)

Here α ∈ [0, 1] is a weight coefficient. Each probability is
computed by a logistic regression model. It is also possi-
ble to combine the two feature sets in the feature domain
and directly compute a posterior probability p(vi ,t |�ai ,t , �gi ,t).
Compared with this joint model, the linear interpolation
model has a merit that training data do not have to be
aligned between the acoustic and eye-gaze features because
of independency of the two discriminative models. Fur-
thermore, the weight coefficient α can be appropriately
determined based on the acoustic environments such as
signal-to-noise ratio (SNR). Here, it is estimated using an
entropy h of the acoustic posterior probability p(vi ,t |�ai ,t)

[33] as

α = αc · 1− h

1− hc
, (3)

where hc and αc are an entropy and an ideal weight coeffi-
cient in a clean acoustic environment, respectively. When
the estimated weight coefficient is larger than one or less
than zero, the coefficient is set to one or zero, respectively.
For online processing, the coefficient is updated periodically
(every 15 s).

D) Speaker diarization experiment
Logistic regression models were trained separately for the
presenter and the audience by cross-validation of the eight
sessions. The constrained range of the MUSIC spectrum
(θB ) is set to 10 degrees, and the MUSIC spectrum is cal-
culated every 1 degree, thus the dimension of the acoustic
features in equation (1) becomes 21. The ideal weight coeffi-
cient αc in equation (3) is empirically set to 0.9. To evaluate
performance under ambient noise, audio data were pre-
pared by superimposing a diffusive noise recorded in a
crowded place. SNR was set to 20, 15, 10, 5, and 0 dB. In real
poster conversations carried out in academic conventions,
SNR is expected to be about 0 to 5 dB.

The multi-modal method is compared with other meth-
ods listed below:

(i) Baseline MUSIC [29]
This method conducts peak tracking of the MUSIC
spectrum and GMM-based clustering in the angle
domain. Each cluster corresponds to each partici-
pant. This method does not use any cue from visual
information.
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(ii) Baseline + location constraint [9]
This method also performs peak tracking of the MUSIC
spectrum, and compares the detected peak with the
estimated head location within the ±θB range. If this
constraint is not met, then the hypothesis is discarded.

(iii) Acoustic-only model
This method fixes the weight coefficient α to 1 in
equation (2), and uses only the acoustic information.

For an evaluation measure, diarization error rate (DER)
[34] is used in this experiment. DER consists of False Accep-
tance (FA), False Rejection (FR), and speaker error (SE) as
below:

DER = #FA+ #FR+ #SE

#S
, (4)

where #S is the number of speech frames in the reference
data.

Table 6 lists DER for each SNR. The two baseline meth-
ods (baseline MUSIC and baseline + location constraint)
showed lower accuracy because they are rule-based and not
robust against dynamic changes of the MUSIC spectrum
and participants’ locations. Compared with the acoustic-
only model, the proposed multi-modal model achieves
higher performance under noisy environments (SNR = 5,
0 dB). Thus, we can see the effect of eye-gaze information
under noisy environments expected in real poster sessions.

The weight coefficient α in equation (2) was also man-
ually tuned where the stepping size was 0.1. In the rel-
atively clean environment (SNR = 20 dB), the optimal
weight was 0.9. On the other hand, in the noisy environ-
ments (SNR = 5 and 0 dB), the optimal weight was 0.6.
These results suggest that the weight of eye-gaze features
is appropriately increased in noisy environments. The aver-
age DER by the manual tuning is 12.13, which is slightly
better than the result (13.38) by the automatic weight
estimation (equation (3)). Therefore, the automatic weight
estimation works reasonably according to the acoustic
environment.

Moreover, we conducted an evaluation by using themea-
surement by the magnetometric sensor for computing the
eye-gaze features. The average DER in this case is 13.31,
which is not statistically different from the result (13.38)
by the automatic estimation by the Kinect sensors.

V I . PRED ICT ION OF INTEREST AND
COMPREHENS ION LEVEL V IA
AUD IENCE ’S QUEST IONS FROM
MULT I -MODAL BEHAV IORS

Feedback behaviors of an audience are important cues in
analyzing presentation-style conversations. We can guess
whether the audience is attracted to the presentation by
observing their feedback behaviors. In poster conversations,
the audience can ask questions even during the presenta-
tion. By observing their reactions, particularly the quantity
and quality of their questions and comments, we can guess
whether the presentation is understood or liked by the
audience.

In this section, we address estimation of interest and
comprehension level of the audience based on the multi-
modal behaviors. As annotation of the interest and compre-
hension level is apparently difficult and largely subjective,
we turn to speech acts which are observable and presum-
ably related with these mental states. One is prominent
reactive tokens signaled by the audience and the other is
questions raised by them.Moreover, questions are classified
into confirming questions and substantive questions. Pre-
diction of these speech acts from themulti-modal behaviors
is expected to approximate the estimation of the interest and
comprehension level.

In this study, ten poster sessions are used. As described in
Section II, each poster was designed to introduce research
topics of the presenter to researchers or students in other
fields. It consists of four or eight components (hereafter
called “slide topics”) of rather independent topics. This
design is a bit different from typical posters presented
in academic conferences, but makes it straightforward
to assess the interest and comprehension level of the
audience for each slide topic. Usually, a poster conver-
sation proceeds with an explanation of slide topics one
by one, and is followed by an overall QA and discus-
sion phase. In the QA/discussion phase, it is difficult to
annotate which topic they refer. Therefore, the conver-
sation segments of the explanation on the slide topics
are used.

In the ten sessions used in this study, there are 58 slide
topics in total. Since twopersons participated as an audience
in each session, there are 116 slots (hereafter called “topic
segments”) for which the interest and comprehension level
should be estimated.

Table 6. Evaluation of speaker diarization (DER ()).

SNR (dB)

Method ∞ 20 15 10 5 0 average

Baseline MUSIC [29] 15.28 20.44 28.34 42.80 64.09 87.22 43.03
Baseline + location constraint [9] 7.76 13.66 21.18 35.49 55.27 77.81 35.20
Acoustic-only model Equation (2) w/o �gi ,t 6.52 7.60 9.63 14.20 22.33 34.34 15.77
Multi-modal model Equation (2) 7.35 8.55 10.73 14.23 18.21 21.22 13.38

https://doi.org/10.1017/ATSIP.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.2


8 tatsuya kawahara et al.

Fig. 5. Distribution of interest & comprehension level according to question type.

A) Definition of interest and comprehension
level
To get a gold-standard annotation, it would be a natural way
to ask every participant of the poster conversations on the
interest and comprehension level on each slide topic after
the session. However, this is not possible in a large scale
and also for the previously recorded sessions. The question-
naire resultsmay also be subjective and difficult to assess the
reliability.

Therefore, we focus on observable speech acts which are
closely related with the interest and comprehension level.
In the previous work [35], we identified particular syllabic
and prosodic patterns of reactive tokens (“he:”, “a:”, “fu:N” in
Japanese, corresponding to “wow” in English) signal inter-
est of the audience. We refer to them as prominent reactive
tokens.

We also empirically know that questions raised by
the audience signal their interest; the audience ask more
questions to know more and better when they are more
attracted to the presentation. Furthermore, we can judge
the comprehension level by examining the kind of ques-
tions; when the audience asks something already explained,
they must have a difficulty in understanding it. This ten-
dency is preliminarily analyzed with a small set in this
subsection.

Annotation of question type
Questions are classified into two types: confirming ques-
tions and substantive questions. The confirming ques-
tions are asked to make sure of the understanding of
the current explanation, thus they can be answered sim-
ply by “Yes” or “No”1. The substantive questions, on the
other hand, are asking about what was not explained by
the presenter, thus they cannot be answered by “Yes” or
“No” only; an additional explanation is needed. Substan-
tial questions are occasionally comments even in a question
form.

1This does not mean the presenter actually answered simply by “Yes”
or “No”.

Relationship between question type and
interest and comprehension level
In subset four sessions, audience subjects were asked to
answer their interest and comprehension level on each slide
topic after the session. These are used for analysis on the
relationship between these gold-standard annotations and
observed questions.

Figure 5 shows distributions of the interest and compre-
hension level for each question type. The interest level is
quantized into five levels from 1 (not interested) to 5 (very
interested), and the comprehension level is marked from 1
(did not understand) to 5 (fully understood). In the graph,
a majority of confirming questions indicate a low compre-
hension level (level 1&2).We also see a general tendency that
occurrence of questions of either types is correlated with a
higher interest level (level 4&5).

From these observations and the previous finding, the
following annotation scheme is adopted.

• High interest level ← questions of any types and/or
prominent reactive tokens.

• Low comprehension level← confirming questions.

Detection of these states would be particularly useful in
reviewing poster sessions or improving presentations.

B) Relationship between eye-gaze behaviors
and questions
Next, statistics of eye-gaze behaviors of the audience are
investigated on their relationship with questions asked by
them.

The object and the duration of the eye-gaze of all par-
ticipants during the topic segments are identified prior to
the audiences’ questions. The target object can be either
the poster or other participants. In poster conversations,
unlike daily conversations, participants look at the poster in
most of the time. Therefore, eye-gaze at other participants
has a reason and effect. The analysis in Section IV showed
that eye-gaze information is relatedwith turn-taking events;
specifically, the eye-gaze by the presenter mostly controls
the turn-taking.

https://doi.org/10.1017/ATSIP.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2016.2


multi-modal sensing and analysis of poster conversations with smart posterboard 9

Table 7. Relationship of audience’s eye-gaze at the presenter
(count/utterance and duration ratio) and questions (by type).

Confirming Substantive Entire

Gaze occurrence 0.38 1.02 0.64
Gaze duration 0.05 0.15 0.07

In this work, the eye-gaze by the audience is investigated
on its relationship with the questions they ask. In particular,
the eye-gaze of each person of the audience at the presenter
is counted. The average occurrence count (per presenter’s
utterance) and the total duration (normalized per second)
within the topic segments are measured. Their statistics
are listed in Table 7. We can see a significant decrease and
increase when asking confirming questions and substantive
questions, respectively. It is reasoned that the audience is
more focused on the poster trying to understand the con-
tent before asking confirming questions, while they want
to attract the presenter’s attention before asking substantive
questions.

The results suggest that the eye-gaze information is
potentially useful for identifying the question type and also
estimating the interest and comprehension level.

C) Prediction of interest and comprehension
level
Based on the analysis in the previous subsection, we have
implemented and evaluated classifiers to predict the inter-
est and comprehension level of the audience in each topic
segment.

Eye-gaze at the presenter is parameterized into an occur-
rence count per the presenter’s utterance and the duration
ratio within the topic segment. A naive Bayes classifier is
trained as the data size is not so large to estimate extra
parameters such as weights of the features. Experimental
evaluations were done by cross-validation.

Prediction of questions and reactive tokens
for interest level estimation
First, an experiment of estimating the interest level of the
audience was conducted. This problem is formulated by
predicting the topic segment in which questions and/or
prominent reactive tokens are made by the audience. These
topic segments are regarded as “interesting” to the person
who made such speech acts.

The results are listed in Table 8. F -measure is a har-
monic mean of recall and precision of “interesting” seg-
ments, though recall and precision are almost same in this
experiment. Accuracy is a ratio of correct output among
all 116 topic segments. The chance-rate baseline when we
count all segments as “interesting” is 49.1. Incorporation
of the eye-gaze features significantly improves the accuracy,
but the two kinds of parameterization of the eye-gaze fea-
tures (occurrence count and duration ratio) are redundant
because their combination does not result in any further
improvement.

Table 8. Prediction result of topic segments involving
questions and/or reactive tokens.

F -measure Accuracy ()

Baseline (chance rate) 0.49 49.1
Gaze occurrence 0.63 61.2
Gaze duration 0.65 57.8
Combination of both 0.63 61.2

Table 9. Identification result of confirming or
substantive questions.

Accuracy ()

Baseline (chance rate) 51.3
Gaze occurrence 75.7
Gaze duration 67.6
Combination of both 75.7

Identification of question type for
comprehension level estimation
Next, an experiment of estimating the comprehension level
of the audience was conducted. This problem is formulated
by identifying the confirming question given a question,
which signals that the person does not understand the topic
segment. Namely, these topic segments are regarded as “low
comprehension (difficult to understand)” for the person
who made the confirming questions.

The classification results of confirming questions versus
substantive questions are listed in Table 9. In this task, the
chance-rate baseline based on the prior statistic is 51.3. The
eye-gaze occurrence count achieves the best performance
and combining it with the eye-gaze duration does not give
an additional gain. This is explained by a large difference
in its value among the two question types as shown in
Table 7.

V I I . CONCLUS IONS

We have conducted multi-modal conversation analysis
focused on poster sessions. Poster conversations are inter-
active, but often long and redundant. Therefore, simple
recording of the session is not so useful.

The primary goal of the study was robust signal-level
sensing of participants, i.e. who came to the poster, and their
verbal feedbacks, i.e. what they said. This is still challenging
given distant and low-resolution sensing devices. Combina-
tion ofmulti-modal information sourceswas investigated to
enhance the performance.

First, multi-modal behaviors prior to turn-taking events
were investigated. For prediction of speaker change or turn-
taking by the audience, both prosodic features of the pre-
senter and eye-gaze features of all participants are useful.
The most relevant among the eye-gaze information is the
presenter’s gazing at the speaker to whom the turn is to be
yielded.
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Fig. 6. Poster conversation browser.

Based on this finding, a multi-modal speaker diariza-
tion method was realized by integrating eye-gaze informa-
tion with acoustic information. The stochastic multi-modal
method improved the performance of speaker diarization
and the effect of the eye-gaze information was confirmed
under noisy environments.

The next step was high-level indexing of interest and
comprehension level of the audience. The problem was
approached by looking into relevant speech acts such as
questions and prominent reactive tokens. Specifically, esti-
mation of the interest level was reduced to prediction of
occurrence of questions and prominent reactive tokens, and
estimation of comprehension level was realized by clas-
sification of the question type. This scheme shows some
promising results, but needs further investigations and
larger-scale evaluations.

To visualize these detected events and indexes, a poster
session browser has been developed, as shown in Fig. 6.
Along the timeline, utterance segments of each participant
are marked. We can easily access to substantial utterances
from the audience such as questions and comments, which
are infrequent but important in poster sessions. Eye-gaze
events are also visualized so we can estimate the interac-
tion level of the conversation. The browser will be useful for
assessing the effect of the processes and further improving
them.
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