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Summary

Male Drosophila melanogaster transfers many accessory-gland proteins to females during copulation.
Sex peptide (SP) is one of these and one of its main effects is to decrease female remating propensity.
To date, there has been no investigation of genetic variation in SP-gene expression levels, or if such
potential variation directly influences female remating behaviour. We assessed both these
possibilities and found significant variation in expression levels of the SP gene across D. melanogaster
isolines. A non-linear association between SP expression levels and female remating delay suggestive
of disruptive selection on expression levels was also documented. Finally, while some isolines were
infected with the endosymbiont Wolbachia, no association between Wolbachia and SP expression
level was found.

1. Introduction

In Drosophila melanogaster, approximately 112 ac-
cessory gland proteins (Acps) are transferred from the
male to the female during copulation. These Acps
subsequently dramatically alter both female behav-
iour and physiology (Ram & Wolfner, 2007; Findlay
et al., 2008), with functions that include : reducing
female remating rate, increasing ovulation and egg lay-
ing, and facilitating sperm storage in females thereby
increasing male reproductive success (Chen et al.,
1988; Neubaum & Wolfner, 1999). Null mutants for
D. melanogaster Acps such as Acp70A (sex peptide
(SP)), Acp26Aa (ovulin) and Acp36DE suffer reduced
fertility and/or perform poorly in sperm competition
(Herndon & Wolfner, 1995; Neubaum & Wolfner,
1999; Chapman et al., 2001). The genes encoding
Acps evolve rapidly both within and between species
(Swanson & Vacquier, 2002; Begun & Lindfors, 2005;
Mueller et al., 2005; Schully & Hellberg, 2006; Haerty
et al., 2007) and variation in their amino acid se-
quence suggests strong positive selection on these
genes (Swanson et al., 2001).

A major function of the most comprehensively
studied Acp, SP, is to induce a female ‘refractory’
period (reduced acceptance of further matings).
This occurs after SP microinjection (Chen et al., 1988)
or ectopic expression in females (Aigaki et al., 1991).
Additionally, SP reduces female fitness, possibly
through the increased production of juvenile hor-
mone (JH) it causes in vitro in females’ corpora allata
(Moshitzky et al., 1996; Wigby & Chapman, 2005;
Harshman & Zera, 2007), and because of this, SP has
been implicated in sexual conflict, as have seminal
proteins generally (Chapman et al., 1995; Eberhard,
1996; Wolfner, 2002; Wigby & Chapman, 2005). The
gene encoding SP (Acp70A) also shows a strong sig-
nal of positive selection and evidence suggests that it
is one of the most rapidly evolving Acp genes (Cirera
& Aguade, 1997). Sexual selection and/or sexual
conflict are likely to be involved in promoting this
rapid evolution.

SP is found bound to sperm in females (Peng et al.,
2005), and it is then cleaved from the sperm and is
thought to interact with both the female genital tract
and the nervous system (Ottiger et al., 2000; Yapici
et al., 2008). SP’s effect on females are prolonged,
with SP affecting female behaviour for over 5 days,
whereas ovulin, for example, induces shorter term
effects on egg laying that last for only one day
(Herndon &Wolfner, 1995; Heifetz et al., 2000, 2005;
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Chapman et al., 2003). Other Acps are removed
quickly from the female reproductive tract (Monsma
et al., 1990; Coleman et al., 1995; Bertram et al.,
1996; Ram et al., 2005), but the prolonged occupation
of the female reproductive tract by SP is probably
because it is bound to sperm (Peng et al., 2005). SP is
likely to be a strong determinant of male fitness. This
is because female multiple mating is common in
D. melanogaster and sperm dumping and sperm dis-
placement of the first male’s sperm when females re-
mates (Gromko et al., 1984a, b ; Snook & Hosken,
2004) mean the last male to mate often siresy80% of
subsequent offspring. Therefore, a male’s ability to
prevent females from remating will be an important
male fitness component and SP affects the duration
of this delay (Fiumera et al., 2007).

Variation in transcript levels of protein-coding
genes is thought to be responsible for many of the
phenotypic differences within and between popu-
lations of D. melanogaster, including sexual di-
morphism (Baker et al., 2007), exemplifying how
important transcriptional regulation can be. Ad-
ditionally, studies of variation in Acp70A gene se-
quence show several polymorphisms either within or
just upstream of the Acp70A coding region (Fiumera
et al., 2007). Such polymorphisms in Acp70A gene
sequence occur in natural populations, yet the natural
variation in expression levels of Acp70A has not been
previously examined, nor is it known if variation in
expression levels leads to variation in female re-
sponses, such as delaying remating.

Endosymbionts are also known to have drastic
effects on host sexual behaviour by manipulating
their reproductive physiology and/or behaviour
(Folstad & Karter, 1992; Min & Benzer, 1997;
Champion de Crespigny et al., 2006; Negri et al.,
2008). One such obligate intracellular organism is
the bacterium Wolbachia (Jeyaprakash & Hoy, 2000),
which is widespread in insects (Werren et al., 1995)
and occurs at frequencies as high as 30–75% in both
wild and laboratory populations of D. melanogaster
(Corby-Harris et al., 2007). Wolbachia is present in
almost all Drosophila tissues with highest infection
levels in the ovaries of females (Dobson et al., 1999),
where they infect the eggs and are transmitted to any
offspring subsequently produced (reviewed in Tram
et al., 2003). Crosses between infected males and un-
infected females cause reduced egg-hatching success
due to cytoplasmic incompatibility (CI) (Werren,
1997). In Nasonia and Drosophila, CI appears to oc-
cur because the two sister sets of chromosomes do
not align synchronously at meiosis (Tram & Sullivan,
2002; Tram et al., 2003), but the molecular mechan-
ism by which Wolbachia induces the CI phenotype is
still unknown. Although evidence for fecundity costs
associated with Wolbachia infection is inconsistent
(Hoffmann et al., 1994; Min & Benzer, 1997;

McGraw et al., 2002; Weeks et al., 2007), in
Drosophila simulans Wolbachia infection causes re-
duced sperm production in males (Snook et al., 2000)
and poor competitive ability of sperm when compet-
ing with other males’ sperm for fertilization of ova
within females (Champion de Crespigny et al., 2006).
Fewer sperm and low sperm competitive ability may
generate selection on other ejaculate components to
compensate for these detrimental effects. One target
of compensating selection could be SP as this influ-
ences females’ remating propensity and hence reduces
sperm competition risk.

Here, we test for variation in Acp70A expression
levels in 15 isofemale lines of D. melanogaster and
then assess the effects this variation has on the dur-
ation of the female refractory period, a key target of
SP, and an important male fitness component. We
also test for the effects of Wolbachia on Acp70A gene
expression patterns as the negative impact of this
parasite on other male fitness components (e.g. sperm
number) has the potential to select for compensatory
increases in SP production.

2. Materials and methods

(i) Rearing conditions

D. melanogaster isofemale lines were collected by
Trudy Mackay in North Carolina in 2004, donated to
us by Frank Jiggins and continually maintained by
full sib mating. They arrived in our lab in February
2007 and were reared in 7.5r2.5 cm glass vials with
approximately 50 individuals per vial. Vials contain-
ing flies were kept at 25 xC on a 12:12 light :dark light
cycle with 15 ml standard food mix (10 g agarose, 85 g
granulated sugar, 60 g maize, 10 g yeast, 1 litre de-
ionized H2O and 1 g nipagin). Before the experiment
six individuals from each line were diagnosed for
Wolbachia infection by PCR following Snook et al.
(2000) after DNA extraction using EDNA kits
(Fisher Biotech). Due to the isoline status of the
flies and high transmission fidelity of Wolbachia
(Hoffmann et al., 1990) this was taken as an indi-
cation that all flies are either infected or uninfected
within lines.

To generate experimental flies reared under
standardized conditions, populations laid eggs on
2r1 cm laying caps of food mix in 9r2.5 cm uni-
versal tubes for 24 h. Low-density vials were set-up
with 40 eggs placed on approximately 7 ml standard
food mix vials to reduce larval competition. Upon
emergence virgin adults were collected under CO2

anaesthesia and sexed on ice every 8–12 h. Males
were placed individually in standard food vials and
females were discarded. Five-day-old males were
subsequently frozen in liquid nitrogen and stored
at x80 xC.
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(ii) Acp70A expression

RNA was extracted from 2 to 5 males per isofemale
line using Tri reagent (Sigma) and treated with DNase
(Sigma). PCR was used to confirm complete DNA
removal using Acp70A specific primers FP: 5k-
CGTTTGCGTACTCGGCTTGGTC, RP 5k-CCCC-
AAATTAAGACGGCACCACT. (PCR cycle : 95 xC
for 3 min, followed by 39 cycles of 95 xC for 1 min,
58 xC for 1 min and 72 xC for 1 min, followed by
72 xC for 5 min). 10 ml reactions were used containing
1 ml RNA sample, 1 ml 10 pM primers and 7 ml
1.1rReddyMix2 (ABgene). 5 ml of sample was run
on 1.4% agarose gel at 120 V for 30 min and viewed
under a UV lamp.

Quantitative reverse transcriptasePCR(Q-RTPCR)
was carried out using a DNA engine Opticon 2 with
FullVelocity1 SYBR1 Green one-step Q-RTPCR
Reagents (Stratagene). The housekeeping gene RP49
(primers FP: 5k-ATCCGCCCAGCATACAG, RP:
5k-TTCGACCAGGTTACAAGAA) was used to nor-
malize overall expression levels and Acp70A primers
used to quantify expression levels (5k-GAATGGC-
CGTGGAATAGGAA, RP 5k-GGCACCACTTAT-
CACGAGGATT (Chapman et al., 2003)). Standard
curves for both primer pairs were established using
serial dilutions of total RNA concentration across
four orders of magnitude (Acp70A efficiency: 93.7%,
RP49 efficiency: 104.5%). A sub-sample of individual
flies were run twice on different Q-RTPCR runs and
found to be highly repeatable across PCRs (regression
of PCR1 on PCR2 n=52, mean r=0.70 and mean
b>0.65, P<0.0001).

Relative Acp70A expression was calculated by tak-
ing the difference between the cycle threshold values
(Cts) for the housekeeping gene and the Acp70A gene.
All reactions were carried out in triplicate and a melt
curve produced after each run to check priming
specificity. Any Cts that were not within 0.5 cycles of
the other triplicates were removed from final analysis.
To normalize the data, the largest relative expression
level was taken from an individual fly and given the
value 1. All other values were converted to a value
relative to this.

Log transformed Pfaffle (Pfaffl, 2001) and DDCt
(Livak & Schmittgen, 2001) were used for analysis
and results were essentially identical. As a result only
DDCt data will be presented here. Data and residuals
were normally distributed (Z=1.141, P=0.148, Z=
1.341, P=0.055 respectively). Analyses were conduc-
ted using SPSS (SPSS Inc. Version 11 for Mac).

To test for effects on differences in Acp70A gene
expression on females, we conducted a separate ex-
periment assessing the duration of the female mating
delay. Here males from nine of the experimental lines
were collected as virgins and aged as before. Virgin
females from a non-related isoline were collected and

housed in vials containing up to 40 individuals.
Between 1 and 11-five-day-old virgin males from each
line were then mated to 3-day-old virgin females of
the non-related line. All females were then housed
individually and after 48 h they were exposed to virgin
males of another non-related line every day for 4 h
until all females had remated.

3. Results

We used isofemale lines of D. melanogaster to inves-
tigate natural genetic variation in Acp70A expression
levels. Q-RTPCR was used to measure the transcript
levels of Acp70A in individual males from each line.
We also examined if Wolbachia infection affects
expression of Acp70A. Using general linear mixed
models (GLMMs) with isoline nested within Wol-
bachia infection status (infected v. uninfected), we
found a significant effect of isoline, indicating genetic
variation in Acp70A transcript levels across the 15
isolines (F13, 43=2.64, P<0.01, Fig. 1), with a 5-fold
difference in mean Acp70A expression levels across
lines. In contrast, Wolbachia infection status was not
associated with differences in Acp70A expression
levels (F1, 14=0.34, P=0.57).

Ordinary least-squares regression was used to test
for an association between Acp70A transcript levels
and female remating rates across isolines. Initial
viewing of this association suggested a polynomial
relationship and a polynomial regression revealed a
significant polynomial association between mean
Acp70A expression levels and median time for re-
mating by females mated to males from each line
(n=9 lines, r=0.81, F2, 6=5.64, P=0.04, Fig. 2). The
model lost significant explanatory power if either the
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Fig. 1. Acp70A RNA levels differ across field-collected
lines of D. melanogaster. Graph shows relative Acp70A
expression for 15 lines of isoline 5-day-old virgin males
either infected (full circle, full line) or uninfected (open
circle, dotted line) with Wolbachia. Data points represent
line means¡SE and are plotted from highest (left) to
lowest (right) for visual purposes.
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linear or the quadratic term was removed so both
were retained (linear term: t=x2.8, P=0.03, quad-
ratic term: t=3.1, P=0.02).

4. Discussion

Our major findings were that there was significant
genetic variation in Acp70A transcript levels and that
this variation had a non-linear effect on female re-
mating. Previously Fiumera et al. (2005, 2007) have
shown that DNA sequence variation in some Acp
genes is associated with male fitness and that Acp70A
polymorphisms are associated with varying refractory
periods in females. Sequence polymorphisms may be
one mechanism by which transcriptional variation
occurs. Here, we show that genetic variation also ex-
ists in expression levels of a particular Acp gene,
Acp70A with approximately 5-fold differences appar-
ent across isolines. This variation is obviously a pre-
requisite for the evolution of Acp70A expression
differences, and variation could be maintained by
condition dependence, as proposed for other sexually
selected traits (Rowe & Houle, 1996). This possibility
remains to be tested.

In D. melanogaster, male Acp stocks become de-
pleted after mating (Monsma et al., 1990; Linklater
et al., 2007) and are a limiting factor to mating success
in another non-Drosophilid fly species (Rogers et al.,
2005). This suggests that depletion of Acps is likely
to directly influence male fitness (Hihara, 1981),

although the full benefits of having larger stocks of SP
may only become apparent after repeated mating.
High Acp70A expression levels may enhance a male’s
ability to replenish accessory gland stores of SP more
quickly or directly influence male SP-store volume.
This remains to be established.

While genetic variation is needed for SP evolution,
if there is no phenotypic variation in its effects, there
will be no selection on that variation. To that end, SP
induces a refractory period in females for up to 5 days
post copulation and here we documented a significant
association between Acp70A expression levels and the
time taken for females to remate after a single copu-
lation with a male from an experimental line. This
association was non-linear, with a longer delay for
low- and high-expression levels of Acp70A. Both the
linear and quadratic effects were significant in our
analysis, with the negative linear term evidently ex-
plaining some proportion of the variation in the left
had section of Fig. 2 (when relative expression was
less than c. 0.2). Although we have not investigated all
potential effects, this first assessment suggests that
there is disruptive selection acting on Acp70A ex-
pression as males with intermediate Acp70A ex-
pression levels suffered a relative cost in terms of
female propensity to remate. As yet, it is not known
whether variation in Acp70A expression between iso-
lines directly relates to difference in the amount of SP
transferred to females at mating, and/or whether there
is variation in the ‘potency’ of the transferred SP as a
suppressor of female receptivity. Precisely how this
relates to other potential SP effects is unknown, as are
associations between this and other Acps, but it ap-
pears that there is genetic variation in and selection on
expression levels of Acp70A.

We find no effect of Wolbachia infection on ex-
pression levels of Acp70A. We acknowledge that with
these sample sizes our power is relatively limited, but
at this point in time, we must conclude there is no
obvious interaction between Wolbachia and Acp70A
expression in virgin males. Similarly, in D. simulans,
Snook et al. (2000) found no difference in the amount
of other Acp proteins (ovulin and Acp36DE) trans-
ferred to females by infected and uninfected males.
Sperm production, however, was lower in infected
males (Snook et al., 2000). This sperm deficit is
exacerbated as males mate repeatedly, resulting in
reduced sperm competitive ability (Champion de
Crespigny & Wedell, 2006). Similarly, Wolbachia
infection may only affect Acp70A expression after
several matings when either sperm and/or Acp stocks
are depleted. Alternatively, there may be less need for
Wolbachia-infected males to produce SP because
there are fewer sperm to which it can bind. Studies
examining the plasticity of SP binding to sperm are
needed to test these ideas. Additionally it is as
yet unknown whether Wolbachia infection affects
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Fig. 2. Polynomial regression shows a significant
quadratic association between relative Acp70A expression
levels of males and the time taken for females to remate to
a standard male. Interestingly, males expressing Acp70A at
high and low levels are associated with longer refractory
periods in females than males expressing intermediate
levels of Acp70A, suggesting disruptive selection for
Acp70A expression. Means of 1–11 males per line.
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D. melanogaster sperm production in the same man-
ner as D. simulans.

In conclusion, we have shown natural variation
in Acp70A expression in field-collected isolines of
D. melanogaster corresponding to a 5-fold difference
in RNA levels. With this variation in Acp70A ex-
pression levels we also expected to see phenotypic
differences in its effect. However, the observed as-
sociation was not a simple linear relationship. Instead
we found evidence for disruptive selection on Acp70A
expression levels through its effects on female re-
mating delays. How this relates to other Acps and
male fitness components remains to be investigated.
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with the Q-RTPCR assay, M. F. Wolfner, L. K. Sirot and
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manuscript, and the Biotechnology and Biological Science
Research Council and Natural Environment Research
Council for funding.
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