Dietary flavonoids as intracellular substrates for an erythrocyte trans-plasma membrane oxidoreductase activity

Mara Fiorani* and Augusto Accorsi

Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, Via Saffi 2, 61029 Urbino (PU), Italy

(Received 17 December 2004 – Revised 14 April 2005 – Accepted 15 April 2005)

The plasma membrane oxidoreductase (PMOR) activity, which mainly utilises ascorbate as intracellular electron donor, represents a major mechanism for cell-dependent reduction of extracellular oxidants and might be an important process used by the erythrocytes to keep a reduced plasma environment. We previously reported that in human erythrocytes, myricetin and quercetin act as intracellular substrates of a PMOR showing a novel mechanism whereby these flavonoids could exert beneficial effects under oxidative stress conditions. Here, we evaluated the ability of different flavonoids (quercetin, myricetin, morin, kaempferol, fisetin, catechin, luteolin, apigenin, acacetin, rutin, taxifolin, naringenin, genistein) and of two in vivo O-methylated metabolites of quercetin (isorhamnetin and tamarixetin) to be substrates of PMOR, by comparing their antioxidant capacity (i.e. direct interaction with the oxidant ferricyanide or with the free radical 1,1-diphenyl-2-picryl-hydrazil) with their ability to penetrate the erythrocytes and donate electrons to the PMOR. The results obtained indicate that, although most of the flavonoids display significant antioxidant activities, only those (quercetin, myricetin, fisetin) that combine the catechol structure of the B ring (responsible for the reducing activity) with the 2,3 double bond and 4-oxo function of the C ring (responsible for the uptake by erythrocytes) can act as intracellular substrates for PMOR. It is of note that the metabolites of quercetin enter erythrocytes and donate electrons to the PMOR as the parent compound. The present data show a relationship between the flavonoid structures and their ability to provide electrons to the PMOR, suggesting an additional mechanism whereby dietary flavonoids may exert beneficial effects in man.

Flavonoids: Trans-plasma membrane oxidoreductase: Ferricyanide: 1,1-Diphenyl-2-picryl-hydrazil

It is now well established that diets rich in fruits and vegetables are protective against the oxidative effects of reactive oxygen species, which are formed in vivo during the cellular aerobic metabolism and can cause damage to various cellular components such as DNA, proteins, lipids, etc (Steinmetz & Potter, 1991a,b; Keli et al. 1996; Ness & Powles, 1997; Ross & Kasum, 2002). Despite the cells being well equipped with antioxidant defence systems, the accumulation of unrepaired products may be critical to the development of several important pathologies.

Flavonoids are polyphenol compounds, widely distributed in plant foods, which may exert beneficial effects in various diseases, including cancer, CVD and neurodegenerative disorders (Steinmetz & Potter, 1991a,b; Richter et al. 1999). Many of the biological actions of flavonoids have been attributed to their antioxidant properties (Afanas’ev et al. 1989; Bors et al. 1990; Rice-Evans et al. 1997); more recently, it has been proposed that flavonoids and their metabolites may exert their effects by displaying modulatory actions in cells (Williams et al. 2004).

We have previously reported that flavonoids quercetin and myricetin are efficiently taken up by human erythrocytes and can act as substrates for the plasma membrane oxidoreductase (PMOR) activity, suggesting another mechanism whereby flavonoids can exert their protective effects (Fiorani et al. 2002). Indeed, this enzyme activity represents an important means to defend the cells against extracellular oxidative stressors (May et al. 1996), and since the erythrocytes are constantly exposed to oxidative stress, it might have a major role in maintaining a reduced plasma environment (Kennett & Kuchel, 2003).

The aim of the present study was to evaluate the ability of several flavonoids (Fig. 1), commonly present in fruits and vegetables (flavonols: quercetin, myricetin, morin, kaempferol, fisetin; flavanols: catechin; flavones: luteolin, apigenin, acacetin, rutin; flavanones: taxifolin and naringenin; isoflavone: genistein) and of two reported in vivo quercetin metabolites, isorhamnetin and tamarixetin (Spencer et al. 2003a), to interact with human erythrocyte plasma membrane and induce extracellular reduction of oxidants.

Materials and methods

Materials

Flavonoids, 1,10-phenanthroline, ethyl acetate and 1,1-diphenyl-2-picryl-hydrazil (DPPH) were purchased from Sigma-Aldrich Chemie (Steinheim, Germany). Isorhamnetin and tamarixetin were purchased from Extrasynthese (Z.I. Lyon Nord, Geney, France). K₃Fe(CN)₆, FeCl₃, citric acid, NaH₂PO₄ and acetonitrile (HPLC grade) were Carlo Erba products (Milan, Italy).

Abbreviations: DPPH, 1,1-diphenyl-2-picryl-hydrazil; FIC, ferricyanide; FOC, ferrocyanide; PMOR, plasma membrane oxidoreductase.

* Corresponding author: Dr Mara Fiorani, fax +39 0722 320188, email m.fiorani@uniurb.it
Methods

Measurement of chemical ferricyanide reduction by different flavonoids. To a 1 mM-ferricyanide (FIC) solution in PBS (pH 7·4) were added different amounts of the flavonoid solution (final concentrations 2·5–500 μM). After standing for 30 min at 37°C (a time long enough to reach the reaction thermodynamic equilibrium), the ferrocyanide (FOC) formation was measured as reported by Avron & Shavit (1963), using 1,10-phenanthroline as an indicator and measuring absorption at 510 nm (ε = 10 500/M per cm). The percentage of FOC formation (% of reduction of the 1 mM-FIC solution) was plotted against the sample concentration to obtain the EC50, defined as the flavonoid concentration required to obtain 50 % of the maximal FIC-reducing activity.

Measurement of scavenging activity on 1,1-diphenyl-2-picrylhydrazil. The free radical-scavenging activity of flavonoids against the DPPH free radical was measured using a modified version of the method of Mallors & Tappel (1966). Briefly, to 0·850 ml of 100 μM-DPPH ethanolic solution were added different amounts of flavonoid solutions in ethanol (final concentration 1–150 μM) in 1 ml cuvettes. After standing in the dark for 10 min (a time long enough to reach the reaction thermodynamic equilibrium), the absorbance (Abs) at 517 nm was measured. Controls containing ethanol instead of the flavonoid solution and blanks containing ethanol instead of DPPH solution were also made. The DPPH-scavenging activity was calculated according to the following formula: DPPH scavenging activity (%) = (Abscontrol - Abssample)/Abscontrol × 100. The percentage of scavenging activity was plotted against the sample concentrations to obtain the EC50, defined as the flavonoid concentration required to obtain 50 % of the maximal scavenging activity.

Human erythrocytes. Human venous blood (in heparin) from healthy volunteers was obtained by venepuncture. The erythrocytes were used immediately after sampling. The blood was centrifuged at 1861·5 g for 10 min at 4°C. After removal of plasma, buffy coat, and the upper 15 % of the packed erythrocytes, the erythrocytes were washed twice with cold PBS (150 mM-NaCl, 5 mM-Na2HPO4, in deionised water, adjusted to pH 7·4) and then resuspended as described below.

Incubation of human erythrocytes with flavonoids. A stock solution (20 mM) of each flavonoid was prepared in dimethyl
suflxide and then diluted 1:2 with PBS. Packed erythrocytes (10%, v/v) were incubated in PBS at 37°C for 10 min in the presence of the flavonoids (flavonols: quercetin, myricetin, morin, kaempferol, fisetin; flavan: catechin; flavon: luteolin, apigenin, acacetin, rutin; flavonanes: taxifolin and naringenin; isoflavone: genistein) and of two reported in vivo quercetin metabolites, isorhamnetin and tamarixetin. After this time, the suspensions were immediately centrifuged at 1861·5 g, the erythrocytes were washed twice with at least 50 vol. of PBS and then processed as reported below.

Measurement of ferricyanide reduction by human erythrocytes. FIC reduction was estimated as reported by Avron & Shavit (1963). After exposure to the flavonoid, erythrocytes were washed twice with PBS and re-suspended in PBS (10%, v/v) in PBS + 2·5 mM-adenosine containing 1 mM-FIC (potassium salt), dissolved immediately before use. The suspensions were incubated for 30 min at 37°C and then centrifuged at 1861·5 g at 4°C. The resulting supernatant fractions were assayed for their FOC content using 1,10-phenanthroline as an indicator and measuring absorption at 510 nm (ε = 10 500/M per cm).

Extracellular and intracellular content of flavonoids. The extracellular and intracellular content of flavonoids was measured as described by Ferrali et al. (1997), with slight modifications, by performing ethyl acetate extractions. To measure the extracellular concentration of flavonoids, the supernatant fraction obtained at the end of the incubation time was extracted three times with ethyl acetate. For the assessment of intracellular flavonoid content the erythrocyte lysates were extracted three times with ethyl acetate. The absorbance of the clear upper phase was measured spectrophotometrically at the wavelength corresponding to the maximal absorption spectrum (morin 380 nm; quercetin, myricetin, isorhamnetin, tamarixetin, kaempferol 378 nm; fisetin 370 nm; rutin 340 nm; apigenin 350 nm; luteolin 336 nm; acacetin, genistein 330 nm; taxifolin 325 nm; naringenin 320 nm; catechin 285 nm). The extra- and intracellular concentrations of the flavonoids were obtained from the corresponding calibration curve, performed in ethyl acetate (morin, ε₃₄₀ = 8300/M per cm; quercetin, ε₃₇₅ = 26000/M per cm; myricetin, ε₃₇₅ = 18900/M per cm; isorhamnetin, ε₃₇₅ = 48700/M per cm; tamarixetin, ε₃₇₅ = 39300/M per cm; kaempferol, ε₃₇₅ = 22500/M per cm; fisetin, ε₃₇₀ = 22700/M per cm; apigenin, ε₃₅₀ = 15200/M per cm; luteolin, ε₃₅₆ = 68900/M per cm; acacetin, ε₃₃₀ = 16000/M per cm; genistein, ε₃₃₀ = 2500/M per cm; taxifolin, ε₃₂₅ = 32000/M per cm; naringenin, ε₃₂₀ = 2200/M per cm; catechin, ε₂₈₃ = 47000/M per cm). In all experiments, ethyl acetate extraction of a control sample was performed (either erythrocyte or supernatant fraction), in order to look for possible interferences with erythrocyte constituents. The results obtained showed that the absorbance values of the erythrocyte control samples were identical to those of an ethyl acetate solution.

The percentage of haemolysis was evaluated in the same samples by measuring the Hb concentration v. the total Hb content. The extent of lysis was not different from controls and never higher than 0·5%.

Results and discussion

In vitro ferricyanide-reducing activity
The direct interaction of the various flavonoids (belonging to the family of flavonol, flavanol, flavone and isoflavone) with an oxidant was investigated by monitoring the formation of its reduction product. For this purpose, increasing concentrations (2·5 to 500 μM) of the flavonoids were incubated in PBS containing 1 mM-FIC and FOC formation was detected spectrophotometrically after 30 min. As reported in Fig. 2, quercetin and myricetin, followed by taxifolin, rutin and fisetin, displayed a high FIC-reducing activity.

These compounds are characterised by the presence of a B-ring catechol group (dihydroxylated B-ring) capable of readily donating hydrogen (i.e. electron). The substitution of 3'-OH or 4'-OH of quercetin with a methyl group, as in isorhamnetin or tamarixetin, respectively, only slightly decreased the FIC-reducing activity. A somewhat greater decrease was noticed by changing the substitution pattern of the C-ring, where the presence of a hydroxyl group (i.e. 7'-OH) was found to reduce the FIC-reducing activity.

High-performance liquid chromatography analysis of quercetin and its methylated metabolites. After incubation of the human erythrocyte suspensions with 50 μM-quercetin, tamarixetin or isorhamnetin as described earlier, the samples were centrifuged at 1861·5 g for 5 min and the supernatant fractions were collected. The packed erythrocytes were then extensively washed with PBS and lysed with cold bi-distilled water. Both samples (extracellular milieu and erythrocyte lysate) were extracted three times with ethyl acetate. All the samples were taken to dryness by rotary evaporation and re-dissolved in dimethyl sulfoxide and diluted with bi-distilled water just before HPLC analysis. HPLC analysis of quercetin and its methylated derivatives was performed by using a 25 × 4·6 mm Discovery C18 (5 μm; Supelco, Bellefonte, PA, USA) equipped with a Supelguard Discovery C-18 guard column (2 cm × 4 mm, 5 μm). A modified version of the analytical HPLC method from Day et al. (2000) was used. Solvent A (0·1% trifluoroacetic acid) and B (acetonitrile) were run at a flow rate of 1 ml/min. The running gradient was adjusted to 17% B (2 min), increasing to 25% B (5 min), 35% B (8 min), 50% B (5 min) and then 100% B (10 min), followed by a re-equilibration at 17% B (15 min). The injection volume was 100 μl and the eluate was monitored at 270 nm.

Fig. 2. Ferricyanide reduction by various flavonoids. Ferricyanide (1 mM) in PBS (pH 7·4) was incubated for 30 min at 37°C with the indicated concentrations of quercetin (○), myricetin (●), fisetin (□), luteolin (▲), isorhamnetin (♦), taxifolin (♦), kaempferol (×), tamarixetin (●), morin (+), catechin (×), rutin (–), apigenin (●), acacetin (§), genistein (◊) and naringenin (◇). Then, ferrocyanide formation was assayed (for details, see p. 339).
the 3′,4′ orthodihydroxy arrangement of the B ring to 3′,5′ meta-
dihydroxy, as in morin. Kaempferol, a flavonol identical to quercetin, but having no hydroxyl group at the 3′ position in the B ring, displayed an even lower activity. The 2,3 double bond in the C ring does not appear to play a major role for FIC-reducing activity, since taxifolin displayed remarkably similar effects to quercetin. However, catechin, which differs from taxifolin lacking the 4-oxo group in the C ring, showed a strong decrease in FIC-reducing activity. The substitution of 3-OH of quercetin with 3-O-rutinoside, as in rutin, reduced the decreasing activity by about 10%, whereas a 50% reduction was observed upon dehydroxyla-
tion in the 3-position, as in luteolin. Finally, dehydroxylation at both the 3- and 3′-positions led to a complete loss of activity, as in apigenin, acacetin (4′-methoxyapigenin) and naringenin, the latter lacking 2,3 double bonds as well. The isoflavone genistein was also inactive.

Table 1 reports the EC₅₀ values as calculated from the curves illustrated in Fig. 2.

Taken together, these results emphasise the relevance of the cate-
chol-like structure of the B ring in association with the 3-OH group on the expression of maximal FIC-reducing activity, and show that the substitution of 3-OH with 3-O-rutinoside as in rutin, or the methylation of 3′ or 4′-OH as inisorhamnetin or tamarixetin only slightly reduce the antioxidant activity of these compounds.

It is of note that the very high reducing activities displayed by most flavonoids tested have also been observed by other authors. As reported by Cao et al. (1997) the flavonoids that contain multiple OH substitutions (i.e. myricetin, quercetin, luteolin, etc) showed peroxyl radical-scavenging activity several times higher than Trolox, an α-tocopherol analogue. They reported that the stoichio-
metric factor (i.e. the number of peroxyl radicals trapped per mol-
ecule of antioxidant) of these flavonoids is about 6–9, whereas the stoichiometric factor of Trolox is 2. Moreover, other authors (Firuzi et al. 2005) evaluated the antioxidant activities of flavonoids by ‘ferric-reducing antioxidant power’ measurement. They showed that quercetin, fisetin and myricetin appeared the most active com-
pounds in the ferric-reducing antioxidant power assay and they were 3·02, 2·52 and 2·28 times more active than Trolox, respectively.

1,1-Diphenyl-2-picryl-hydrazil scavenging activity

As a further approach to estimate the relative potency of the tested flavonoids in reactions involving electron donation, we used the DPPH assay, widely employed for the assessment of antioxidant activity. DPPH, a stable organic free radical, displays a characteristic absorption maximum between 515 and 517 nm that diminishes in the presence of compounds reducing it to its hydrazine form by hydrogen–electron donation. The different kinetic behaviour of antioxidants is an important factor in the evaluation of the radical-scavenging activity (Bandoniene & Mur-
kovic, 2002). Fig. 3 (EC₅₀ values are shown in Table 1) illustrates the scavenging activity of the tested flavonoids after a 10 min incubation in ethanol in the presence of DPPH (100 μM). Complete conversion of DPPH to its hydrazine derivative was observed at much lower concentrations of the flavonoids than those necessary to fully reduce FIC, an event probably ascribable to the different concentration of the oxidising substrate employed in the two experimental conditions. The results obtained were nevertheless similar to those previously described for the FIC-reduction assay, with some important exceptions. Quercetin, myricetin and fisetin most effectively scavenged the DPPH radical, confirming previous results showing that the scavenging activity of flavonoids is related to the presence of (i) a 3′-4′ dihydroxy-
lated B ring, (ii) the 2,3-double bond in conjugation with a 4-
-oxo function in the C ring and finally (iii) the additional presence of both 3- and 5- hydroxy groups (Williams et al. 2004). It should be noted, however, that in contrast with the results obtained measuring FIC reduction, the substitution of 3′ or 4′-OH with a methyl group (for example, isorhamnetin or tamarixetin) or 3-OH with 3-O-rutinoside (for example, rutin) substantially reduced the scavenging activity. The remaining compounds, either inactive or poorly active in the FIC assay, produced similar outcomes in the DPPH assay.

Human erythrocyte ferricyanide-reducing activity promoted by different flavonoids

FIC is a mild oxidant that does not cross the cell membrane and accepts electrons from the PMOR activity (Himmelreich & Kucel, 1997; van Duijn et al. 1998). Although the physiological electron donors for this enzyme are ascorbic acid and NADH (May, 1999; May et al. 1999), our recent findings indicate that quercetin and myricetin are also potent electron donors for the PMOR in human erythrocytes (Fiorani et al. 2002, 2003). Experiments were therefore performed to determine the potency of the tested flavonoids in supporting the ability of human

Table 1. Flavonoid concentrations required to obtain 50% of the maximal effect (EC₅₀ values) concerning ferricyanide reduction and 1,1-diphenyl-2-picryl-hydrazil (DPPH)-scavenging activity

<table>
<thead>
<tr>
<th>Flavonoid</th>
<th>EC₅₀ ferricyanide reduction (μM)</th>
<th>EC₅₀ DPPH-scavenging activity (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercetin</td>
<td>96.5</td>
<td>6.23</td>
</tr>
<tr>
<td>Myricetin</td>
<td>97.3</td>
<td>6.37</td>
</tr>
<tr>
<td>Fisetin</td>
<td>114.8</td>
<td>6.75</td>
</tr>
<tr>
<td>Rutin</td>
<td>116.1</td>
<td>9.67</td>
</tr>
<tr>
<td>Luteolin</td>
<td>160.0</td>
<td>12.79</td>
</tr>
<tr>
<td>Isorhamnetin</td>
<td>108.0</td>
<td>12.94</td>
</tr>
<tr>
<td>Taxifolin</td>
<td>118.3</td>
<td>13.83</td>
</tr>
<tr>
<td>Kaempferol</td>
<td>197.1</td>
<td>18.4</td>
</tr>
<tr>
<td>Catechin</td>
<td>282.6</td>
<td>18.55</td>
</tr>
<tr>
<td>Tamarixetin</td>
<td>112.0</td>
<td>18.56</td>
</tr>
<tr>
<td>Morin</td>
<td>159.4</td>
<td>27.23</td>
</tr>
</tbody>
</table>

* The values have been calculated from the curves reported in Figs. 2 and 3 respectively.
erythrocytes to reduce extracellular oxidants. For this purpose, erythrocytes were first incubated for 10 min with a 50 μM concentration of each flavonoid, centrifuged and extensively rinsed, resuspended in PBS supplemented with adenosine and 1 mM-FIC and finally incubated for 30 min at 37°C. Formation of FOC was subsequently measured in the supernatant fraction. It is important to note that this response, as previously shown for quer- cecin (Fiorani et al. 2002), is mediated by the activity of the PMOR and not by the flavonoids released from the cells. For this purpose, erythrocytes were incubated with 50 μM-flavonoids (listed earlier; p. 339) for 10 min, washed twice with at least 50 vol. of PBS and then incubated (10 %, v/v) with PBS plus adenosine. After 30 min, the erythrocyte suspensions were centrifuged and flavonoid content was assayed either in the supernatant fraction and in erythrocytes after ethyl acetate extractions, as described on p. 340. All data are the means of at least three independent determinations, with standard deviations represented by vertical bars.

Fig. 3. 1,1-Diphenyl-2-picryl-hydrazil (DPPH)-scavenging activity by various flavonoids. DPPH (100 μM) in ethanol was incubated for 10 min at 37°C with the indicated concentrations of quercetin (λ), myricetin (φ), fisetin (γ), luteolin (α), isorhamnetin (β), taxifolin (κ), kaempferol (ρ), tamarixetin (ε), morin (+), catechin (η), rutin (−), apigenin (ζ), acacetin (θ), genistein (κ) and naringenin (η) dissolved in ethanol. The decrease of the absorbance at 517 nm was then measured and the scavenging activity was expressed as percentage of the absorbance of the control DPPH solution (Fig. 3).

Fig. 4. Effect of various flavonoids on the rate of ferricyanide (FIC) reduction in human erythrocytes. Human packed erythrocytes were incubated for 10 min at 37°C in PBS (10 %, v/v) in the presence of 50 μM-flavonoid. After centrifugation the cells were washed twice with PBS and the packed erythrocytes were re-suspended in PBS (10 %, v/v) plus 2.5 mM-adenosine containing 1 mM-FIC. After 30 min of incubation at 37°C, the cell suspensions were centrifuged and the ferricyanide (FOC) content was assayed as detailed on p. 340. Flavonoid-dependent FIC-reducing activity was determined upon subtraction of basal FIC-reducing activity detected in the untreated samples. All data are the means of at least three independent determinations, with standard deviations represented by vertical bars.

Fig. 5. Flavonoid uptake by human erythrocytes. Human packed erythrocytes were incubated for 10 min at 37°C in PBS (10 %, v/v) in presence of 50 μM-flavonoid. After centrifugation, the cells were washed twice with at least 50 vol. of PBS, then lysed by re-suspending with 3 vol. of cold distilled water and maintained 10 min at 4°C. Flavonoids were extracted from either the haemolysate or supernatant fraction with ethyl acetate, as described on p. 340. All data are the means of at least three independent determinations, with standard deviations represented by vertical bars. The data are expressed as percentage of the flavonoid recovered in erythrocytes with regard to the total flavonoid content (extra + intracellular concentration).
dependent reduction of extracellular oxidants (Fig. 4). Although luteolin in reducing FIC (Fig. 2), caused a similar erythrocyte-reduction. Taxifolin was less efficiently taken up by the erythrocytes (Fig. 5) but were also efficiently taken up by the erythrocytes (Fig. 6 (B)).

In conclusion, in the present study the *in vitro* evidence of antioxidant capacity of various polyphenolic compounds was related with that obtained from a biological system represented by human erythrocytes. The results obtained show that the flavonoids, which possess the catechol structure in the B ring (responsible for the reducing activity), in conjunction with a 2,3 double bond and 4-oxo function in the C ring (which favour the uptake of flavonoid reduction products of quercetin (Awad et al. 2000, 2001), which may display cytotoxic effects (MacGregor & Jurd, 1978; Sahu & Washington, 1991; Bolton et al. 1998; Penning et al. 1999). However, according to the literature (Cao et al. 1997; Lee et al. 2003) the pro-oxidant activities of natural antioxidants are unlikely to be a significant problem *in vivo*, and most of the studies show that flavonoids exert beneficial effects against pathological conditions such as CVD, cancer (Steinmetz & Potter, 1991a,b) and neurodegenerative disorders. Therefore, diets rich in these phenolic compounds are now strongly recommended. However, some doubts on the physiological relevance of these results arise from the bioavailability of these compounds. In fact, it should be underlined that plasma concentrations reached after flavonoid consumption vary highly according to the nature of the polyphenol and to conditions such as CVD, cancer (Steinmetz & Potter, 1991a,b) and neurodegenerative disorders. Therefore, diets rich in these phenolic compounds are now strongly recommended. However, some doubts on the physiological relevance of these results arise from the bioavailability of these compounds. In fact, it should be underlined that plasma concentrations reached after flavonoid consumption vary highly according to the nature of the polyphenol and to the food source. Data reported in the literature show that the plasma concentrations of total metabolites can vary from 0 to 4 μmol/l after consumption of 50 mg aglycone equivalents, and the relative urinary excretion ranged from 0.3 to 43% of the ingested dose, depending on polyphenolic compounds (Manach et al. 2005).
Moreover, as pointed out by Kroon et al. (2004), most of the dietary polyphenols undergo extensive modifications during transfer across the small intestine and then again in the liver, so that the forms reaching the blood and tissues are in general neither aglycones (except for green tea catechins) nor the various glycosides as the dietary source (Kroon et al. 2004). Circulating glucurononides, sulfates, and O-methylated forms are believed to be those most likely to exert bioactivity and express beneficial effects in human subjects and animals (Spencer et al. 2001a,b, 2003b, 2004; Guglielmone et al. 2002; Schroeter et al. 2003). It should be considered, however, as pointed out by Spencer et al. (2004), that there is the possibility that both flavonoid and O-methylated flavonol glucurononides may be de-conjugated by the action of β-glucuronidases present in human tissues such as liver or small intestine or during local conditions of inflammation. In this case, free aglycone or O-methylated forms will be released and may go on to express cellular effects. Indeed, glucurononides are present in a number of tissues within the body (Tukey et al. 2000) and may be released by certain cells.

In the bloodstream, erythrocytes encounter a variety of oxidant stressors which can be both endogenous, from cellular generation of superoxide and H2O2 (van Dyke & Saltman, 1996) and exogenous in areas of inflammation. Therefore, the PMOR activity in erythrocytes can play a protective role by reducing extracellular oxidants. The fact that specific flavonoids, abundantly present in a number of tissues within the body (Tukey et al. 2000), and may be released by certain cells.

Acknowledgements

We would like to thank the staff of the blood transfusion centre of Urbino Hospital for kindly providing blood samples from human volunteers.

References

https://doi.org/10.1079/BJN20051504
Published online by Cambridge University Press