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Genetic divergence between transposable elements
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Summary

The probabilities of genetic identity between different members of the same family of transposable
elements in a randomly mating host population are determined, under the assumption of statistical
equilibrium between neutral mutations, random genetic drift, transposition and unbiased gene
conversion. The method allows for variation in numbers of copies of the element between
individuals within the host population, and for dependence of the probability of identity between a
pair of elements on the frequencies of elements at the sites from which they were drawn. It is shown
that, for the range of parameters under which the approximations used are valid, the effects of gene
conversion on identity probabilities are relatively small, as are the effects of copy number variation
and variation between sites in element frequencies.

1. Introduction

Several recent papers have been concerned with model-
ling the extent of genetic divergence between different
members of the same family of transposable elements,
due to the accumulation of selectively neutral muta-
tions (Ohta, 1984, 1985; Slatkin, 1985; Brookfield,
1986; Hudson & Kaplan, 1986). Such models are of
considerable importance in relation to the interpre-
tation of data on DNA sequence divergence between
related transposable elements (Rubin, 1983), more of
which will undoubtedly become available in the
future. Each of the papers cited above has used a
different approach to the problem, although they all
share the idea that the degree of genetic divergence
between elements belonging to the same family is the
product of a statistical balance between factors such
as mutation (promoting divergence), and random
genetic drift, transposition and gene conversion (pro-
moting similarity). A common assumption of a fixed
number of copies of members of a given family per
host individual has also been made, except for Hudson
& Kaplan (1986).

The purpose of this paper is to re-examine the prob-
lem, using an approach that does not require the
assumption of a fixed number of elements per
individual, or the implicit assumption of a lack of
dependence of probability of divergence on element
frequencies at the sites in question which was made by
Hudson & Kaplan (1986). The procedure is to use a
version of Ohta's (1984, 1985) identity coefficient
methods, but taking into account the fact that the
frequencies of elements at individual chromosomal

sites follow the stationery probability distribution of
Langley, Brookfield & Kaplan (1983) and Charles-
worth & Charlesworth (1983).

2. The Model and its Analysis

(i) Parameters and variables

A diploid, randomly mating host population will be
assumed, and the model and notation of Charlesworth
& Charlesworth (1983), as modified by Charlesworth
(1985), will be employed. Members of the family of
elements are assumed to be able to insert at random
into unfilled but potentially occupable chromosomal
sites by means of replicative transposition. Indepen-
dent element frequencies at different sites are assumed,
so that the state of a population at a given time is
characterized by the vector of element frequencies at
each site, {xt} (/ = 1,2,... m). A site is thus equivalent
to a locus in conventional genetic models. It is also
assumed that the number of occupable sites in a hap-
loid genome (m) is very large, so that insertions
mostly take place into sites where elements were pre-
viously absent. Justifications for these assumptions
are provided by Langley etal.{\983) and Charlesworth
& Charlesworth (1983).

Element frequencies at each site are assumed to
follow a stationary probability distribution, genera-
ted by the interaction of the forces of selection and
transposition with the effects of drift in a monoecious
population of size N, with Ne = N. The expected
number of elements per individual is n. The probability
of transposition per generation of an element may
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depend on the number of elements in the same indi-
vidual (Langley et al. 1983; Charlesworth & Charles-
worth, 1983). By taking the expectation of the rate of
transposition over the stationary probability distri-
bution of numbers of copies of the element per host
individual, we obtain a probability u of transposition
per element per generation. To a good approxi-
mation, n and u can be equated to their values at
equilibrium in an infinite population (Charlesworth &
Charlesworth, 1983). Let the stationary probability of
element frequency x be P(x) (x = 0, (2A7)"1,..., 1).
When all evolutionary forces are weak, a continuous
approximation can be employed, such that the proba-
bility of element frequency over a given interval is
approximated by the integral over this interval of a
probability density $(x). Writing 0 •= 4Nu, for large
m the probability density for the case when copy
numbers are controlled by weak selection, or self-
regulated transposition, is

(j>{x) = axa~1(l — x)e~l, (1)

where a = 0 n{2m)~l « 1 (Charlesworth & Charles-
worth, 1983). The mean frequency is x = n{2m)~l, and
the variance is a% x x(l + 0)~1. This continuous ap-
proximation is used extensively in the Appendix.

Each element is assumed to have a probability v per
generation of mutating to a previously unobserved
allelic form that is selectively equivalent to existing
alleles (the infinite-allele model of Kimura & Crow,
1964). The description of gene conversion and its
effects will be given later. N'1, u, v and the probability
of gene conversion are each assumed to be sufficiently
small that their second-order terms can be neglected.
It will also be assumed that 0 and n P 1. The data
of Montgomery & Langley (1983) on the distribution
of 3 families of copia-like elements in a Drosophila
population suggest that these conditions are frequently
met.

(ii) Changes in identity probabilities

Two measures of genetic similarity will be used here.
The first is the probability that two elements from the
same site are identical (Ohta, 1984, 1985). Condi-
tioned on the element frequency at the site in question,
this probability is written as f(x), where x is the
element frequency. (Since J{x) is undefined for sites
where less than two elements are present in the popu-
lation, we have N~1 ^ x < 1. The unconditional prob-
ability of identity (f0) for two elements drawn from a
site where elements are segregating can be obtained by
noting that the chance of drawing an element from a
site with element frequency x is Q(x), where

= xP(x)/ £ xP(x)
x- N~*

so that

/o= 2 ,Ax)Q(x).
X - A' '

(2)

(3)

The second identity probability is that for a pair of
elements, each drawn from a different site. This will be
written as C(x,y) for sites with frequencies x and y
((2A0~l ^ x,y s$ 1). The unconditional probability of
identity for a pair of elements, drawn from a pair of
segregating sites, is thus

x V
(4)

where Q'(x) is defined analogously to Q(x), except
that (2N)~l is used as the lower limit of summation.
(For large N, as here, this difference is unimportant,
and Q'(x) can be equated to Q(x) for all practical
purposes.)

The mean conditional frequency of elements at
segregating sites is

(5)

using the continuous approximation of equation (1).
(a) Changes in J{x) under mutation, drift and gene

conversion. The effect of drift can be modelled by
noting that the number of elements at a site with
current frequency x is 2Nx. Taking mutation into
account, the probability of identity for pairs of elements
from sites with current element frequency x is thus
changed to

(6)

The effect of unbiased gene conversion can be ob-
tained as follows. No distinction is made between
conversion events involving different sites on the same
chromosome, and sites on different chromosomes.
Furthermore, conversions involving a pair of ran-
domly chosen elements at the same site can only occur
if the pair comes from the same individual, which has
a probability TV"1. If the probability of gene conversion
is small, as is assumed here, the net chance that such
a pair of random elements have converted each other
can be neglected.

If a pair of elements is chosen at random from the
same site /, their identity probability is thus altered
only if one of them has been converted by an element
located at another site in the individual from which it
originated (multiple events will be ignored here). Fol-
lowing Ohta (1984, 1985) and Slatkin (1985), conver-
sion is assumed to take place by the asymmetric
heteroduplex mode, in which one of the two elements
is changed to the allelic state of the other, which
remains unchanged. The chance of such an event will
in general depend on the expected number of elements
at other sites in the individual in question, which can
be obtained as follows. Consider first the haploid
genome containing the sampled element. The expected
number of elements at other sites in this genome is the
expected number per haploid genome, conditioned on
the presence of at least one element, minus one. For a
population with mean number of elements per indi-
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vidual n and a Poisson distribution of copy number,
as is the case with 0 >̂ 1 (Charlesworth & Charles-
worth, 1983), the mean haploid number conditioned
on the presence of at least one element is close to
|/J(1 — exp—Jn)"1. To a good approximation, the ex-
pected number of elements in the same haploid
genome as the sampled element is then

i")-1-!- (7)

For large 0 and ii, n x n.

Consider next the other haploid genome. There is a
chance x that site i is also occupied, given a current
element frequency of x for i, in which case the ex-
pected number of elements at other sites is again \n. If
this site is unoccupied, the number is approximately
\n. Let nn be the probability that the sampled element
is converted in a genome with n elements at different
sites from the sampled element. If nn is 4, 1, and n > 1
the net probability of conversion of the sampled
element is thus approximated by

X = nn. (8)

There is a probability 2 A that one of the two elements
drawn from a site with element frequency x experi-
ences conversion by an element at a different site, in
which case their identity probability changes {wmj{x)
to C0(x) where

(9)

As a result of these forces, J{x) is changed by the
quantity

(10)

We also have to take into account the fact that
element frequencies themselves change, so that sites
with current element frequencies x differ from those
with frequency x in the new generation. Each element
at a given site in the new generation is sampled inde-
pendently from the 2Nx present at that site in the
current generation; it follows that the probability of
identity of a pair drawn from this site in the new
generation is independent of the new number of ele-
ments at the site. The process of change in element
frequency may thus be treated separately from that of
change in identity probability. Writing g(x — Sx, Sx)
for the probability of a transition from x—Sx to x,
andf\x) forj{x)+dlj{x), we obtain the new value of
Ax) resulting from mutation, drift and gene con-
version as

fix) = Pix)~l I.A.X- Sx) Pix - Sx) gix - Sx, Sx).
Sx

(11)

A diffusion approximation to this is given in Appendix

1; further analysis will be deferred until the consider-
ation of equilibrium in section 2(iii).

(b) Changes in f(x) due to transposition. Transpo-
sition produces an effect on element frequency at a
given site of order um~l (Charlesworth & Charles-
worth, 1983), which is ignored in the diffusion approxi-
mation to equation (11) (equation [A 3]) and so must
be considered separately. Given large m and small u,
at most one new insertion will occur at a given site in
the population each generation, producing an increase
of (2N)'1 in element frequency. For all sites with
element frequency x—l/2N, the expected number of
such events is NMP(x— 1/2N) in a given generation.
The number of sites with element frequency x is
mP(x); hence, the probability that a site in this interval
has experienced an insertion is NMP(x—\/2N)m~l

Pix)'1. The probability that a random element, drawn
from a site with element frequency x, is derived by
transposition is thus

NnuP(x-
P(x -\/2N) P{x)~ -1). (12)

The probability that the transposed element origi-
nated from the same site as its present location, condi-
tioned on the prevailing set of element frequencies, is
(x—\/2N)/'Z(xi. The net probability of this event is
thus

- \/2N) = (x- ^ \ « 2(JC-

(13)

There is thus a probability l-i// that it came from
another site, chosen at random from the sites segre-
gating for elements in the previous generation. Noting
that the assumption of weak evolutionary forces im-
plies additivity of changes in element frequencies, we
obtain the following expression for the contribution of
transposition to the change infix):

AJ{x) = 2uxx~H\ - y/(x- \/2N)\

{co(x-l/2N)-J{x-\/2N)}
P(x-l/2N)P(x)~l. (14)

The net change inj[x) is given by

-Ax), (x > I (15)

(c) Changes in C{x,y) due to mutation and gene
conversion. Mutation changes Cix,y) by — 2vCix,y).
The effect of gene conversion can be found a follows.
Consider a pair of elements drawn from two distinct
sites / and j , with element frequencies x and y
respectively. C(x, y) will be affected by conversion of
the element at site./ if it is converted by an element at
site / in the same individual, or by an element at any
other site. In the first case, the expected number of
elements at site / is 2x, so that the probability of the
event is 2nx, with an associated change in identity
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probability from C(x,y) toj{x). Using the notation of
section 2(i).a, the probability of the second kind of
event is X — 2nx and the identity probability becomes
C0(x). Symmetrical relations hold for conversion of the
element at site /. The change in C(x,y) due to mutation
and gene conversion is thus

A l C{x, y) = - 2(v + A) C{x, y) + In - C0(x)] +
)}. (16)

The new value of C(x,y) resulting from drift, muta-
tion and gene conversion, writing C(x,y) = C(x,y)

X C(x,y), is equal to C*(x,y), where

C*(x,y) = P{y)-i X I C(x-Sx,y-dy)
Sx 6y

P(x-Sy)g(x-Sx,Sx)g(y-Sy,Sy). (17)

(d) Changes in C(x,y) due to transposition. Using
the same argument as for J{x) in section 2(ii)b, the
probability that a transposed element at the site / of
section 2(ii)c comes from site i and is identical with
the element at site i is (approximately) t//(x)J{x), and so
we obtain a contribution of uxy^Piy— l/2N)P(y)~1

i//(x)f(x) to the new value of C(x,y). There is a prob-
ability of approximately 1 — y/(x) that a transposed
element at site i comes from a site different from /, in
which case there is a probability C0(x) of identity
between the elements at sites / and j (where C0(x) is
defined by equation (9)). Symmetric results hold in the
case when the transposed element is at site i. Collecting
terms and using the argument that led to equation (14),
the net effect of transposition is given by

A2 C(x,y) =

- yt(y)) C0(y) - C(x,y)]

- ¥{x)) C0(x) - C(x,

(x,y > (IN)'1)- (18)
For consistency, /{[2N]'1) is defined as unity in this

equation
The net change in C(x, y) is given by

AC(x,y) = C(x,y)-C(x,y) (19)

(iii) Equilibrium results

(a) Approximate analyses. The approximate results
derived below are valid when 0 and n ̂ > 1 as has
been assumed above. The details of the derivations are
given in the Appendices. Equations (A 7), (A 9), and
( A l l ) yield the following approximate formula re-
lating the equilibrium values of/0 and C0,/and C:

(20)

The analysis following equation (A 16) yields the
formula

where y =
Hence,

If ^ (v+A) and y are 4, 1, these results can be
approximated further. Writing Hx = 1 —/ and
H2 = 1 — C for the probabilities of genetic dissimilarity
between elements sampled from the same and different
sites, respectively, we obtain

(23)

}. (24)

When conversion rates are small relative to transpo-
sition rates, this formula implies that divergence is
decreased by an increased rate of conversion, as might
be expected intuitively. Equation (24) displays an
effect of the gene conversion rate on H2, in contrast to
the conclusion of Slatkin (1985). This effect arises
from the inclusion of the term involving the integral of
J{x)(\-0x)€(x) « -0(df/dx)F in equation (A 7); if
this term is neglected, as well as the terms which were
shown to be negligible, we find

(25)

(26)H2 « 2Nnv.

Equation (26) is similar to equation (9) of Slatkin
(1985), and shows a complete independence of the
frequency of gene conversion. Variation in element
frequencies between sites thus has a qualitative effect
on the probabilities of identity.

3. Discussion

The methods described above allow the calculation
of the identity probability for a pair of homologous
transposable elements sampled from the same site (/),
and for a pair sampled from two different sites (C),
under the assumption of statistical equilibrium between
neutral mutation, random genetic drift, transposition,
and unbiased gene conversion. Loose linkage
between elements at different sites, and large values of
the mean number of elements per host individual and
the parameter 0 are also assumed. These assumptions
seem biologically realistic, as discussed earlier. Al-
though the results are approximate, variation in copy
number between individuals, and dependence of iden-
tity probabilities on element frequencies at the sampled
sites, are allowed for. The present results are thus
more general in this respect than those derived pre-
viously (Ohta, 1984, 1985; Slatkin, 1985; Brookfield,
1986; Hudson & Kaplan, 1986).

The quantitative effects of including these factors
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Table 1. Equilibrium identity probabilities
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0 = 5
u = 10"",

X

0
5 x 10-'
1 x 10-"
2x10""
5x10""

0 = 20
u = 10-",

X

0
5x10-'
1 x 10-"
2x10""
5 x 10-"

0= 100
u = 10-",

X

0
5x10"'
1 x 10""
2x10""
5 x 10-"

c0 = o

Q

0-985
0-985
0-985
0-985
0-985

'•988

/ .

1000
0-996
0-994
0-992
0-990

Co = 0-952

0-950
0-950
0-950
0-950
0-951

Co = 0

0-798
0-798
0-799
0-799
0-800

A
1000
0-984
0-976
0-968
0-956

1-800

/ .

1000
0-959
0-931
0-896
0-854

C2

0-988
0-988
0-988
0-988
0-988

Q

0-952
0-952
0-952
0-952
0-952

Q

0-800
0-800
0-800
0-800
0-800

/a

1000
0-997
0-996
0-994
0-991

A
1000
0-990
0-984
0-976
0-966

A
1000
0-959
0-931
0-896
0-854

Q

0-988
0-989
0-990
0-990
0-989

c3

0-952
0-958
0-960
0-960
0-958

Q

0-800
0-822
0-828
0-828
0-820

it = 10-',

X

0
5 x 10"6

1 x 10-'
2 x 10-'
5x10- '

u = 10"5,

X

0
5 x 10"6

1 x 10-'
2x10" '
5 x 10"'

u = 10"',

X

0
5xlO"6

1 x 10"'
2 x 1 0 - '
5 x 10"5

4 -
Q

0-868
0-869
0-870
0-871
0-873

C0 = C

0-655
0-655
0-656
0-657
0-658

Q = C

Q

0-283
0-284
0-284
0-284
0-285

1-889

A
0-999
0-962
0-944
0-925
0-907

1-667

A
0-999
0-969
0-833
0-777
0-722

1-286

A
0-999
0-761
0-642
0-524
0-405

C2

0-888
0-888
0-888
0-888
0-888

Q

0-666
0-666
0-666
0-666
0-666

C2

0-285
0-286
0-286
0-286
0-286

A
0-995
0-977
0-962
0-943
0-919

A
1000
0-983
0-882
0-823
0-752

A
1000
0-842
0-729
0-594
0-442

c3

0-888
0-902
0-905
0-905
0-901

c3

0-666
0-676
0-705
0-705
0-694

Q

0-286
0-316
0-324
0-324
0-312

n = 50 and v = 10~8 for all entries. C° is the value of C from Slatkin (1985); C, is the value from Hudson & Kaplan (1986);
/2 and C2 are from equations (27) and (21), and/3 and C3 are from equations (22) and (21).

are displayed in Table 1, which gives examples of equi-
librium identity probabilities computed by several
different methods. The first column of each section
shows the C values obtained using Hudson & Kaplan's
(1986) equations (14) and (15). (These assume fixed
copy number per individual when there is gene con-
version.) The next two columns show the / and C
values given by the present approach, but neglecting
the effects of variation in element frequencies between
sites. Equation (A 9) implies that, in this case, equation
(22) is replaced by

f= (27)

while equation (22) is unchanged. The last two columns
in each section display the results from equations (21)
and (22), which allow for dependence of identity prob-
abilities on element frequencies. The value of C from
Slatkin's (1985) equation (9) is given at the head of
each section; his analysis (which assumed a fixed copy
number per individual) suggested that identity prob-
abilities were nearly independent of the rate of gene
conversion, for the range of parameter values con-
sidered here.

It will be seen that the different formulae for C
produce rather similar numerical results. The prob-
ability of identity between two elements from the same

site is always larger than that for elements from
different sites, and is considerably more sensitive to
the effect of gene conversion, as would be expected
intuitively. Given the fact that the mean number of
elements per individual is typically fairly large, at least
for Drosophila (Rubin, 1983), so that it is unlikely that
two randomly sampled elements come from the same
site, the identity measure C is of much greater interest
biologically than/ . Table 1 shows that C3, the value
which takes variation in element frequencies between
sites into account, varies with the rate of gene conver-
sion more than the others, but the effect is small, and
of little significance when the problems involved in
comparisons of theoretical values with experimental
estimates are borne in mind. For most practical pur-
poses, Slatkin's equation (9) can probably be safely
used, unless the rate of gene conversion is high com-
pared with the rate of transposition.
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BSR-8516629 from the National Science Foundation. I
thank T. Nagylaki, W. Stephan, and an anonymous reviewer
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Appendix 1

Diffusion approximations

We start by replacing the discrete probability formu-
lation of the text with the continuous approximation
of equation (1). Q(x) and Q'{x) are replaced by

£,{x) = x<j>{x)/\ x<f>(x)dx;J{x) and C{x,y) are now
Jo

defined for x and y over the closed interval [0,1], and
summations are replaced by integration over this inter-
val. Applying the usual Taylor series expansion to the
right-hand side of equation (11), we obtain the diffusion
approximation

(Al)

so that equation (A 1) yields

dx2

where MSx = (AN)'1^ -x)-ux and VSx = x(l -x)/
27V are respectively the mean and variance of the
change in element frequency per generation (Charles-
worth & Charlesworth, 1983).

But (/>(x) satisfies the stationarity condition

dx
i
2

r,

\ # y ~ <A2>

Using equations (1) and (15), and neglecting the term
in a (which is 002m-1)) in Mdx, we obtain the relation

(A3)

A similar analysis can be carried out for C(x,y),
yielding the equation

AC(x,y) = Ax C(x, y) + A2 C(x,y)-

y) , 8C(x,y)\ ,
dx 8y

82C(x,y)
dy2

(A 4)

Appendix 2

The equilibrium solution to equation (A 3) and (A 4)
can be approximated as follows, assuming 0 P 1.
Terms of order v, u, n and TV"1 will be denoted by 0(e),
when convenient. Consider first equation (A 3). Setting
4/W = 0. multiplying by x£,(x) and integrating, we
find (after neglecting 0(e2) terms) that

x) dx

= Q. (A 5)

For large 0, integrating by parts and neglecting 0(fi2)
terms we have

- 0x) £&x) dx, (A 6a)

fx&x) dx » - J (1 - 0x)J[x) £(x) dx. (A 6b)

Substituting into equation (A 5), multiplying by 27V,
and noting that ©(47V)-1 = u, we find that

27V f
Jo

-0x)J{x)

= Q. (A 7)

dx2

For large, 0, values of x for segregating sites with
significant probability will be close to x = F x 0~x.
We can thus approximate J{x) and C0(x) in equations
(3) and (4) to high accuracy by the first two terms of
their Taylor's expansion about F. From equation (1),
it follows that

I*xn£(x)dx = n\/(l+0)(2 + 0)...(n + 0). (A 8)
Jo

Using this in the Taylor approximation to the left-
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hand side of equation (A 7) around x = 0~l, and
neglecting the contribution from AJ{x) (which is of
order Qx and is thus <̂  1 for sufficiently large m),
the first pair of terms in equation (A 7) can be written
as

+XHLI
(A 9)

where/and C are the equilibrium values of the quan-
tities defined by equations (3) and (4). The third term
is approximately equal to — 0~l(df/dx)F and will be
considered below.

We now consider the question of the magnitude of
the derivatives ofj{x) and C(x,y) in relation to the
approximations made above. An estimate of the
values of the derivatives of f(x) can be obtained as
follows. Setting Af[x) m equation (A 3) to zero, multi-
plying by 2Nx and differentiating with respect to x
gives the equation

-fix) 4N(v + X) + 4N \ XC0(x) + xk
dx

assuming x <£ 1.
Neglecting dC0(x)/dx and the higher order deriva-

tives of /{x), we obtain the following expression

dx
(All)

Substituting this into the approximation to — 0~x

(df/dx)p, equation (A 7), we obtain equation (20) of
the text.

The validity of neglecting the term in dC0(x)/dx will
be examined below; the inaccuracies introduced by
neglecting the higher order derivatives of J{x) can be
determined as follows. Differentiating equation (A 10)
again, we obtain

dx2
df\ 4N{u
dx)

d*f\ 4N{u + 3(v
dx* )F\dxi)P

Combining these results, it is found that

(A 12)

(A 13)

— x
F 2 \dx*

{\+2u-\v+k)}
dx

{ >

It is apparent from this that equation (Al l ) overesti-
mates — (df/dx) F unless it <̂  v + X. If w > v + A, the
addition of the above term yields an estimate which is
f times the earlier one. The inaccuracy in the estimate
of df/dx from the neglect of the higher order deriva-
tives therefore does not seem serious.

Equation (A 4) can be analysed in a similar way.
Multiplying both sides by £,{x)^(y), integrating and
neglecting 0(e2) terms, we obtain the equilibrium
expression

f
Jor
Jo

{A.Cix,

dC0(x)
X~dx~(

(2JV)"1

C(x, y)} £(x) fty) dxdy-2u

-ax)dx = Q. (A 15)x{ 1 - x)

This can be simplified by the method used for equation
(A 3) to yield

T {A C(x
Jo X

-(2A0"1 P
Jo

dC(x)
dx

£(x)dx. (A 16)

Providing that d2C(x,y)/dxdy and d2C(x,y)/dx2 at
x,y = F are of order 0 or less, we can approximate
C0(x), C0(y) and Co using the first terms in the Taylor
expansion of C(x,y) around x,y = F, to accuracy of
order &'1. C0(x) and Co can then be approximated by
C(x, F) and C0(F) respectively. On this basis, the term
involving Ar can be written as — 2{vC—2nF{f— C)} +
O(u0~2). Neglecting terms O^"1), the integral of A2 is
equal to 4un~lF(f— C) + 0(u&~2). This yields equation
(21) of the text if the last term in equation (A 16) is
neglected.

A similar procedure can be applied in order to
estimate the derivatives of C(x, y), by neglecting them
in equation (A 4) and setting AC(x,y) = 0. Implicit
differentiation of the resulting equation then yields
approximate values of the derivatives.

The derivatives of C(x,y)atx,y = Fare found to be

F)/ac(x,

v 5x2 yF ~ 2 v 5x A
| e^1 (df\

2 \dxjp
(d*C(x,y)\ , 30(8C(x,F)
V 5xaj JP~

(
2 \ dx

(A 17)

S (A 18)

(A 19)

Using equation (A 11) to eliminate df/dx from equa-
tion (A 17), we find that (dC/dx)F « -4Nuf0-3n-1 (if
n x 0) or « fi-tf-C) (if n > 0). Reference back to
equation (A 10) shows that the contribution of
(dC0/dx)F to {df/dx)F can thus be neglected if
0~1n~l ^ 1, as is the case under the assumed condi-
tions. Similarly, the contribution of the last term in
equation (A 16) can be neglected.

The second derivatives of C{x, y) are of order 0 or
less at x,y = Sunder these conditions. Equation (21)
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is then valid to a relative accuracy of 6~x, given the equation (A 4) in order to estimate their values. At
magnitudes of the multiplicands of/ and C. x,y = F we require that dC(x,y)/dx be < 1, and

Finally, we must consider whether there is an incon- that 82C(x, y)/dx2 <| \&. These conditions are satis-
sistency in neglecting the derivatives of C(x,y) in fied in frx(j—C) and rr1G~\df/dx)F are both < 1.

https://doi.org/10.1017/S0016672300024836 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300024836

