
This is a “preproof” accepted article for Journal of Clinical and Translational Science.  

This version may be subject to change during the production process.  

10.1017/cts.2025.10116 

 

This is an Open Access article, distributed under the terms of the Creative Commons Attribution- 

NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), 

which permits non-commercial re-use, distribution, and reproduction in any medium, provided 

the original work is unaltered and is properly cited. The written permission of Cambridge 

University Press must be obtained for commercial re-use or in order to create a derivative work. 

 

Development and Validation of Natural Language Processing Algorithms in the National 

ENACT Network 

Yanshan Wang
1,2,3

, Jordan Hilsman
1,2

, Chenyu Li
1,3

, Michele Morris
3
, Paul M. Heider

4
, Sunyang 

Fu
5
, Min Ji Kwak

6
, Andrew Wen

5
, Joseph R Applegate

5
, Liwei Wang

5
, Elmer Bernstam

5,7
, 

Hongfang Liu
5
, Jack Chang

8
, Daniel R. Harris

9
, Alexandria Corbeau

9
, Darren Henderson

9
, John 

D Osborne
10

, Richard E Kennedy
11

, Nelly-Estefanie Garduno-Rapp
12

, Justin F. Rousseau
12,13

, 

Chao Yan
14

, You Chen
14

, Mayur B. Patel
15

, Tyler J. Murphy
15

, Bradley A. Malin
14

, Chan Mi 

Park
16

, Jungwei W. Fan
17,18

, Sunghwan Sohn
17

, Sandeep Pagali
19

, Yifan Peng
20,21

, Aman 

Pathak
22

, Yonghui Wu
22

, Zongqi Xia
23

, Salvatore Loguercio
24

, Steven E. Reis
1
, Shyam 

Visweswaran
1,3

 
 

1
Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA 

2
Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, USA 

3
Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA 

4
Biomedical Informatics Center and Department of Public Health Sciences, Medical University 

of South Carolina, Charleston, SC, USA 

5
McWilliams School of Biomedical Informatics, University of Texas Health Science Center at 

Houston, Houston, TX, USA 

6
McGovern Medical School, University of Texas Health Science Center at Houston, Houston, 

TX, USA 

7
Division of General Internal Medicine, McGovern Medical School, University of Texas Health 

Science Center at Houston, Houston, TX, USA 

8
Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, 

NY, USA 

  

https://doi.org/10.1017/cts.2025.10116 Published online by Cambridge University Press

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1017/cts.2025.10116


 

9
 Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA 

10
 Department of Biomedical Informatics and Data Science, University of Alabama at 

Birmingham, Birmingham, AL, USA 

11
 Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University 

of Alabama at Birmingham, Birmingham, AL, USA 

12
 Clinical Informatics Center, University of Texas Southwestern Medical Center, Dallas, TX, 

USA 

13
Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA 

14
Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 

USA 

15
Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA 

16
Department of Gerontology, Hebrew SeniorLife, Marcus Institute for Aging Research, Boston, 

MA, USA 

17
Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA 

18
Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA 

19
Department of Medicine, Mayo Clinic, Rochester, MN, USA 

20
Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA 

21
Clinical & Translational Science Center, Weill Cornell Medicine, New York, NY, USA 

22
Department of Health Outcomes and Biomedical Informatics, University of Florida, 

Gainesville, FL, USA 

23
Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA 

24
Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA 

Corresponding Author: Yanshan Wang, Yanshan.wang@pitt.edu, Vice Chair of Research and 

Assistant Professor, Department of Health Information Management, Director of Generative AI 

Division, CPACE AI Center, University of Pittsburgh, 3600 Atwood Street, Pittsburgh, PA, 

15260  

  

https://doi.org/10.1017/cts.2025.10116 Published online by Cambridge University Press

mailto:Yanshan.wang@pitt.edu
https://doi.org/10.1017/cts.2025.10116


 

Abstract 

Objective: EHR data are critical for advancing translational research and AI technologies. The 

ENACT network offers access to structured EHR data across 57 CTSA hubs. However, 

substantial information is contained in clinical narratives, requiring natural language processing 

(NLP) for research. The ENACT NLP Working Group was formed to make NLP-derived clinical 

information accessible and queryable across the network. 

Methods: We established the ENACT NLP Working Group with 13 sites selected based on 

criteria including clinical notes access, IT infrastructure, NLP expertise, and institutional support. 

We divided sites into five focus groups targeting clinical tasks within disease contexts. Each 

focus group consisted of two development sites and two validation sites. We extended the 

ENACT ontology to standardize NLP-derived data and conducted multisite evaluations using the 

Open Health Natural Language Processing (OHNLP) Toolkit. 

Results: The working group achieved 100% site retention and deployed NLP infrastructure 

across all sites. We developed and validated NLP algorithms for rare disease phenotyping, social 

determinants of health, opioid use disorder, sleep phenotyping, and delirium phenotyping. 

Performance varied across sites (F1 scores 0.53-0.96), highlighting data heterogeneity impacts. 

We extended the ENACT common data model and ontology to incorporate NLP-derived data 

while maintaining SHRINE compatibility. 

Conclusion: This demonstrates feasibility of deploying NLP infrastructure across large, 

federated networks. The focus group approach proved more practical than general-purpose 

approaches. Key lessons include the challenge of data heterogeneity and importance of 

collaborative governance. This framework provides foundation for other networks implementing 

NLP capabilities for translational research.  

 

Keywords: translational research, electronic health records, natural language processing, 

network, ENACT 
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Introduction 

Electronic health record (EHR) data serve as a rich and invaluable source of real-world clinical 

information, enabling researchers and healthcare professionals to gain comprehensive insights 

into patient populations, treatment outcomes, and healthcare practices [1]. By capturing a broad 

spectrum of clinical information, including demographic details, diagnosis, procedures, 

medications, laboratory test results, and clinical notes, EHR systems create a longitudinal record 

that mirrors the complexity and heterogeneity of modern healthcare. The accessibility of EHR 

data is paramount for advancing translational research and the application of cutting-edge 

technologies, including artificial intelligence and machine learning. Furthermore, these 

computational tools depend on robust, standardized, and interoperable EHR datasets to enable 

predictive modeling [2], automated phenotyping [3], risk stratification [4], and decision support 

systems [5] that can enhance clinical effectiveness, improve patient safety [5,6], and ultimately 

shape the future of healthcare delivery. 

The national Evolve to Next-Gen Accrual to Clinical Trials (ENACT) network [1] was 

established in 2015 as the Accrual to Clinical Trials (ACT) network to enable cohort discovery 

from EHR data. This federated network connects EHR data repositories across 57 Clinical and 

Translational Science Awards (CTSA) hubs, enabling researchers to query the data of more than 

142 million patients across the hubs (sites). The ENACT network integrates local Informatics for 

Integrating Biology at the Bedside (i2b2) [7] and Observational Medical Outcomes Partnership 

(OMOP) [8] data repositories (and eventually PCORnet [9] data repositories) through the Shared 

Health Research Information Network (SHRINE) platform, which enables interactive querying 

of the data [10]. The network's data, encompassing structured EHR information on demographics, 

diagnoses, procedures, medications, laboratory test results, and visits, extends back at least a 

decade, with some sites providing data for up to two decades. Updates to the data occur at least 

once a month. 

The ACT network aimed to enable national cohort discovery, particularly for multisite research 

such as clinical trials, including those supported by the Trial Innovation Network (TIN) [11]. 

However, ENACT‘s goal is broader, including large-scale clinical and translational research 

using patient counts, distributed analytics, and ephemeral analytics enclaves. Furthermore, 
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ENACT provides prep-to-research data, enables the generation of evidence for clinical decision-

making, and serves as a resource for educating trainees. 

Currently, ENACT provides access to structured EHR data, enabling significant advances in 

cohort discovery and research across this national network. However, while structured EHR data 

offers valuable insights, much clinical information remains embedded within unstructured EHR 

data. The unstructured EHR data, including clinical encounter notes, radiology reports, 

pathology reports, and other narrative documents, are challenging to analyze due to their free-

text format. To harness the full potential of EHRs for translational research, applying natural 

language processing (NLP) to extract research-usable data from clinical notes is essential. 

Recognizing this critical need, the ENACT NLP Working Group was established to make NLP-

derived data accessible and queryable across the network. Such data will enhance the analytical 

capacity of the network, enabling researchers to tap into previously inaccessible information in 

clinical notes and generate new insights that can drive advances in translational research and 

clinical care. 

This article provides a comprehensive overview of the development and deployment of NLP 

infrastructure in ENACT. We describe the formation and goals of the working group, the policies 

and logistics involved, and the specific NLP algorithms and tools utilized. We also describe the 

extension of the ENACT ontology to standardize and query NLP-derived data across the network. 

Furthermore, we provide a practical guide on multisite evaluation of NLP algorithms, 

highlighting their performance, scalability, and adaptability across diverse healthcare systems. 

We also include an in-depth reflection on the experiences and lessons learned from this journey, 

which may be helpful in other national data networks, such as the PCORnet [9] and the All of Us 

Research Program [12], which use NLP to unlock the potential of clinical notes for research.  

Methods 

Formation and Organization of the ENACT NLP Working Group 

We established the ENACT NLP Working Group in 2023 with participation from thirteen 

ENACT sites selected based on specific technical and organizational criteria. Eligible sites were 

required to have: (1) an accessible source of clinical notes (e.g., clinical data warehouse or Epic 
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Clarity reporting database), (2) existing information technology infrastructure capable of 

supporting NLP computation, (3) demonstrated NLP expertise among staff, and (4) institutional 

support from local CTSA hub leadership for obtaining clinical notes access and managing 

participation logistics. 

The recruitment process began with a comprehensive survey of all 57 ENACT sites to assess 

technical capabilities, resource availability, and institutional interest. Sites meeting the primary 

eligibility criteria were invited to participate in detailed technical assessments, including 

infrastructure readiness evaluations and personnel capability reviews. The final site selection 

prioritized geographic diversity, healthcare system variety (including academic medical centers, 

integrated health systems, and specialty hospitals), and complementary technical expertise to 

ensure robust representation across the federated network. 

NLP Implementation Strategy Evaluation  

We systematically evaluated potential implementation strategies for federated clinical NLP 

deployment. This evaluation process assessed multiple approaches, including general-purpose 

clinical NLP platforms versus specialized, domain-specific algorithms. The assessment criteria 

included: (1) compatibility with ENACT's existing SHRINE infrastructure and common data 

model (CDM) implementations, (2) preprocessing requirements based on site-specific data 

characteristics, (3) resource allocation efficiency, and (4) alignment with CTSAresearch 

requirements. 

Focus Group Strategy and Resource Optimization 

We divide participating sites into five specialized focus groups, each targeting specific clinical 

tasks within well-defined disease or condition contexts. This specialization approach is based on 

three key principles: (1) Clinical Relevance: Each focus group addresses clinically important 

research questions with clear translational implications; (2) Technical Feasibility: Focus group 

tasks are scoped to be achievable within available resources while maintaining high technical 

standards; and (3) Resource Efficiency: Focus group organization minimizes duplication of 

effort by leveraging existing funded projects and ongoing research initiatives at participating 

sites. 
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Each focus group is structured with two development sites responsible for collaborative 

algorithm design, initial validation, and comprehensive documentation, and at least two 

additional validation sites responsible for independent cross-site evaluation and generalizability 

assessment. This structure balances the need for intensive development effort with robust cross-

site validation while maintaining manageable coordination complexity. 

Working Group Governance and Communication Framework 

We designed a collaborative governance model to coordinate complex multi-institutional 

activities while respecting institutional autonomy and diverse organizational cultures. The 

governance framework emphasizes shared decision-making, transparent communication, and 

equitable resource allocation across participating sites. 

The working group operates under a distributed leadership model with rotating meeting 

facilitation and consensus-based decision-making protocols. Leadership responsibilities are 

shared among sites based on expertise areas, technical decisions are made through working 

group consensus, and administrative coordination is managed through dedicated project 

management personnel. This structure ensures that no single institution dominates decision-

making while maintaining efficient coordination across diverse institutional environments. 

Results 

The ENACT NLP Working Group 

The ENACT NLP Working Group successfully launched with 13 participating sites representing 

diverse healthcare systems across the United States (See Figure 1). All participating sites met 

the established criteria and successfully established the required technical infrastructure, 

including access to clinical notes, computational resources, and deployment of the NLP toolkit. 

The working group achieved 100% site retention throughout the project period, thanks to 

effective coordination facilitated by the established communication framework. 

During the initial discussions, we discovered two challenges: 1) Processing all clinical notes at 

each site (which could number in the millions) and extracting every biomedical entity from each 

note (which could number in the tens of thousands) was infeasible, and 2) Deploying a general-
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purpose NLP algorithm capable of extracting all entities proved unrealistic and unlikely to 

perform optimally. Instead, specialized NLP algorithms targeting specific entities for particular 

tasks with greater precision were deemed more practical. Further, to maximize the limited 

funding available to the working group, we divided the participating sites into five focus groups, 

each targeting a specific task in the context of a disease or condition. Each focus group consisted 

of two development sites and at least two additional validation sites. The development sites were 

tasked with jointly designing and validating a specialized NLP algorithm, while the validation 

sites were responsible for evaluating the algorithm. After validation, the NLP algorithm can be 

deployed across the entire network. Some development sites leveraged already-funded local 

projects or focused on an algorithm already in development for an ongoing project. This strategy 

significantly reduced the resources and effort needed to develop and deploy several algorithms. 

Table 1 lists the focus groups, associated development sites, and validation sites.  

During later discussions, we realized that designing a specialized NLP algorithm targeted for a 

task required specifying a patient cohort and a particular type of clinical note. For example, for 

the SDOH – Housing Status task, the patient cohort included individuals with substance use 

disorder (specifically those with stimulant and opioid use disorders with ICD-10-CM diagnosis 

codes of F11.*, F14.*, F15.*, T40.*, and T43.6*), and EHR data was limited to emergency 

department notes. The algorithm would not be expected to be applied to other types of patients or 

notes. Thus, we required each focus group to provide a clear cohort definition and identify the 

type of note needed to develop the NLP algorithm. Table 1 provides the cohort definitions and 

clinical note types identified by each focus group. 
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Figure 1 Participating sites in the Evolve to Next-Gen Accrual to Clinical Trials (ENACT) 

network Natural Language Processing (NLP) Working Group. 

Table 1. Focus group tasks and associated development sites, deployment sites, cohort 

definitions, and clinical note types. 

Focus Group 

Task 

Development 

Sites  

Validation 

Sites 

Cohort Definition Note 

Type(s) 

Rare Disease 

Phenotyping 

University of 

Texas Health 

Science Center at 

Houston, Mayo 

Clinic 

University of 

Pittsburgh, 

Weill Cornell 

Medicine 

Patients with any of the 

following conditions: 

Complex Regional Pain 

Syndrome (CRPS), 

Trigeminal Neuralgia 

(TN), Idiopathic 

Pulmonary Fibrosis 

(IPF), Familial Pancreatic 

Carcinoma (FPC), , and 

Primary sclerosing 

cholangitis (PSC) 

Any 
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identified by ICD-10 

codes (G90.5*, G50.0, 

J84.112, C25.*, K83.01). 

Social 

Determinants 

of Health 

(SDOH) – 

Housing 

Status  

University of 

Kentucky, 

University of 

Pittsburgh 

University of 

Rochester, 

University of 

Texas Health 

Science Center 

at Houston 

Patients with at least one 

Emergency Department 

visit (see Harris et al. 

[13] for details) 

Clinical 

notes for ED 

visits (e.g., 

comprehensi

ve 

assessment, 

consultation, 

etc.) 

Opioid Use 

Disorder 

Medical University 

of South Carolina, 

University of 

Kentucky 

University of 

Pittsburgh, 

University of 

Rochester 

Patients with any of the 

following conditions: 

Opioid Overdose (see 

Lenert et al. [14] and 

Ward et al. [15] for 

details), Opioid Use 

Disorder (see Zhu et al. 

[16] for details) 

Emergency 

Department 

notes 

Sleep 

Phenotyping 

University of 

Pittsburgh, 

University of 

Florida 

University of 

Texas Health 

Science Center 

at Houston, 

University of 

Rochester 

Patients with Alzheimer’s 

disease (see Venkatesh et 

al. [17] for details) 

Clinical 

encounter 

notes 

Delirium 

Phenotyping 

Mayo Clinic and 

Olmsted Medical 

Center 

University of 

Texas Health 

Science Center 

Patients with delirium 

(see St Sauver et al. [18] 

for details) 

Clinical 

notes 

(primarily 
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at Houston, 

University of 

Pittsburgh, 

Vanderbilt 

University 

Medical Center, 

Beth Israel 

Deaconess 

Medical Center, 

University of 

Texas 

Southwestern 

Medical Center, 

University of 

Alabama at 

Birmingham 

focus on 

progress, 

nursing, and 

consultation 

notes (e.g., 

neurology/ps

ychiatry 

consultations

, 

physical/occ

upational 

therapy, 

social work)) 

 

NLP Implementation Strategies Considered 

Our systematic evaluation of potential implementation strategies for federated clinical NLP 

deployment revealed critical insights that shaped our strategic approach. We assessed multiple 

approaches, including general-purpose platforms that extract standardized medical concepts 

versus specialized, domain-specific algorithms. A standardized strategy would have processed 

clinical notes to extract broad medical concepts (such as Unified Medical Language System 

concepts) and populated existing observation_fact tables within the ENACT CDM, enabling 

researchers to query NLP-derived concepts through the established SHRINE interface. The Open 

Health Natural Language Processing (OHNLP) Consortium’s Toolkit, with its exceptional 

flexibility in processing diverse data formats, compatibility with both i2b2 and OMOP data 

models, and adaptability to site-specific variations, positioned it as the optimal solution for 

handling ENACT's heterogeneous data environments. Given the universal need for substantial 
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preprocessing infrastructure and CTSA investigators' requirements for fine-grained clinical 

phenotypes, we determined that the specialized focus group approach using OHNLP's adaptable 

framework would provide superior precision for targeted clinical applications while optimizing 

limited resources within ENACT's established federated architecture. During this process, the 

NLP working group has worked collaboratively on selecting and implementing NLP tools for 

extracting medical concepts from clinical notes. The team also extended the ENACT CDM to 

incorporate NLP-derived data while maintaining flexibility for different projects. Standardized 

conventions for storing NLP-extracted entities and contextual attributes were established, 

ensuring seamless integration with structured EHR data. Additionally, extensions to the ENACT 

ontology were developed to facilitate querying NLP-derived concepts across ENACT, and a 

federated evaluation framework was introduced for cross-site validation of NLP algorithms. To 

enhance reliability, the team also implemented a standardized error analysis process, utilizing an 

established taxonomy to refine model performance and assess generalizability across institutions. 

These collective efforts streamlined clinical textual analytical capabilities within ENACT. 

Details about these technologies are in the Supplemental Material. 

Overview of the ENACT NLP Workflow 

Based on initial feasibility assessments, we identified two critical implementation challenges: (1) 

processing all clinical notes at each site (numbering in millions) and extracting every biomedical 

entity was computationally infeasible, and (2) deploying a general-purpose NLP algorithm 

capable of extracting all entities proved unrealistic and unlikely to achieve optimal performance. 

These findings led to our strategic decision to implement specialized NLP algorithms targeting 

specific entities for particular tasks with greater precision. 
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Figure 2 An overview of the ENACT NLP workflow.  

*SHRIN: Shared Health Research Information Network  

 

Figure 2 presents an overview of the NLP workflow developed by the ENACT NLP Working 

Group, which is described step by step below.  

① NLP Infrastructure: Each site participating in the NLP initiative identifies a source of clinical 

notes (such as a clinical data warehouse or Epic’s Clarity), allocates computing resources for 

NLP processing, and deploys the OHNLP Toolkit. In addition to ENACT’s Institutional Review 

Board (IRB) approval for structured EHR data, the site obtains additional IRB approval, if 

necessary, to use clinical notes. 

② Algorithm Development: A participating site proposes and develops an NLP algorithm, 

contacts the working group to coordinate its validation, and partners with the Data 

Harmonization Working Group to create the ENACT ontology extension necessary for 

deploying the algorithm. 
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③ Algorithm Validation: The site that developed the algorithm shares it with validation sites, 

along with the associated specifications, such as the cohort definition, note type, and process for 

establishing the gold and silver reference standards, as directed by the working group. 

④ Dissemination: Following validation, the working group disseminates the algorithm and 

associated specifications to the network via an online repository such as GitHub. The working 

group also coordinates with the Data Harmonization Working Group and the Network 

Operations Working Group to deploy the ontology extensions across the network. 

⑤ Site Integration: Each participating site downloads the algorithm and associated 

specifications from the online repository, integrates it into their local NLP infrastructure, and 

populates the local ENACT data repository's i2b2 observation_fact table with NLP-derived data. 

The site also updates the ENACT ontology to include the extension required for querying NLP-

derived data.  

⑥ Researcher Use: Any ENACT researcher at any participating site uses the SHRINE interface 

to create queries that search NLP-derived and structured EHR data. The query returns patient 

counts from participating sites in the same manner as existing structured EHR data queries. 

This workflow, which includes infrastructure needs, algorithmic creation and validation, 

network-wide distribution, and local integration, provides a structured approach for introducing 

and scaling NLP capability in the network.  

Demonstration Projects 

In this section, we present four demonstration projects, each representing the work of a focus 

group and showcasing a distinct area of research. Each project is at a different stage of 

development, reflecting variations in goals, challenges, and resource availability. While some 

focus groups have made significant progress and are close to integrating NLP-derived data into 

the network, others are in the early stages, concentrating on foundational tasks such as acquiring 

clinical notes, establishing NLP infrastructure, or refining the NLP algorithm. This variation 

underscores the dynamic and adaptive nature of the collaborative effort to develop and 

disseminate NLP capabilities across a large national network. 
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Demonstration Project 1: Sleep Phenotyping Focus Group 

The Sleep Phenotyping Focus Group is investigating sleep phenotyping within a cohort of 

Alzheimer's Disease (AD) patients, using encounter notes in these patients. To extract relevant 

sleep phenotype information, we previously developed an NLP algorithm to extract key 

phenotypes such as snoring, napping, sleep problems, poor sleep quality, daytime sleepiness, 

nocturnal awakenings, sleep duration, and other nocturnal symptoms [19]. This project offers a 

structured approach for analyzing the sleep disturbances commonly observed in AD patients, 

ultimately contributing to a deeper understanding of their clinical implications. 

The evaluation framework described earlier was applied to assess the NLP algorithm, and the 

performance is shown in Table 2. Two sites, University of Pittsburgh (Pitt) and the University of 

Florida (UF) are the development sites, while the University of Texas Health Science Center at 

Houston (UTH) is one of the validation sites (the additional validation site, the University of 

Rochester (UR), is in the process of generating validation results). The algorithm's behavior 

varied among the three sites. At Pitt, it had a high recall and low precision, indicating that it 

functioned with high sensitivity, whereas at UF and UTH, it had a low recall and high precision, 

indicating that it functioned more cautiously. Part of the reason for this discrepancy is that the 

data at Pitt is more evenly distributed across the sleep phenotypes, with sample sizes of 12 and 

48 for 6 of the 9 concepts, whereas the data at UTH and UF is unevenly distributed mainly for 

sleep problems and sleep quality concepts, for which the algorithm generates many false 

negatives. 
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Table 2 Performance of the algorithm developed by the Sleep Phenotyping Focus Group. 

 ENACT Sites 

Metrics Pitt UF UTH 

F1 0.776 0.647 0.698 

Recall 0.944 0.542 0.551 

Precision 0.695 0.868 0.953 

 

Demonstration Project 2: Social Determinants of Health – Housing Status Focus Group  

Housing is a key environmental social determinant of health (SDOH), closely associated with 

mortality and clinical outcomes. Housing Status Focus Group seeks to develop an NLP algorithm 

to extract the housing status of individuals from emergency department notes. This project aims 

to provide valuable insights into the impact of housing instability on health outcomes, thereby 

informing future interventions and support strategies. 

The housing status NLP algorithm was developed to extract housing-related concepts such as 

homelessness, unstable housing, recovery housing, emergency housing, temporary housing, and 

exposure, and its performance is shown in Table 3. The University of Kentucky (UK) and Pitt 

are the development sites, and UR and UTH are the validation sites. Each site created a gold 

standard for evaluation using a specific subset of patients treated in emergency departments; 

details of the NLP algorithm development and evaluation can be found in the relevant 

publication [13].  
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Table 3 Performance of the algorithm developed by the Housing Status Focus Group. 

 ENACT Sites 

Metrics UK Pitt UR UTH 

F1 N/A 0.959 0.823 0.689 

Recall 0.980 0.992 0.798 0.875 

Precision 0.990 0.928 0.850 0.568 

 

Demonstration Project 3: Opioid Use Disorder Focus Group  

Patients who present to the Emergency Department with an opioid overdose (OOD) are at 

significant risk of death [20]. Identifying individuals with opioid use disorder (OUD) and at risk 

of OOD can aid in better treatment and counseling, particularly in the context of treating acute 

and chronic pain with opioids. ICD codes can identify OUD patients and those at risk of OOD, 

but they may not be available in the EHR at the time of the visit (Ward et al. [14]), and they are 

frequently absent in patients when evidence in their unstructured clinical notes indicates a risk 

for OUD (Zhu et al. [16] ).  In particular, Zhu et al. found that a lexicon-based strategy for 

identifying patients at risk for OUD outperformed an ICD-based method for phenotyping 

patients with OUD. The Opioid Use Disorder Focus Group is formalizing a phenotype based on 

the ICD code approach (Ward et al., Lenert et al., and Zhu et al.) to be used as an initial silver 

standard for evaluation. The initial NLP phenotyping method will be based on Zhu et al.'s 

lexicon-based approach to identifying OUD, which will be refactored to work in the OHNLP 

framework. The NLP algorithm is currently being developed and validated across multiple sites. 

Demonstration Project 4: Delirium Phenotyping Focus Group 

Delirium is a common geriatric syndrome characterized by an acute change in mental status, 

fluctuating course, lack of attention, and disorganized thinking or altered level of consciousness 

[21]. Accurate prediction of delirium could significantly improve patient outcomes through 

targeted interventions for hospitalized patients. For delirium case ascertainment, we  used the 
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Confusion Assessment Method (CAM) [22], which is recommended by the Network for 

Investigation of Delirium: Unifying Scientists (NIDUS), as the gold standard for diagnosing 

delirium. NLP-CAM is an NLP-powered computational phenotyping tool that can identify a 

patient’s delirium status from the EHR [23]. The tool was initially developed at the Mayo Clinic 

(Mayo) based on CAM and includes 13 unique concepts that range from neuropsychological 

characteristics to cognitive and memory problems (e.g., agitation, disorganized thinking, and 

fluctuation). We applied NLP-CAM to three test sites (UTH, University of Alabama at 

Birmingham (UAB), and Vanderbilt University Medical Center (VUMC)) and reported the out-

of-the-box performance, as shown in Table 4. We observed moderate to high performance 

degradation due to site variations in CAM screening, documentation, and patient characteristics. 

Our next step is to conduct federated refinement [24] to optimize NLP performance at each site.  

Table 4 Performance of the algorithm developed by the Delirium Phenotyping Focus Group. 

 ENACT Sites 

Metrics Mayo UTH UAB VUMC 

F1 0.958 0.895 0.530 0.606 

Recall 0.919 0.985 0.770 0.796 

Precision 1.000 0.819 0.400 0.490 

 

Discussion  

The ENACT NLP Working Group created NLP capability that is specifically suited to a multisite, 

federated network for supporting large-scale analytics. This capability enables extracting data 

from clinical narratives, facilitating research that involves collaboration across multiple sites, 

while simultaneously addressing data heterogeneity and scalability. Below, we highlight six 

areas where the NLP capability offers transformative potential in ENACT. 
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Potential Applications 

Clinical Research Enhancement. NLP-derived data combined with structured EHR data enhance 

participant identification for multisite clinical trials, improving recruitment efficiency and 

demographic representation. This capability is particularly valuable for rare disease research, 

where pooling data across institutions enables the identification of sufficient cases for robust 

analysis. 

Multisite Large Cohort Studies. The integration of unstructured data into large cohort studies 

significantly enhances the granularity and scope of research. ENACT NLP enables the 

identification of complex phenotypes, such as those described in clinical narratives, which are 

often omitted in structured data alone. This capability is particularly valuable for studying rare 

diseases, as it allows researchers to pool data from multiple institutions to identify sufficient 

cases for robust analysis. By supporting large-scale phenotyping and longitudinal analyses, 

ENACT NLP facilitates cohort studies that can uncover complex relationships between clinical 

variables and outcomes, providing insights that would be limited with data from a single site. 

Federated Learning and Artificial Intelligence (AI) Development. The infrastructure supports 

privacy-preserving AI model development by enabling local processing of unstructured data with 

centralized model aggregation. This approach addresses data heterogeneity and privacy 

challenges while creating models generalizable across diverse healthcare systems. 

Digital Twin Development. Digital twins—virtual patient representations that simulate disease 

progression and treatment responses—benefit from ENACT NLP's multisite capabilities. By 

extracting nuanced patient data from unstructured narratives across the network, ENACT NLP 

enables the creation of comprehensive digital twins that capture diverse clinical contexts and 

patient populations. These models support personalized simulations for precision medicine 

applications at scale. 

Population Health and Surveillance. ENACT NLP supports epidemiological studies and real-

time public health surveillance by extracting disease patterns, healthcare utilization metrics, and 

social determinants of health from clinical narratives. These capabilities enable targeted 

interventions and evidence-based policy decisions. 
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Clinical Decision Support. The multisite network enhances clinical decision-making by enabling 

clinicians to identify similar patients across institutions and review their treatment outcomes. 

This is particularly impactful for rare or complex conditions where local data may be insufficient.  

Additional Applications. ENACT NLP's multisite infrastructure supports diverse research areas: 

precision medicine (extracting patient-specific genetic and environmental factors for 

personalized care); quality improvement (identifying workflow inefficiencies and care gaps from 

clinical narratives); health equity research (analyzing social determinants like housing instability 

and food insecurity); pharmacovigilance (detecting adverse drug reactions and off-label usage 

patterns); and healthcare education (providing real-world case studies for training programs). 

These applications collectively expand ENACT NLP's impact across healthcare research, policy, 

and practice. 

Lessons Learned 

Implementing and deploying NLP infrastructure in ENACT has been a multifaceted journey, 

marked by significant advancements in integrating NLP and textual analytical capabilities into a 

large national EHR network. The ENACT NLP Working Group's collaborative efforts, 

leveraging existing IT infrastructures and NLP expertise at various CTSA hubs, facilitated the 

rapid deployment of NLP pipelines across the network. Establishing dedicated communication 

channels through Slack workspaces and regular coordination meetings proved instrumental in 

ensuring smooth coordination and troubleshooting among participating sites. 

Data Heterogeneity: The Fundamental Implementation Challenge 

Our most critical lesson learned was that data heterogeneity across sites, even within sites using 

the same EHR vendor, represents the fundamental implementation challenge. Despite 9 of 11 

sites using Epic as their primary EHR system, we encountered substantial heterogeneity in their 

data. Each site utilized different data access sources (clinical data warehouse, Epic Clarity, or 

OMOP warehouse) with unique challenges: template variations across departments and time 

periods, loss of formatting during extract, transform, load (ETL) processes, character encoding 

issues, inconsistent use of structured fields, and site-specific documentation workflows. 
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Sites demonstrated striking diversity in how clinical information was structured and stored. Pitt’s 

dual Epic-Cerner environment required processing both mixed vendor templates and legacy data 

integration challenges. The Medical University of South Carolina (MUSC) faced critical ETL 

issues where structurally significant formatting, including tables and newlines, was stripped 

during data warehouse transfer, while UAB's Cerner system complicated matters by converting 

notes to portable document format (PDF) files. Character encoding problems plagued multiple 

sites, with MUSC encountering Windows-1250 encoding flagged as ASCII/Unicode and Mayo 

experiencing Unicode-related NLP failures. 

Structured assessment templates were unexpectedly exported as unstructured text blocks across 

multiple sites, including UT Southwestern's risk screening templates, UTH's nursing flow sheets, 

UK's nursing assessments, Mayo’s medication code. Pitt's Epic system created additional 

complications by automatically duplicating notes after physician signatures. These issues 

required specialized parsers for text extraction, duplicate detection, and data reconciliation, 

extending implementation timelines by 3-4 weeks. 

Broader Implementation Challenges 

Beyond data heterogeneity, there were several other implementation challenges. The sheer 

volume of unstructured clinical notes made processing all data impractical, forcing us to 

prioritize specific concepts rather than attempt comprehensive extraction of all concepts. Limited 

funding further restricted the number of NLP algorithms we could develop and evaluate. 

Implementation timelines varied significantly due to differences in site expertise, resource 

availability, and IRB approval delays, with some sites first validating on synthetic data before 

transitioning to gold-standard datasets. 

The domain-specific algorithm approach demands significant infrastructure investment. Each site 

must maintain: (1) computing resources capable of processing millions of notes (minimum 16 

cores, 64GB RAM for production), (2) secure storage for raw and NLP-derived data, (3) at least 

0.5 full-time equivalent (FTE) technical personnel with NLP expertise for customization and 

maintenance, and (4) sustained funding for updates and validation. These requirements, 

particularly specialized technical expertise and computational resources, may exclude smaller 

institutions or those with limited informatics infrastructure from participation. 
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Future Directions 

For the implementation and deployment of NLP in ENACT, we did not use a theoretical 

framework to guide the implementation process. Implementation science offers many valuable 

frameworks, such as the Exploration, Preparation, Implementation, Sustainment Framework 

(EPIS) [25,26] and the Consolidated Framework for Implementation Research (CFIR) [25]. 

These frameworks offer systematic methods to address site-specific adaptations, optimize 

workflows, and identify scalability barriers, potentially accelerating the translation of NLP 

insights into clinical practice across diverse healthcare environments. 

Limitations 

The process described in this article has several limitations that warrant consideration. First, the 

focus on specific projects, while necessary due to resource constraints, limits generalizability to 

other clinical contexts. NLP models trained and validated on specific datasets may not perform 

as effectively on different patient populations, specialties, or healthcare settings, requiring 

additional adaptation and validation efforts. Additionally, the variability in data quality, note 

types, and EHR systems across the participating sites poses challenges in ensuring consistent 

performance of the NLP algorithms. Differences in documentation practices, clinical 

terminologies, and system configurations could introduce inconsistencies that affect model 

robustness and accuracy, necessitating site-specific tuning. The reliance on local funding and 

existing funded projects for developing specific NLP tools also introduces potential biases, as the 

algorithms may be optimized for specific datasets not representative of the broader population. 

This funding-driven approach may inadvertently prioritize projects with greater institutional 

support while leaving gaps in NLP capabilities for underrepresented patient groups and clinical 

domains. 

Second, the network-wide querying function remains under development, limiting immediate 

utility for large-scale multi-site research. While some sites have joined the ENACT test network 

to refine querying capabilities, progress has been gradual due to infrastructure complexity and 

personnel bandwidth constraints. We anticipate that querying functionality will be available to 

working group sites by late 2025 and network-wide by late 2026. 
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Third, we did not systematically evaluate alternative NLP infrastructure solutions. For example, 

Apache cTAKES offers built-in stripping of protected health information and NLM 

Metathesaurus integration that might have benefited certain use cases. While the OHNLP Toolkit 

proved adequate for our approach, a comprehensive comparison of available infrastructures, 

including commercial or cloud-based solutions, might have revealed alternative solutions to 

challenges like cross-site portability or maintenance requirements. 

Generative AI and LLMs in ENACT NLP 

Recent advances in generative AI (GenAI) and large language models (LLMs) have the potential 

to address several key limitations in the ENACT NLP project. First, current limitations in 

developing generalized NLP algorithms across diverse health systems could be alleviated using 

LLMs. Unlike specialized NLP algorithms, LLMs such as GPT-4 can be fine-tuned to 

understand clinical context across various datasets without requiring domain-specific rules. This 

generalization ability could help ENACT develop more versatile NLP tools to handle multiple 

clinical tasks (e.g., phenotyping, cohort identification) across different sites without extensive 

retraining. Second, LLMs could enhance the accuracy of phenotyping efforts, particularly in 

multi-site studies, where heterogeneity in data sources makes consistent concept extraction 

difficult. Generative AI models, particularly those trained on clinical data, can significantly 

enhance this task by capturing the nuances of clinical language. LLMs can interpret complex 

medical narratives more effectively than rule-based systems and adapt to new or evolving 

medical terminologies [27]. For example, open-source LLMs (e.g., Llama2-70B-chat, Openchat-

3.5-0106) could identify mammograms that required follow-up with F1 = 1.0 (i.e., perfect 

performance in that experiment) based on text reports. Notably, mammography reports include a 

Breast Imaging-Reporting and Data System (BI-RADS) score. A mammogram (report) that 

requires follow-up is one where the interpreting radiologist assigned a BI-RADS score other than 

1 or 2. Thus, identifying mammograms that require follow-up is a relatively simple information 

extraction task [28]. Third, LLMs may reduce the time to develop NLP algorithms. LLMs offer 

the advantage of being pre-trained on diverse datasets, enabling them to incorporate time-

consuming external knowledge into knowledge engineering in traditional rule-based NLP 

systems. Fourth, LLMs could automate multisite validation and deployment. One of the key 
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bottlenecks for ENACT is the complex logistics of multisite validation of NLP tools. GenAI 

models could streamline this by providing automated validation.  

While GenAI and LLMs offer considerable potential to advance the ENACT NLP initiative, 

several significant challenges and drawbacks must be considered. First, data privacy and security 

concerns are paramount in healthcare, as LLMs typically require large amounts of data to train 

and fine-tune. This presents the risk of inadvertently exposing sensitive patient information, 

especially when models are trained across multiple sites in a distributed network like ENACT. 

Even anonymized or de-identified data may still contain subtle details that could re-identify 

individuals, posing a significant risk under regulations such as HIPAA. Additionally, the 

computational and resource costs associated with training, fine-tuning, and deploying LLMs are 

substantial, and for a large, multisite initiative like ENACT, these infrastructure costs could be 

prohibitive for sites with limited resources, leading to disparities in model performance and 

inconsistent results across the network. Another concern is fairness, as LLMs often inherit biases 

from their training data. In healthcare, biased models could disproportionately affect certain 

demographic groups, leading to incorrect or harmful clinical recommendations. This is 

particularly problematic in NLP tasks such as phenotyping or clinical decision support, where 

subtle language or data representation biases could skew interpretations. The black box nature of 

LLMs also poses challenges in clinical applications where interpretability is crucial, as clinicians 

and researchers often need to understand why a model made a particular prediction. This lack of 

explainability can lead to a lack of trust in the healthcare domain. Using LLMs raises numerous 

ethical and legal concerns, including patient consent, data ownership, and responsibility for 

errors or adverse outcomes. These issues are particularly complex in a multisite network like 

ENACT, where multiple stakeholders may be involved in data sharing, algorithm development, 

and model deployment. Moreover, LLMs sometimes generate plausible but incorrect information, 

a phenomenon known as hallucination. This could have serious consequences in clinical contexts, 

leading to misinformed decisions based on faulty data extraction, summarization, or 

interpretation of clinical narratives. While GenAI and LLMs hold promises for advancing the 

work of ENACT NLP, the challenges in their implementation, especially in areas like privacy, 

bias, and explainability, must be carefully managed. A balanced approach combining the power 

of LLMs with traditional rule-based methods and rigorous oversight may offer the best path 

forward for ENACT NLP objectives. 
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Conclusion  

The ENACT NLP Working Group has made significant strides in deploying NLP infrastructure 

across a large, federated data network, leveraging existing IT infrastructure and NLP expertise 

from several CTSA hubs. By establishing focus groups dedicated to specific disease conditions 

and utilizing the OHNLP Toolkit, the working group was able to target specialized NLP 

algorithms for distinct clinical tasks. This pragmatic approach has enabled ENACT to deploy 

NLP solutions more efficiently while addressing each site's unique data and resource challenges. 

Furthermore, the collaborative framework of partnerships within the OHNLP development team 

has been crucial in facilitating rapid implementation and troubleshooting.  

The project has faced challenges in processing vast amounts of clinical notes and developing 

NLP algorithms that perform consistently across all sites. The working group opted for focused 

NLP deployments and clearly defined cohort specifications to address these obstacles, tailoring 

algorithms to specific note types and clinical contexts. As the project evolves, creating and 

refining these NLP tools while emphasizing collaboration and resource sharing will be critical in 

broadening the scope and impact of the ENACT NLP initiative across diverse healthcare 

environments. 

Data Availability 

The patient-level electronic health record data cannot be shared due to privacy and legal 

concerns. 

Code Availability 

The software utilized in this study is primarily open source. The OHNLP Toolkit is available at 

the OHNLP website (https://ohnlp.org/). The ENACT ontology can be accessed at ENACT 

Network Resources (https://www.enact-network.us/resources/technical). Documentation for the 

ENACT CDM is available at the i2b2 Wiki 

(https://community.i2b2.org/wiki/display/BUN/i2b2+Common+Data+Model+Documentation). 
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