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QUOTIENT SUPERMANIFOLDS

CLAUDIO BARTOCCI, UGO BRUZZO, DANIEL HERNANDEZ RUIPEREZ

AND VLADIMIR PESTOV

A necessary and sufficient condition for the existence of a supermanifold structure
on a quotient defined by an equivalence relation is established. Furthermore, we
show that an equivalence relation it on a Berezin-Leites-Kostant supermanifold X
determines a quotient supermanifold X/R if and only if the restriction Ro of R to the
underlying smooth manifold Xo of X determines a quotient smooth manifold XQ/RQ-

1. INTRODUCTION

The necessity of taking quotients of supermanifolds arises in a great variety of cases;
just to mention a few examples, we recall the notion of supergrassmannian, the definition
of the Teichmiiller space of super Riemann surfaces, or the procedure of super Poisson
reduction. These constructions play a crucial role in superstring theory as well as in
supersymmetric field theories.

The first aim of this paper is to prove a necessary and sufficient condition ensuring
that an equivalence relation in the category of supermanifolds gives rise to a quotient
supermanifold; analogous results, in the setting of Berezin-Leites-Kostant (BLK) super-
manifolds, were already stated in [6].

Secondly and rather surprisingly at that, it turns out that for Berezin-Leites-Kostant
supermanifolds any obstacles to the existence of a quotient supermanifold can exist only in
the even sector and are therefore purely topological. We demonstrate that an equivalence
relation Ron a. BLK supermanifold X determines a quotient BLK supermanifold X/R if
and only if the restriction of R to the underlying manifold Xo of X determines a quotient
smooth manifold.

The definition of supermanifold we adopt here encompasses both the BLK super-
manifold theory [5] and, in a certain sense, the DeWitt-Rogers approach. The basic
idea is to introduce an axiomatics yielding a category of supermanifolds where the usual
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geometric constructions (products, bundles, characteristic classes, . . .) work reasonably
well; for a more detailed presentation the reader is referred to [1, 2, 3].

Let B — BQ © B\ be a Z2-graded-commutative associative unital K-algebra (or C-
algebra); in other words, for a,/3 G Z2, we have

Ba B0 C Ba+0, ab = (-l)a0ba if a e Ba, b £ Bp .

We denote by Bm>n the direct sum B™ © Bf. For the sake of simplicity we shall assume
that B is finite-dimensional and that it is generated, as a unital algebra, by the odd
part B\. (Equivalently: B is a graded factor-algebra of a finite-dimensional Grassmann
algebra, for example, the exterior algebra A # i ) The latter assumption easily implies
that every element 1 6 B i s uniquely decomposed as the sum of a (real or complex)
number P(x) and a nilpotent a(x).

By superspace over B we mean a triple (X, A, ev), where X is a paracompact topo-
logical space, A is a sheaf of Z2-graded-commutative B-algebras, and ev: A -» Cx is a
morphism of sheaves of graded B-algebras (here Cx is the sheaf of 5-valued continu-
ous functions on X). We shall sometimes write ip for ev(<p). A morphism of superspaces
(/> / " ) : [X, A, evx J —> \Y, B, ev y ) is a pair consisting of a continuous map / : X -»• Y and
a morphism of sheaves of graded 5-algebras / ' : B —> f*A such that ev* o /" = /* o evY.

By the morphism ev: A —t Cx one can evaluate germs of superfunctions — that is,
sections of A — at a point p € X. In this way, we can define the graded ideal £p of the
stalk Ap formed by the germs of superfunctions vanishing at p:

£ p = {<p € Ap I (pip) = 0} .

A supermanifold of dimension (m, n) is by definition a superspace (X, A, ev) satis-
fying the following four Axioms. (The supermanifolds we characterise here were called
i?°°-supermanifolds in reference [3].)

AXIOM 1. The graded .4-dual of the sheaf of derivations, Ver'A, is a locally free graded
.4-module of rank (m, n). Every point p € X has an open neighbourhood U with sections
x\...,xm e A(U)0, y\...,yn e A(U)l such that {dx\...,dxm,dy1,..., dyn) is a

graded basis of Ver*A(U) over A(U).

A X I O M 2. Given a coordinate chart (U, xl,..., xm, y1,..., yn), the assignment

defines a homeomorphism of U onto an open subset in Bm'n.

A X I O M 3 For every p e l the ideal Sip is finitely generated.

In order to state the last remaining Axiom we need to topologise the algebras of

sections A(U). Let V(A) denote the sheaf of differential operators over A, that is, the
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graded ,4-module generated multiplicatively by Ver A over A. We define the family of
prenorms

P L , K M = max L(<p)(p) ,
P€K II IIB

with L € V\A\u\ K C U compact, and || ||B a Banach norm on B. In this way we
induce in A{U) the structure of a locally convex graded B-algebra.

AXIOM 4. For every open subset U C X, the topological algebra A(U) is complete
Hausdorff.

We notice that Axiom 2 implies that X is locally Euclidean, while by Axiom 3 one
can prove — via a graded version of Nakayama's lemma — the existence of local Taylor
expansions.

One can prove that any (TO, n) dimensional supermanifold is locally isomorphic to
the standard supermanifold (Bm'",Gm>n) [3].

Quite obviously, the above definition of supermanifold includes the usual notion of
smooth or complex analytic manifold; in this case, the graded algebra B reduces to R
or C and the sheaf A is the sheaf of germs of the appropriate (smooth or holomorphic)
class of functions on X. When B is R or C, but A is a genuine sheaf of graded algebras
(that is A\ ^ 0), the notion of BLK supermanifold is recovered. Finally, in the case of
a Grassmann algebra B over R or C, the four Axioms we have stated are equivalent to
the definition of G-supermanifold; a detailed treatment of this equivalence, together with
an analysis of the axiomatics, can be found in [1]. The case of an infinite-dimensional
ground algebra B is examined in [3].

In the next Section we collect some preliminary results concerning sub-supermani-
folds and morphisms of supermanifolds, while in Section 3 we shall prove our main the-
orem. In Section 4 we study quotients on BLK supermanifolds.

2. SUB-SUPERMANIFOLDS, TRANSVERSALITY, AND FIBRE PRODUCT

We introduce the notions of immersion, submersion in the category of supermanifolds
as straightforward generalisations of the corresponding properties of smooth manifolds.

DEFINITION 2.1: A morphism of supermanifolds / : (Y, B) -*• (X, A) is

(1) a closed immersion if / : Y —» X is a closed topological embedding, and

/": A -» /»B is an epimorphism;

(2) an open immersion if / : Y —> X is an open topological embedding, and

B ~ pA.
In local coordinates any closed immersion reduces to an immersion of open sets of

model superspaces.

PROPOSITION 2 . 2 . Let f:(Y,B) -» {X,A) be a closed immersion, with
dim (Y, B) = (m, n) and dim (X, B) — (r, s). For each y eY there are a neighbourhood U
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ofy and a neighbourhood V of f(y), together with isomorphisms (u,B\u) ^ (U,Gm,n)

and (V,A\v) ^ (v, Gr,s), such that the induced morphism (U,Gm,n) -* (v,Gr^ is the

natural immersion.

PROOF: After fixing a coordinate system (x 1 , . . . , xT, £l,..., £*) in a neighbourhood
of f(y), one must show that the image in T*(Y, B) of the differentials dx, d£ contains a
basis. This is a direct consequence of simple algebraic facts about free graded modules. D

Notice that in fact the property formulated in the above Proposition 2.2 is not
characteristic of closed immersions (as simple examples at the level of smooth manifolds
show), but rather of arbitrary sub-supermanifolds, see Definition 2.5 below.

DEFINITION 2.3: A morphism of supermanifolds / : (Y,B) —• (X, A) is a submer-
sion if for all y € Y the morphism of graded 5-modules fj{y): T*s{y) (X, A) -> T*{Y,B) is
injective.

The following Proposition is dual to Proposition 2.2, and is proved analogously.

PROPOSITION 2 . 4 . Let f:(Y,B) ->• (X,A) be a supermanifold morphism,
with dim (Y, B) = (m, n) and dim (X, A) ={r,s). Foreachye Y let (x1 , . . . ,xr

:^,... ,£s)
be local coordinates for (X, A) in a neighbourhood of f(y). The morphism f is a sub-
mersion if and only if the image of the coordinates (x 1 , . . . , xr, £ ' , . . . , £s) via /" can be
completed to a coordinate system in a neighbourhood ofy, for all y.

An immediate corollary is the fact that a morphism / : (Y, B) -> (X, A) is a submer-
sion if and only if it admits local sections, that is, if and only if for each point x € X there
are a neighbourhood U and a morphism s: \U, A\u) —¥ (Y,B) such that / o s = id^^, \.

DEFINITION 2.5: A supermanifold (Y, B) is a sub-supermanifold of (X, A) if there
is a morphism / : (Y, B) —> (X, A) which is the composition of a closed immersion with
an open immersion.

If / : (Y, B) -> (X, A) is a morphism of supermanifolds, and (W, C) is a sub-super-
manifold of (X, A), the inverse image of {W,C) via / is defined as the supermanifold
(f~1(W), f*i,C\. Here i is the imbedding i: (W,C) -4 (X, A), and /* is the inverse image
of sheaves of rings, that is

f*KC = f-li£®s-iAB.

The proof of the following Lemma is straightforward, so that we omit it.

LEMMA 2 . 6 . Let (X, A) be a supermanifold, Y C X a closed subset, B a quotient

of A supported in Y; that is, there is an exact sequence

0 — > X — > A —>B—>0

with supp B C Y. Then the pair (Y, B) defines a closed sub-supermanifold of (X, A) if
and only if I is locally generated by a subset of a coordinate system of (X, A).
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We notice that the evaluation morphism evy: B -4 Cy° <8> B is well-defined because
evx(Z) C XY <8> B, where TY is the ideal of Cy° defined by Y as a smooth submanifold of
X.

By Lemma 2.6 one readily proves the following basic result.

PROPOSITION 2 . 7 . Iff:(Y,B) -» {X,A) is a submersion, and {W,C) is a sub-
supermanifold of (X, A), the inverse image f~l{W, C) is a sub-supermanifold of (Y, B).

We introduce now the notion of transversality in the category of supermanifolds.

DEFINITION 2.8: Two supermanifold morphisms / : (Y,B) -* (X, A) and g: {W,C)

—> (X, A) are said to be transversal if for any points y € Y and w S W such that
f(y) = 9H = x one has f,Tv(Y, B) + g.Tw{W,C) = TX{X, A).

Let / : (Y, B) —> (X, A) be a supermanifold morphism, and i: (W, C) —¥ (X, A) a sub-
supermanifold of (X, A); if / and i are transversal (or in other words, if / is transversal
to (W,C)), then J~X{W,C) is a sub-supermanifold of (Y,B).

One can define the fibre product of two supermanifold morphisms in categorial terms.
Let us fix two supermanifold morphisms f:(Y,B) -* {X,A) and g:(W,C) —> {X,A).
Their fibre product — provided it exists — is the unique triple ((P,£),qi,q2), where (P,S)
is a supermanifold, and qi.{P,£) —> (Y,B) and q2:(P,£) —> (W,C) are supermanifold
morphisms, enjoying the following universal property: for any pair of morphisms

fa: (5, T) -> (K, B) and <£2: (S, T) -> (W, C)

such that f o (pl — g o (f>2, there is a unique morphism

such that q^ocj) — 4>i- The supermanifold (P,£) is usually denoted by (Y, B) X(x,A)

Transversal morphisms enjoy the fundamental property of admitting fibre products,
as it can be easily checked.

PROPOSITION 2 . 9 . Let f: {Y, B) -*• (X, A) and g: (W, C) -»• (X, A) be transver-
sal morphisms. Then they admit a fibre product, which is isomorphic, as a supermanifold,
to the sub-supermanifold of(Y, B) x (W, C) defined by the sheaf of ideals (f x g^l^, where
( A , I A ) is the diagonal of(X,A).

Let us notice the quite obvious fact that the fibre product of a submersion with
any morphism always exists, since a submersive morphism is transversal to any other
morphism.

3. EQUIVALENCE RELATIONS AND QUOTIENT SUPERMANIFOLDS

Following the usual procedure in supermanifold theory, we borrow the definition
of equivalence relation in the category of supermanifolds from algebraic geometry [4]
(see also [6]).
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Let p: (R, C) —»• (X, A) x (X, A) be a sub-supermanifold of the cartesian product
(X, A) x (X, A), and set Wi = TTJ op, where the TTJ'S are the canonical projections onto
the factors of the cartesian product.

DEFINITION 3.1: We say that (R, C) is an equivalence relation if the following
conditions hold:

(i) there exists a supermanifold morphism c: (X, A) -> (R, C) such that poc =

S, where 8 is the diagonal immersion of (X, A).

(ii) There exists a morphism a: {R,C) —> (R,C) that swaps tui and W2, that
is, w\ o a — OT2 and •&% o a =W\.

(iii) Let (R,C) X(X,A) (R,C) be the fibre product of the morphisms U72 and
W\, which exists by condition (i). Let (j>\, fa be the projections of
(R, C) x (x,A) {R-i C) onto the first and the second factor, respectively. There
is a morphism <p0: (R,C) x(x,A) (R,C) -* (R,C) such that

(3.1) TDI o <p0 = w\ o cj>i a n d V&2 ° <t>o — ^2 ° 02 •

Condition (i) amounts to the reflexivity property, in that it states that the relation
contains the diagonal of (X, A). Conditions (ii) and (iii) express the symmetry and the
transitivity properties. It is quite evident that an equivalence relation (R,C) in (X,A)
induces an equivalence relation defined on the underlying differentiable manifold X.

In Section 4 we shall need the following result, whose proof is a simple check of the
commutativity of some diagrams.

LEMMA 3 . 2 . Let X be a sub-supermanifold of a supermanifold Y, and let R be
an equivalence relation on Y. Then the restriction of R to X (defined as the inverse
image of R under the direct product morphism i x i, where v.X —> Y is the immersion)
is an equivalence relation on X.

Whenever (R,C) is a closed sub-supermanifold of (^,.4) x (X, A), the previous
definition has some direct consequences about the ideal sheaf J of (R, C) in (X, A) x
(X, A). Let 1: (X,A) x (X,A) -> (X,A) x (X,A) be the interchange of factors; then,
the symmetry property implies the inclusion

(3.2) t(J)QJ.

The'interchange of factors 7: (R,C) X(x,A) {R,Q -> (-R.C) X-(X,A) (R,C) satisfies the
conditions

(3.3) 0i o 7 = a o <j>2, 02° 7 = CTQ01 •

P R O P O S I T I O N 3 . 3 . lff<s>i-i<g>g€ J, g ® i - i ® / i e J, then f<s>i-i®h e J.

Moreover, if f <g> 1 - 1 O g G J, then / ® l - l ® / e j .
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P R O O F : Notice first tha t the condition f<8>l-l<8>g€jis equivalent to zo\{f) =

w\(g). So we have VJ\(J) = vj\{g), m\(g) = zo\(h) and must prove that &{{}) = w2{h).

Since <j>\ is injective, it is enough to show that 0ITO$(/) = (j>\w\{h). Now, taking into
account the relations (3.1) and (3.3), together with the symmetry property and the
relation w2 ° <j>\ = vox o (j>2 deduced from the definition of fibred product, we obtain

The second claim can be now readily proved. D

DEFINITION 3.4: Let p:(R,C) -* (X,A) x (X,A) be an equivalence relation. A

supermanifold morphism q: (X, A) -t (Y, B) is said to be a quotient of (X, A) by p if

(i) q is a submersion

(ii) the morphism p induces an isomorphism (R, C) ^ (X, A) x (Y,B) (X, A) as
sub-supermanifolds of (X, A) x (X, A).

The significance of the requirement (ii) is easily understood by recalling that in the
ordinary set-theoretic notion of equivalence relation R in a set X, two points have the
same image in the fibre product X XX/R X if and only if they are R-related.

The very definition of a quotient implies its uniqueness.

PROPOSITION 3 . 5 . Two quotients q: (X,A) -> (Y,B) and q'\ (X,A) ->• (Y,B)
of the same equivalence relation are isomorphic, in the sense that there is an isomorphism
of supermanifolds f: (Y, B) ^ (Y1, B') such that q' = f o q.

EXAMPLE 3.6 As an example of equivalence relation admitting a quotient we consider the
generalisation of the equivalence relation in Mm according to which two points are related
if their first r coordinates coincide. The quotient manifold in this case is obviously Rm~r.
We define an equivalence relation (R, C) in the model (m, n) dimensional supermanifold
(Bm-n,Qm,n) by letting

R = {(pi,P2)€Bm'nxBm'n = B2m*n such that

while C is the quotient of Qm<n <§> Qm<n ~ </2m,2n by the ideal generated by

Here TTJ, 7r2 are the projections onto the factors of (Bm'n,Qm<n) x (.Bm'",£„,,„). It is not
difficult to check that this indeed defines an equivalence relation which admits a quotient
described by the projection q: (Bm'n,^m,n) -> {Bm~r-n~*,Gm-r,n-,), which consists in
taking the last m — r even and the last n — s odd coordinates (according to [1, Lemma
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IV. 1.1] a supermanifold morphism is fully described by its action on coordinate systems).

We now prove our first main theorem. The proof follows the same lines as in [6].

THEOREM 3 . 6 . An equivalence relation p: (R, C) -»• {X, A) x (X, A) admits a
quotient supermanifold q: (X, A) —> (Y, B) if and only if the following conditions are
fulfilled:

(i) (R, C) is a closed sub-supermanifold of (X, A) x (X, A);

(ii) the canonical projections wi, vo2: (R, C) -> (X, A) are submersive.

P R O O F :

1. NECESSITY, (i) Let (A, I ) be the diagonal in (R, C) x (R, C). We have an identification

Since q is submersive, (R, C) is closed in (X, A) x (X, A) by Proposition 2.4.
(ii) Again since q is submersive, any point in Y has an open neighbourhood which supports
a section a of q. Then the morphism (id, a o q) is a local section of w\\ (R, C) -> (X, A).
The same holds for w2.

2. SUFFICIENCY. We prove the claim in two steps.

Step 1. We show that we may choose local coordinates (x1,... ,xm,^1,... ,£n)
on open sets U in X which allow one to make the identification

Rn{UxU) = {(pi,p2) E X x X such that

while the structure sheaf C may be identified with the restriction to R of the quotient of
the structure sheaf (A ® A) by the ideal generated by the sections

Here r and s are suitable natural numbers, r ^ m, s ^ n.

Let us prove this claim. Let J be the ideal sheaf of (R,C) in (X, A) x (X, A).
By condition (i) there exist coordinates (u1,. . . ,u2"1,*;1,. . . ,v2n) on an open set U x
U such that J(U x U) = {u1,... ,uT,v\ ... ,v°), where dim{R,C) - ( 2 m - r , 2 n - s ) .
Denote by (Ru,Cu) the restriction of (R,C) to U x U; then the restricted morphism
&i,u'- {RuXu) —• (U,A) is submersive, so that for every point p e U the fibre rof,y(p) is

a sub-supermanifold of (RUtCu)- Moreover, taking U as small as needed, we can assume
that there is a coordinate system ( j / 1 , . . . , ym, B1,..., 9n) centred in p such that the fibre
vj\}j(p) takes the form (p,B) x (S,C), where {S,C) is the sub-supermanifold of (U, A)
g e n e r a t e d b y t h e i d e a l ( y 1 , . . . , y r , 6 1 , . . . , 6 s ) .
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One now proves that, taking again U as small as needed, the functions

form a coordinate system on a U x U. Therefore, if (V, T) is the closed sub-supermanifold
of ([/, A) x (U, A) defined by the ideal

1 = (u1,..., ur, wl(yr+l),..., wi(ym), v\...,vs,

7Ti induces an isomorphism /?: (V, T) °^ (U, A), so that (V,T) can be regarded as the
graph of the morphism ip = (3~l o -K2: (U,A) ->• (U,A). We set xi = ̂ {y') and £Q =

By construction, the ideal I contains J; since (V, T) is the graph of ip we have
1 = ker (j" o (id x^")), and therefore

1= (x' '(8il- 1 0 ^ , ^ 0 1 -1®6»Q), i = l , . . . ,m , ot = l , . . . , n .

Then ,7(1/ x f/) and I define closed sub-supermanifolds of (U, A) x (t/, A) of the same
dimension. Since one of these contains the other, they coincide. By Proposition 3.3,

J(UxU) = (xi<8>l-l®xi,£a®l-l®Za)-

We have thus proved Step 1.

Step 2. We construct explicitly a supermanifold (Y, B), which will then be shown
to be the required quotient. We notice that the current hypotheses imply the validity
of the corresponding assumptions for the equivalence relation R in X. The topological
manifold Y is therefore defined as the quotient X/R. Now, given an open set U C Y, we
have morphisms of graded 5-algebras

Since ^I1{Q~1{U)\ = ^2l\Q~l^)\ w e m a v define a sheaf B on Y by setting

B = ker(jr{-7rJ).

If we use the local coordinates introduced in Step 1, this reduces (locally) to Example 3.
This proves that (Y, B) is a supermanifold and that q: (X, A) —)• (Y, B) is the quotient of
(X,A)byp. •

4. QUOTIENTS OF BEREZIN-LEITES-KOSTANT SUPERMANIFOLDS

It was observed in [6] that every equivalence relation R on a Berezin-Leites-Kostant
supermanifold determines in a unique way a smooth equivalence relation RQ on the un-
derlying smooth manifold, Xo: namely, RQ is just the underlying smooth manifold of R.
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If R determines a quotient supermanifold of X, say Y, then RQ determines a quotient
smooth manifold of Xo, which is merely YQ.

It turns out that the converse is also true, and thus for a Berezin-Leites-Kostant
supermanifold all obstructions to the existence of a quotient supermanifold are purely
topological and dwell in the even sector. (See Theorem 4.4.)

To establish the theorem, we shall first obtain a result that is of interest on its own
(Theorem 4.3): every equivalence relation on a Berezin-Leites-Kostant supermanifold is
submersive in the odd sector in the following sense.

DEFINITION 4.1: Say that a morphism of supermanifolds f:(Y,B) ->• (X,A) is
submersive in the even (resptively odd) sector if for all y € Y the restriction of the
graded B-module morphism fj{yyT;{y){X,A) ->• T^(Y,B) to (T'f{y){X,A))., i = 0 or 1
respectively, is injective.

Clearly, a morphism / : (Y, B) —¥ (X, A) between two supermanifolds is submersive
if and only if it is submersive both in the even and in the odd sector.

LEMMA 4 . 2 . Let f:(Y,B) -» (X,A) be a morphism between BLK supermani-
folds. Then f is submersive in the even sector if and only if the underlying morphism of
the reduced superspaces {underlying smooth manifolds), /o: Xo —> Yo, is submersive.

P R O O F : Indeed, it is well known and easily proved that the even sector of the graded
tangent space to a BLK supermanifold at a point x € X is canonically isomorphic to the
tangent space to the underlying manifold Xo at a;. Consequently, the similar statement
is true of cotangent spaces. D

THEOREM 4 . 3 . Let p:R -t X x X be an equivalence relation on a Berezin-
Leites-Kostant supermanifold X. Then each projection Wi,n?2'- {R>C) —* {X, A) is sub-
mersive in the odd sector.

P R O O F : Assume the contrary. This means that for some x, y € X the restriction of
the graded vector space morphism (zoty :T*(X,A) -*• T£xy)(R,C) to (TI*(X,>1))1 is not
an injection. Choose a local coordinate system x\,... ,xm,£i,... ,£„ at x on X so that

(^(dei) - o.
Let Z be a supermanifold of dimension (0,1) having {x, y} as the underlying topo-

logical space. Fix an odd generator for each stalk of Z, and denote such a generator,
for x and y, respectively, by £ and £. Now define a morphism i: Z -> X as follows: the
underlying map to is the embedding {x, y} C X, and the dual sheaf morphism i" has the
property that 4 ( 6 ) = £> 4 t e ) = 0 for t > 1, while Ly is just any graded algebra epimor-
phism onto A (1)- (Such an epimorphism exists because the odd sector of X is, by the
very assumption of non-submersivity, nontrivial.) The morphism i: Z —¥ X is a (closed)
immersion of supermanifolds, and by Lemma 3.2, R induces an equivalence relation, R,
on Z. Notice that R is not submersive in the odd sector: indeed, (roi|^J (d£) = 0.
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The dimension of R can neither exceed (0,2) = dim (Z x Z) nor be (0,0) because
R contains the (0, l)-dimensional diagonal of Z. But dim/? ^ (0,2) either: since R is a
sub-supermanifold of Z x Z, the graded cotangent modules at each point of R are spanned
by m\(d£), i — 1,2, yet at (x,y) one has w\(d4) — 0. We conclude that dimi? = (0,1)
and (ws

2) « ) ^ 0.

This enables us to describe the equivalence relation R on Z. We already know that
the underlying set of R coincides with Z x Z = {(x, x), (x, y), (y, x), (y, y)}. The algebra
of superfunctions over each of the four open singletons is isomorphic to the Grassmann
algebra A (1) °f rank one, and we shall fix a generator for each copy of such an algebra,
denoted respectively by r)(XiX),T](Xty)tT](ytX-), and J?(yi!/). In what follows we shall sometimes
suppress the indices and denote each fixed generator simply by 77, since it never leads to
a confusion. The underlying map of the supermanifold morphism p:R-+ZxZis the
identity, Idzxz- The dual sheaf morphism p' is fully described by the following:

= 0,

Since p must be reflexive and symmetric, the above description is unique up to a renor-
malisation of the selected odd generator in each of the four participating Grassmann
algebras.

This leads us to an explicit form for the projections Wii R: Z, i — 1,2:

Let us now compute the fibre product .R x^ R of the morphisms TX>2,VOI'-R —> Z-
The underlying topological space of it is the topological fibre product of the two standard
projections Z xZ -* Z, and as such, it can be identified with Z x Z x Z. The underlying
mappings to the projections <f>i, fa of the fibre product R Xz R onto the first and the
second factor respectively are of the form <£i|0 = ir\ X ir2, 02,o = ^2 x ^3, where •ni: Z x
Z x Z —^ Z, i — 1,2,3 are the standard projections onto the i-th factor.

The rule w2 o <j>i = TX>\ O <f>2 from the definition of the fibre product is equivalent to
the following collection of constraints upon the dual sheaf morphisms <f>\,i = \,2:
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M,

One way to have those satisfied is to assume that as a supermanifold, R Xz R has
dimension (0,2) and the morphisms fc are defined as follows, where 6\ and #2 (or, in full,
01,(1,1,1) et cetera) stand for arbitrary but fixed odd generators of the Grassmann algebras
of superfunctions over each singleton (a,b,c) 6 Z x Z x Z, a,b,c € Z, isomorphic to

A (2):

It is easy to see that this choice of the structure sheaf on Rxz R and the morphisms <f>i is
in fact 'universal,' that is, the triple [R Xz R,(j>\,4>2j satisfies the universality condition
from our definition of the fibre product of supermanifolds with q{ = <&, i = 1,2.

The transitivity of R implies the existence of a morphism <j>0: R x z R-* R such that

(4.1) vj\ o <pQ = tJ7i o fa a n d VJ<I o <j)0 = H72 o fa •

The underlying set-theoretic map of <j>0 is TTI X TT3: Z X Z X Z -* Z x Z. Therefore,
at the point (y,x,y) € Z x Z x Z one must have:

and

(4-3)
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The equation (4.2) implies (<f>o)ly^y){v) = Oi, and the equation (4.3) yields modulo this

observation that 6\ — (<t>2)[yiXty){v) = #2, a contradiction. D

THEOREM 4 . 4 . Let X be a Berezin-Leites-Kostant supermanifold (BLK super-
manifold). An equivalence relation p: (R,C) -¥ (X, A) x (X, A) on X admits a quotient
supermanifold if and only if the underlying equivalence relation RQ on Xo admits a quo-
tient smooth manifold.

PROOF: The easier implication => was observed in [6]. We shall therefore con-
centrate on <=. Assume that RQ admits a quotient smooth manifold. As is known in
differential topology (and follows from our Theorem 3.6 in the case where the ground
algebra B = E and the dimension is purely even), the embedding RQ •-* Xo x Xo is
then a closed immersion, and the canonical projections VD^VD^.Ra —> Xo are smooth
submersions.

Since by the definition of an equivalence relation p is an immersion, it is then a
composition of a closed immersion with an open immersion, and therefore fp is an epi-
morphism. Since in addition p is a closed homeomorphic embedding of R into XQ X XQ,
one concludes that p is a closed immersion of supermanifolds and thus R is a closed
sub-supermanifold of X x X and the condition (i) from Theorem 3.6 holds.

To establish the condition (ii) about the canonical projections w\,W2~- {R,C) —>
(X, A) being submersive it is enough now to apply Theorem 4.3 and Lemma 4.2. D

5. FINAL DISCUSSION

The underlying topological space of a supermanifold X supports a natural structure
of a smooth manifold of dimension m dim So + ndim Si , which we shall denote by Xo.
(Recall that the ground algebra, B, was assumed finite dimensional as a real vector
space.) The correspondence X y-t Xo is functorial. The tangent space to XQ at a point
x € XQ is canonically isomorphic (as a real vector space) to the even sector (TXX)O, of
the tangent 5-module to the supermanifold X at x, and a similar statement holds for
the cotangent spaces and 5-modules. Any equivalence relation R on X determines an
equivalence relation RQ on Xo, and it is not difficult to check that the morphisms •&{ are
immersive in the even sector if and only if the projections from RQ to Xo are immersions.

It is therefore most natural to state the following conjecture: an equivalence relation
p: (R, C) -> (X, A) x (X, A) on a supermanifold X admits a quotient supermanifold if and
only if the underlying equivalence relation RQ on Xo admits a quotient smooth manifold.

Unfortunately, the proof of Theorem 4.3 does not work in this more general setting
because in that case simple examples show that one cannot in general choose a coordinate
system X\,...,xm,£],...,£n at a point x on X so as to satisfy (w\\ (d£i) = 0, as we did
in the first paragraph of the proof. It is, however, easy to establish the following partial
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result, backing our conjecture: every equivalence relation on a supermanifold of purely

odd dimension determines a quotient supermanifold.
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