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COVERING RANDOM POINTS IN A UNIT DISK
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Abstract

Let D be the punctured unit disk. It is easy to see that no pair x, y in D can cover D in
the sense that D cannot be contained in the union of the unit disks centred at x and y.
With this fact in mind, let Vn = {X1, X2, . . . , Xn}, where X1, X2, . . . are random points
sampled independently from a uniform distribution on D. We prove that, with asymptotic
probability 1, there exist two points in Vn that cover all of Vn.
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1. Introduction

For any r > 0 and any p ∈ R2, let Dr(p) be the open (Euclidean) disk in R2 that is centered
at p and has radius r . Let D be the punctured unit disk that is centered at the origin o, i.e.
D = D1(o) − {o}. If S and P are subsets of R2, we say that ‘P covers S’ if S ⊆ ⋃

p∈P D1(p).
(This use of the word ‘cover’comes from combinatorics and is obviously related but not identical
to the usual topological meaning.)

Now let X1, X2, . . . be random points, chosen independently from a uniform distribution
on a punctured unit disk D, and let Vn = {X1, X2, . . . , Xn}. We prove that, with asymptotic
probability 1, Vn is covered by one of its two-member subsets. This result is surprising in light
of the following three simple geometric observations. In short, the observations below state
that three points of D are needed to cover D.

Observation 1. For x ∈ D, we have D � D1(x).

The second observation appears in [8].

Observation 2. If x, y ∈ D then D � D1(x) ∪ D1(y).

For k = 0, 1, 2, let pk = 1
2 (cos(2πk/3), sin(2πk/3)). Choose a positive number ε <

1 − √
3/2, and let ρ = 1 − ε. Then we have the following observation.

Observation 3. We have D ⊆ Dρ(p1) ∪ Dρ(p2) ∪ Dρ(p3).

Note that there is a bit of ‘slack’ in Observation 3: we have used disks of radius strictly less
than 1.
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The points X1, X2, . . . ‘fill out’all of D, i.e. with probability 1. The infinite set {X1, X2, . . . }
is dense in D. So, with probability 1, o, the center of the disk, is a limit point of the set
{X1, X2, . . . }. Since D ⊆ D1(o), it is reasonable to ask whether, for large n, Vn ⊆ D1(Xi)

for some 1 ≤ i ≤ n. In Section 2 we prove that, with high probability, the answer is
no: one point does not suffice. On the other hand, it follows easily from Observation 3
that, with asymptotic probability 1, three points from Vn will suffice to cover Vn. Briefly,
with asymptotic probability 1, the small disks Dε(pk) each contain at least one random
point Xik . But then D1(Xik ) contains the entire sector (2k − 1)π/3 ≤ θ ≤ (2k + 1)π/3,
and D ⊆ D1(Xi0) ∪ D1(Xi1) ∪ D1(Xi2). (See [5] for more results like this.)

Finally, it follows from Observation 2 that, for all i and j , D � D1(Xi) ∪ D1(Xj ). Neverthe-
less, we prove that only two points of Vn are needed to cover Vn; with asymptotic probability 1,
there are two points Xi and Xj in Vn such that Vn ⊆ D1(Xi) ∪ D1(Xj ).

2. Coverage by one point

In this section we prove a general coverage result which holds for any dimension m ≥ 2.
Let dm(·, ·) denote the Euclidean distance in Rm. Suppose that X1, X2, X3, . . . is an infinite
sequence of random points chosen independently from a uniform distribution in a unit ball in Rm.
We say that x ∈ Rm covers Vn = {X1, X2, . . . , Xn} if dm(x, Xi) < 1 for each 1 ≤ i ≤ n. Call
Xn a dominator if and only if Xn covers Vn.

Theorem 1. With asymptotic probability 1, no point in Vn will cover all of Vn.

Proof. For positive real numbers r and positive integers m ≥ 2, let µm(r) denote the volume
of a ball of radius r in Rm, i.e.

µm(r) = rmµm(1) = πm/2rm

�(m/2 + 1)
.

Let L(r) denote the volume of the intersection of two unit balls in Rm whose centers are a dis-
tance r apart. If the distance from the point Xn to the origin is r then the conditional probability
that the ith point Xi is within distance 1 of Xn is L(r)/µm(1). The distance between the origin
and the random point Xn is a random variable with density f (r) = µ′

m(r)/µm(1) = mrm−1.
Hence,

Pr(Xn is a dominator) =
∫ 1

0
f (r)

(
L(r)

µm(1)

)n−1

dr.

We split the integral into two. Let

ξ = 4(log n)µm(1)

(n − 1)µm−1(1)
.

Then
Pr(Xn is a dominator) = I1 + I2,

where

I1 = m

∫ ξ

0
rm−1

(
L(r)

µm(1)

)n−1

dr

and

I2 = m

∫ 1

ξ

rm−1
(

L(r)

µm(1)

)n−1

dr.
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For the first piece, we use the trivial estimate L(r)/µm(1) ≤ 1: for m ≥ 2,

I1 ≤ m

∫ ξ

0
rm−1 dr = ξm = O

(
log2 n

n2

)
. (1)

To estimate I2, we use the following well-known formula for L(r):

L(r) = 2
∫ 1

r/2
µm−1(

√
1 − x2) dx = 2µm−1(1)

∫ 1

r/2
(1 − x2)(m−1)/2 dx. (2)

It is intuitively obvious that L(r) is decreasing, and this is easily confirmed by differentiating
the right-hand side of (2) to obtain

L′(r) = −µm−1(1)

(
1 − r2

4

)(m−1)/2

≤ 0 for 0 ≤ r ≤ 1. (3)

Since L(r) ≤ L(ξ) for all r ≥ ξ , and since f is a density function, we have

I2 ≤
(

L(ξ)

µm(1)

)n−1 ∫ 1

ξ

f (r) dr ≤
(

L(ξ)

µm(1)

)n−1

. (4)

To estimate the right-hand side of (4), note that from (3) it follows that there exists some
0 < cξ < ξ such that

L(ξ) = L(0) + L′(cξ )ξ = µm(1) − µm−1(1)

(
1 − c2

ξ

4

)(m−1)/2

ξ. (5)

Since 0 < cξ < ξ = o(1), we have (1 − c2
ξ /4)(m−1)/2 > 1

2 for all sufficiently large n. So it
follows from (5) that

L(ξ) ≤ µm(1) − µm−1(1)ξ

2
(6)

for all sufficiently large n. Substituting (6) into the right-hand side of (4), we obtain

I2 ≤
(

1 − ξµm−1(1)

2µm(1)

)n−1

= O

(
1

n2

)
. (7)

Combining our estimates (1) and (7) for I1 and I2, respectively, we conclude that, for some
positive constant c and all sufficiently large n,

Pr(Xn is a dominator) <
c log2 n

n2 .

Finally, the Xis are identically distributed, so, for 1 ≤ i < n, the probability that Xi covers
Vn is equal to the probability that Xn is a dominator. Therefore, by Boole’s inequality, the
probability that one of the Xis in Vn covers all of Vn is at most c log2 n/n.

Remark 1. A stronger statement than Theorem 1 is

Pr({for infinitely many n, Vn is covered by one of it members}) = 0.
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We thank a thorough referee for the following argument. Define the events

En = {Xn is a dominator} and Fn = {dm(Xn, Xk) > 1 for some k > n}.

Also define E = {En occurs for infinitely many n} and G = Ec ∩ F1 ∩ F2 ∩ F3 · · · (where
the superscript ‘c’ denotes complementation.). On G, Vn is covered by one of its members
for at most finitely many n. In the proof of Theorem 1 we showed that Pr(En) ≤ c log2 /n2.
Therefore Pr(Ec) = 1. Since no x 
= o can cover the sample space, we have Pr(Fn) = 1 for
all n. Hence, Pr(G) = 1.

3. A geometric lemma

The remaining results in this paper are proved under the assumption that the dimension
m = 2. Recall that Observation 2 states that a unit disk centered at a pointo cannot be completely
covered with two unit disks having centers at points other than o: D1(o) 
⊆ D1(q) ∪ D1(u) for
q 
= o 
= u. The purpose of this section is to prove Lemma 1, below, which provides an upper
bound for the area of the uncovered region D1(o) ∩ (D1(q) ∪ D1(u))c. A heuristic indication
of this lemma’s significance is the following: the smaller the uncovered region, the more likely
it is that none of the random points will fall in that uncovered region. If no random points fall
in the uncovered region then q and u cover Vn.

Some notation is needed to state Lemma 1. For any r > 0 and any v ∈ R2, let ∂Dr(v) be
the circle of radius r that bounds the open disk Dr(v). Fix b ≥ 3, and define

Lb = �b1/3(log b)2�, δb = 1

b1/3 log b
, and θb = π

Lb

,

where �x� denotes the greatest integer less than or equal to x. We are essentially going to
partition Dδb

(o) into 2Lb sectors as follows. (It is not strictly correct to call this a partition
of Dδb

(o) since the origin was omitted, the bounding circle was included, and some pairs of
sectors have a nonempty intersection (with zero area).) For integers i such that 0 ≤ i < Lb, let
Qi be the sector consisting of those points (x, y) = (r cos θ, r sin θ) whose polar coordinates
satisfy 0 < r ≤ δb and (i − 1

2 )θb ≤ θ ≤ (i + 1
2 )θb. Similarly, let Ui consist of the points with

0 < r ≤ δb and (i − 1
2 )θb ≤ θ − π ≤ (i + 1

2 )θb. Note that the sectors Qi and Ui are located
symmetrically with respect to o. Let q̃i ∈ Qi and ũi ∈ Ui be the extreme points whose polar
coordinates are respectively (δb, (i − 1

2 )θb) and (δb, (i + 1
2 )θb + π). Finally, for any points

u, w ∈ D1(o), let A(u, w) denote the area of (D1(u) ∪ D1(w))c ∩ D1(o), i.e. the area of the
region in D1(o) that is not covered by D1(u) ∪ D1(w). The main result in this section is stated
as follows.

Lemma 1. There exists a uniform constant C > 0 (independent of the parameter b) such that,
for 0 ≤ i < Lb, and for all qi ∈ Qi and ui ∈ Ui , we have

A(qi, ui) ≤ A(q̃i, ũi) ≤ C

b log3 b
.

We state four facts below which together imply Lemma 1. For the first three facts, proofs
have been omitted because they are obvious geometrically once they are understood. For the
first fact, we observe that, for any q, u ∈ D1(o), the omitted area A(q, u) increases if we move
one (or both) of the two points q and u away from the origin along a radial line.
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Fact 1. Let q, q ′ and u, u′ be four points in D1(o) such that q lies on the line segment o, q ′
and u lies on the line segment o, u′. Then A(q ′, u′) ≥ A(q, u).

Fact 2. Suppose that p, q ∈ R2 are such that d2(p, q) < 2. Let a and b be the two points
where the circles ∂D1(p) and ∂D1(q) intersect. Then, a, b⊥p, q, and the two line segments
a, b and p, q intersect at their midpoints.

Fact 3. Let o1 and o2 be two points on the circle x2 +y2 = δ2
b . Then, A(o1, o2) is a decreasing

function of 
 o1oo2.

Fact 4. Uniformly for 0 ≤ i < Lb, we have A(q̃i, ũi) = O(1/b log3 b).

Proof. Without loss of generality, let i = 0. To simplify the notation, define xb =
δb cos(− 1

2θb) and yb = δb sin(− 1
2θb). Let (ξ, η) be the point in the first quadrant where

the circles x2 + y2 = 1 and (x − xb)
2 + (y − yb)

2 = 1 intersect. Then

A(q̃0, ũ0) ≤ 4
∫ ξ

0

√
1 − x2 − (yb +

√
1 − (x − xb)2) dx

= −4ybξ + 4
∫ ξ

0

−2xxb + x2
b√

1 − x2 + √
1 − (x − xb)2

dx.

Hence, we have
A(q̃0, ũ0) = O(ξyb) + O(xbξ

2) + O(x2
bξ). (8)

Note that x2
b + y2

b = δ2
b = 1/b2/3 log2 b, that ξ2 + η2 = 1, that (ξ − xb)

2 + (η − yb)
2 = 1,

that xb = δb(1 + O(θ2
b )), and that yb = (−δbθb/2)(1 + O(θ2

b )). Combining these equations,
we obtain ξ = O(δb). Substituting these estimates into (8), we obtain

A(q̃0, ũ0) = O

(
1

b log3 b

)
.

4. Two point dominating sets

Recall that the dimension m = 2. In this section we consider the problem of covering the set
Vn = {X1, X2, . . . , Xn}, where the Xis are chosen independently and uniform randomly from
the punctured disk D = D1(o) − {o}, by two points Xi, Xj ∈ Vn. Assume that n ≥ 3, and
recall the definitions for Ln, Ui , and Qi in the previous section (with b = n). For 0 ≤ i < Ln,
let N(Qi) and N(Ui) respectively denote the number points in Vn that lie in Qi and Ui . Let

τn =
Ln−1∑
i=0

Ii,

where the indicator variable Ii = 1 if and only if N(Ui) = N(Qi) = 1. (Remark: we consider
the event {N(Ui) = N(Qi) = 1} instead of the event {N(Ui) ≥ 1, N(Qi) ≥ 1} because it
simplifies a conditioning argument later.)

Lemma 2. We have

Pr

(
τn <

n1/3

16 log6 n

)
= O

(
log6 n

n1/3

)
.
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Proof. For 0 ≤ i < Ln, let

p = Area(Qi)

Area(D1(o))
= δ2

n

2Ln

= 1

2n log4 n

(
1 + O

(
1

n1/3 log2 n

))
.

Then
E(Ii) = n(n − 1)p2(1 − 2p)n−2, (9)

and

E(τn) = Lnn(n − 1)p2(1 − 2p)n−2 = n1/3

4(log n)6

(
1 + O

(
1

n1/3(log n)2

))
.

Similarly, for 0 ≤ i, j < Ln such that i 
= j ,

E(IiIj ) = n(n − 1)(n − 2)(n − 3)p4(1 − 4p)n−4. (10)

Since τn = ∑Ln−1
i=0 Ii , and the Iis are identically distributed, we have

var(τn) = Ln(Ln − 1) E(I1I2) + Ln E(I1) − (E(τ ))2.

Combining this identity with the expression for E(Ii) in (9), the expression for E(IiIj ) in (10),
and the definitions for Ln, δn, and p, we obtain

var(τn) = E(τn)

(
1 + O

(
1

(log n)8

))
.

The lemma now follows by Chebyshev’s inequality.

Theorem 2. There exists a constant c > 0 such that, with probability greater than 1 −
c/(log n)3, there exist two points of Vn that cover Vn.

Proof. Let
Tn = {i : 0 ≤ i ≤ L and N(Qi) = N(Ui) = 1}.

If Tn 
= ∅, define Yn = min Tn to be the smallest of the indices in Tn; otherwise, if Tn = ∅, set
Yn = −1. Define the indicator random variable Wn as Wn = 1 if and only if both the following
conditions are satisfied:

• τn 
= 0, i.e. Tn = {i1, i2, . . . , iτn} for some i1 < i2 < · · · < iτn ;

• the two points in Qi1 ∪ Ui1 cover Vn.

Define Zn to be set of points in Vn that lie within distance δn = 1/n1/3 log n of the origin, and
let Zn be the number of these points. Also, let βn = 2n1/3/(log n)2. Then

Pr(Wn = 0) ≤ Pr(Wn = 0, τn 
= 0, Zn ≤ βn) + Pr(τn = 0) + Pr(Zn > βn).

Note that Zn has a binomial distribution Zn
d= Bin(n, δ2

n), where ‘
d=’ denotes equality in

distribution. Therefore, by Chernoff’s inequality, Pr(Zn ≥ βn) ≤ exp(−βn/8). By Lemma 2,
Pr(τn = 0) = O(log6 n/n1/3). Therefore,

Pr(Wn = 0) ≤ Pr(Wn = 0, τn 
= 0, Zn ≤ βn) + O

(
log6 n

n1/3

)
. (11)
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Next we decompose the first term on the right-hand side of (11) according to the value of Yn:

Pr(Wn = 0, τn 
= 0, Zn ≤ βn)

=
Ln−1∑
k=0

Pr(Wn = 0 | Yn = k, τn 
= 0, Zn ≤ βn) Pr(Yn = k, Zn ≤ β)

=
Ln−1∑
k=0

Pr(Wn = 0 | Yn = k, Zn ≤ βn) Pr(Yn = k, Zn ≤ βn).

We have

Pr(Wn = 0 | Yn = k, Zn ≤ βn)

=
∑
S

Pr(Wn = 0 | Zn = S, Yn = k) Pr(Zn = S | Yn = k, Zn ≤ βn),

where the sum is over subsets S ⊆ {1, 2, . . . , n} such that 2 ≤ |S| ≤ βn. It is enough to find a
lower bound for Pr(Wn = 1 | Zn = S, Yn = k).

To simplify notation, let γ = A(q̃0, r̃0), and recall that γ = O(1/n log3 n). In addition,
define |Dδn(o)| = π/n2/3(log n)2 to be the area of the disk Dδn(o). An important observation
is that, once we have specified n − |S| = the number of points that fall outside Dδn(o), the
locations in Dδn(o)c of these n − |S| points are independent of the locations of the |S| points
in Dδn(o). Hence,

Pr(Wn = 1 | Zn = S, Yn = k) ≥ (1 − |Dδn(o)|/π − γ /π)n−|S|

(1 − |Dδn(o)|/π)n−|S|

≥
(

1 − C

n(log n)3

)n−|S|

≥ 1 − C′

(log n)3

for some constants C and C′ which are independent of Zn and Yn. Hence,

Pr(Wn = 0) ≤ c

(log n)3

for some positive constant c that does not depend on n.

We note that the result obtained in Theorem 2 depends on a delicate trade-off. We must
choose small enough δn and large enough Ln to guarantee that, for any q ∈ Qi and any u ∈ Ui ,
where (Qi, Ui) is a pair of opposite sectors of Dδn(o), there is a high probability that none
of the points X1, X2, . . . , Xn lie in the ‘uncovered’ region (D1(q) ∪ D1(r))

c ∩ D1(o). On the
other hand, δn must not be so small or Ln so large that we cannot find (with high probability)
some pair of opposite sectors (Qi, Ui) such that there exists some Xj ∈ Qi and Xk ∈ Ui .

We end this section with an observation that is not needed in this paper, but is worth
mentioning because of its relevance in applications [7]. It is implicit in the proof of Theorem 2
that, with asymptotic probability 1, the two covering points can be chosen in such a way that the
distance between them is less than 1. In the language of graph theory we say that the two points
are a connected dominating set for the random unit disk graph with vertices X1, X2, . . . , Xn.
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5. Other densities

It is not difficult to see that our conclusions do not hold for arbitrary densities. In particular,
the following is an example of a density for which two points do not suffice. Choose a positive
number r such that 1 + 2r <

√
3. For j = 0, 1, 2, let zj = (cos(2πj/3), sin(2πj/3)), and let

Oj = Dr(zj ) ∩ D1(o) be the set of points in the unit disk whose distance from zj is less than r .
Let M = Area(Oj ) be the common area of these three regions, and define f (x, y) = 1/3M

if (x, y) ∈ Oj for some j (and f (x, y) = 0 otherwise). With asymptotic probability 1, each
of the three regions contains at least one of the random points. A point in Oj cannot cover a
point in Oi if i 
= j because the distance between two such points is more than

√
3 − 2r > 1.

Therefore, with asymptotic probability 1, three points are required. We have not been able
to characterize the densities f for which two points do in fact suffice. We conjecture that a
sufficient condition is for f to be radially symmetric and weakly decreasing as a function of
the distance to the origin. In other words, in polar coordinates ∂f/∂r ≤ 0 and ∂f/∂θ = 0.

6. Final comments

The problems in this paper originated in the context of mathematical models for wireless
networks [2], [6], [9]. For that particular application, dimensions m = 2 (see [1]) and m = 3
(see [3] and [4]) are the only ones where the problems make sense. Nevertheless, we believe it is
a very natural and interesting mathematical question to consider an arbitrary fixed dimension m:
for a random set of points Vn in the unit ball in Rm, how many points of Vn are needed to cover
Vn? We proved in Section 2 of this paper that, in general, one point is not enough. Our main
result answers the question only for dimension m = 2; when m = 2, two points suffice. We did
prove in [6] that, when m = 3, the probability that there does not exist a four-point covering
set is exponentially small. Therefore, for m = 3, the smallest covering set consists of either
two, three or four points (with asymptotic probability 1 as n tends to ∞). Limited simulations
by Patricia Stamets suggest that two or three points suffice when m = 3. However, attempts
to prove this got bogged down in complicated calculations. We conjecture that, in general, m

points suffice. But we have no idea how to handle this general case.
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