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Abstract
We give an in-depth account of compositional matrix-space models (CMSMs), a type of generic mod-
els for natural language, wherein compositionality is realized via matrix multiplication. We argue for
the structural plausibility of this model and show that it is able to cover and combine various common
compositional natural language processing approaches. Then, we consider efficient task-specific learn-
ing methods for training CMSMs and evaluate their performance in compositionality prediction and
sentiment analysis.
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1. Introduction
Cognitively adequate models of language have been a subject of central interest in areas as
diverse as philosophy, (computational) linguistics, artificial intelligence, cognitive science, neu-
rology, and intermediate disciplines. Much effort in natural language processing (NLP) has been
devoted to obtain representations of linguistic units,a such as words, that can capture language
syntax, semantics,b and other linguistic aspects for computational processing. One of the pri-
mary and successful models for the representation of word semantics are vector space models
(VSMs) introduced by Salton,Wong, and Yang (1975) and its variations, such as word space mod-
els (Schütze 1993), hyperspace analogue to language (Lund and Burgess 1996), latent semantic
analysis (Deerwester et al. 1990), and more recently neural word embeddings, such as word2vec
(Mikolov et al. 2013a) and neural language models, such as BERT (Devlin et al. 2019). In VSMs,
a vector representation in a continuous vector space of some fixed dimension is created for
each word in the text. VSMs have been empirically justified by results from cognitive science
(Gärdenfors 2000).

One influential approach to produce word vector representations in VSMs are distributional
representations, which are generally based on the distributional hypothesis first introduced by
Harris (1954). The distributional hypothesis presumes that “difference of meaning correlates with
difference of distribution” (Harris 1954, p. 156). Based on this hypothesis, “words that occur in
the same contexts tend to have similar meanings” (Pantel 2005, p. 126), and the meaning of words
is defined by contexts in which they (co-)occur. Depending on the specific model employed, these

aA unit in natural language may refer to a letter, morpheme, word, phrase, clause, sentence, or text document. In this work,
we are mainly interested in words.

bIn this work, the term semantics in a general sense is used and refers tomeaning.

c© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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contexts can be either local (the co-occurring words) or global (a sentence or a paragraph or
the whole document). In VSMs, models that are obtained based on the distributional hypoth-
esis are called distributional semantic models (DSMs). Word meaning is then modeled as an
n-dimensional vector, derived from word co-occurrence counts in a given context. In these mod-
els, words with similar distributions tend to have closer representations in the vector space. These
approaches to semantics share the usage-based perspective on meaning; that is, representations
focus on the meaning of words that comes from their usage in a context. In this way, semantic
relationships between words can also be understood using the distributional representations and
bymeasuring the distance between vectors in the vector space (Mitchell and Lapata 2010). Vectors
that are close together in this space have similar meanings and vectors that are far away are dis-
tant in meaning (Turney and Pantel 2010). In addition to mere co-occurrence information, some
DSMs also take into account the syntactic relationship of word pairs, such as subject–verb rela-
tionship, for constructing their vector representations (Padó and Lapata 2007; Baroni and Lenci
2010). Therefore, dependency relations contribute to the construction of the semantic space and
capture more linguistic knowledge. These dependency relations are asymmetric and hence reflect
the word position and order information in the word vector construction. In these models, text
preprocessing is required for building the model, as lexico-syntactic relations have to be extracted
first.

Many recent approaches utilize machine learning techniques with the distributional hypoth-
esis to obtain continuous vector representations that reflect the meanings in natural language.
One example is word2vec, proposed by Mikolov et al. (2013a, b), which is supposed to cap-
ture both syntactic and semantic aspects of words. In general, VSMs have proven to perform
well in a number of tasks requiring computation of semantic closeness between words, such
as synonymy identification (Landauer and Dumais 1997), automatic thesaurus construction
(Grefenstette 1994), semantic priming and word sense disambiguation (Padó and Lapata 2007),
and many more.

Early VSMs represented each word separately, without considering representations of larger
units like phrases or sentences. Consequently, the compositionality properties of language were
not considered in VSMs (Mitchell and Lapata 2010). According to Frege’s principle of composi-
tionality (Frege 1884), “The meaning of an expression is a function of the meanings of its parts
and of the way they are syntactically combined” (Partee 2004, p.153). Therefore, the meaning
of a complex expression in a natural language is determined by its syntactic structure and the
meanings of its constituents (Halvorsen and Ladusaw 1979). On sentence level, the meaning
of a sentence such as White mushrooms grow quickly is a function of the meaning of the noun
phraseWhite mushrooms combined as a subject with the meaning of the verb phrase grow quickly.
Each phrase is also derived from the combination of its constituents. This way, semantic compo-
sitionality allows us to construct long grammatical sentences with complex meanings (Baroni,
Bernardi, and Zamparelli 2014). Approaches have been developed that obtain meaning above
the word level and introduce compositionality for DSMs in NLP. These approaches are called
compositional distributional semantic models (CDSMs). CDSMs propose word representations
and vector space operations (such as vector addition) as the composition operation. Mitchell and
Lapata (2010) propose a framework for vector-based semantic composition in DSMs. They define
additive or multiplicative functions for the composition of two vectors and show that composi-
tional approaches generally outperform non-compositional approaches which treat a phrase as
the union of single lexical items. Word2vec models also exhibit good compositionality proper-
ties using standard vector operations (Mikolov et al. 2013a, b). However, these models cannot
deal with lexical ambiguity and representations are non-contextualized. Very recently, contex-
tualized (or context-aware) word representation models, such as transformer-based models like
BERT (Devlin et al. 2019), have been introduced. These models learn to construct distinct rep-
resentations for different meanings of the words based on their occurrence in different contexts.
Moreover, they consider the word order of input text for training the final representations by
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adding the positional information of words to their representations. These models compute word
representations using large neural-based architectures. Moreover, training such models needs rich
computational resources. Due to their expensive computational requirements, compressed ver-
sions of BERT have been introduced, such as DistilBERT (Sanh et al. 2019). They have shown
state-of-the-art performance in downstream NLP tasks, and we refer the reader interested in
contextualized word representations to the work by Devlin et al. (2019). Our focus in this arti-
cle is on light-weight computations of word representations in a given context and the dynamic
composition of word representations using algebraic operations.

Despite its simplicity and light-weight computations, one of the downsides of using vector
addition (or other commutative operations like the component-wise product) as the composi-
tionality operation is that word order information is inevitably lost. To overcome this limitation
while maintaining light-weight computations for compositional representations, this article
describes an alternative, word-order-sensitive approach for compositional word representations,
called compositional matrix-space models (CMSMs). In such models, word matrices instead of
vectors are used as word representations and compositionality is realized via iterated matrix
multiplication.

Contributions. The contribution of this work can be grouped into two categories:

(1). On the formal, theoretical side, we propose CMSMs as word-level representation mod-
els and provide advantageous properties of these models for NLP, showing that they are
able to simulate most of the known vector-based compositionality operations and that
several CMSMs can be combined into one in a straightforward way. We also investigate
expressiveness and computational properties of the languages accepted of a CMSM-based
grammar model, called matrix grammars. This contribution is an extended and revised
account of results by Rudolph and Giesbrecht (2010).

(2). On the practical side, we provide an exemplary experimental investigation of the practical
applicability of CMSMs in English by considering two NLP applications: compositional
sentiment analysis and compositionality prediction of short phrases. We chose these two
tasks for practical investigations since compositionality properties of the language play an
important role in such tasks. For this purpose, we develop two different machine learning
techniques for the mentioned tasks and evaluate the performance of the learned model
against other distributional compositional models from the literature. By means of these
investigations we show that

• there are scalable methods for learning CMSMs from linguistic corpora and
• in terms of model quality, the learnedmodels are competitive with other state-of-the-art
approaches while requiring significantly fewer parameters.

This contribution addresses the question “how to acquire CMSMs automatically in large-scale and
for specific purposes” raised by Rudolph and Giesbrecht (2010). Preliminary results of this contri-
bution concerning the sentiment analysis task have been published by Asaadi and Rudolph (2017).
In this article, we extend them with hitherto unpublished investigations on compositionality
prediction.

Structure. The structure of the article is as follows. We first review compositional distributional
models in literature and provide the related work for the task of compositional sentiment analysis
and semantic compositionality prediction in Section 2. Then, to introduce CMSMs, we start by
providing the necessary basic notions in linear algebra in Section 3. In Section 4, we give a formal
account of the concept of compositionality, introduce CMSMs, and argue for the plausibility of
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CMSMs in the light of structural and functional considerations. Section 5 demonstrates beneficial
theoretical properties of CMSMs: we show how common VSM approaches to compositionality
can be captured by CMSMs, while they are likewise able to cover symbolic approaches; moreover,
we demonstrate how several CMSMs can be combined into one model.

In view of these advantageous properties, CMSMs seem to be a suitable candidate in a diverse
range of different tasks of NLP. In Section 6, we focus on ways to elicit information from matri-
ces to leverage CMSMs for NLP tasks like scoring or classification. These established beneficial
properties motivate a practical investigation of CMSMs in NLP applications. Therefore, methods
for training such models need to be developed, for example, by leveraging appropriate machine
learning techniques.

Hence, we address the problem of learning CMSMs in Section 7. Thereby, we focus on a gra-
dient descent method but apply diverse optimizations to increase the method’s efficiency and
performance. We propose to apply a two-step learning strategy where the output of the first step
serves as the initialization for the second step. The results of the performance evaluation of our
learning methods on two tasks are studied in Section 8.2.2. In the first part of the experiments,
we investigate our learning method for CMSMs on the task of compositionality prediction of
multi-word expressions (MWE). Compositionality prediction is important in downstream NLP
tasks such as statistical machine translation (Enache, Listenmaa, and Kolachina 2014; Weller et al.
2014), word-sense disambiguation (McCarthy, Keller, and Carroll 2003), and text summarization
(ShafieiBavani et al. 2018) where a method is required to detect whether the words in a phrase
are used in a compositional meaning. Therefore, we choose to evaluate the proposed method for
CMSMs on the ability to detect the compositionality of phrases. In the second part of the experi-
ments, we evaluate our method on the task of fine-grained sentiment analysis. We choose this task
since it allows a direct comparison against two closely related techniques proposed by Yessenalina
and Cardie (2011) and Irsoy and Cardie (2015), which also trains a CMSM. We finally conclude
by discussing the strengths and limitations of CMSMs in Section 9.

As stated earlier, this article is a consolidated, significantly revised, and considerably extended
exposition of work presented in earlier conference and workshop papers (Rudolph and Giesbrecht
2010; Asaadi and Rudolph 2017).

2. Related work
We were not the first to suggest an extension of classical VSMs to higher-order tensors. Early
attempts to apply matrices instead of vectors to text data came from research in information
retrieval (Gao, Wang, and Wang 2004; Liu et al. 2005; Antonellis and Gallopoulos 2006; Cai,
He, and Han 2006). Most proposed models in information retrieval still use a vector-based rep-
resentation as the basis and then mathematically convert vectors into tensors, without linguistic
justification of such a transformation, or they use metadata or ontologies to initialize the models
(Sun, Tao, and Faloutsos 2006; Chew et al. 2007; Franz et al. 2009; Van de Cruys 2010). However,
to the best of our knowledge, we were the first to propose an approach of realizing compositional-
ity via consecutive matrix multiplication. In this section, a comprehensive review of related work
on existing approaches to modeling words as matrices, distributional semantic compositional-
ity, compositional methods for sentiment analysis, and compositionality prediction of MWEs is
provided.

Compositional Distributional Semantic Models. In compositional distributional semantics,
different approaches for learning word representations and diverse ways of realizing semantic
compositionality are studied. In the following, we discuss the related vector space approaches,
which are summarized in Table 1. However, be reminded that our compositional approach will be
formulated in matrix space as opposed to vector space.
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Table 1. Summary of the literature review in semantic compositionality

Study Approach Evaluation methodology

Salton and McGill (1986) Additive model in vector space Evaluation in information retrieval systems
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kintsch (2001) Predication in vector space Evaluation onmetaphor interpretation, causal
inferences, similarity judgments, and homonym
disambiguation and comparison with the
standard composition rule for vectors in latent
semantic analysis (LSA)



Widdows (2008) Tensor product and convolution operation
in vector space

Evaluation on analogy task and semantic
similarity of pairs in which tensor product
outperforms additive model

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mitchell and Lapata
(2010)

Dilation in vector space Evaluation on compositional semantic similarity
of two-word phrases where element-wise vector
multiplication outperforms other operations



Guevara (2010) Partial least square regression (PLSR) in
vector space to model adjective–noun
compounds

Evaluation on predicting the representation of
the adjective–noun compounds and predicting
neighbors of those compounds. In the first task,
PLSR outperforms additive andmultiplicative
models and in the second task additive model
outperforms PLSR

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Turney (2012) Dual-space model in vector space obtained
from the word-context co-occurrence
matrix

Evaluation on semantic compositionality of
bigram–unigram pairs in which dual-space model
outperforms additive andmultiplicative models

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Baroni and Zamparelli
(2010)

Linear regression to model adjective–noun
composition where adjectives are matrices
and nouns are vectors in vector space

Evaluation on predicting nearest neighbors and
the representation of A–N compounds, which
outperforms additive andmultiplicative models
on average



Maillard and Clark
(2015)

Tensor-based skip-grammodel for
adjective–noun composition with
adjectives as matrices and nouns as
vectors in vector space

Evaluation on phrase semantic similarity and
semantic anomaly. The model outperforms
standard skip-gramwith addition and
multiplication as composition operations in the
first task, and the additive andmultiplicative
model in the second task



Chung, Wang, and
Bowman (2018)

Tree-structured LSTM in vector andmatrix
spaces

Evaluation on the Natural Language Inference
(NLI) task, which outperforms the standard
tree-LSTM in vector space

Salton and McGill (1986) introduce vector addition in VSMs as a composition method, which
is the most common method. Given two words wi and wj and their associated d-dimensional
semantic vector representations u ∈R

d and v ∈R
d, respectively, vector addition is defined as

follows:
p= f (v, u)= v+ u,

where p ∈R
d is the resulting compositional representation of the phrase wiwj and f is called the

composition function. Despite its simplicity, the additive method is not a suitable method of com-
position because vector addition is commutative. Therefore, it is not sensitive to word order in the
sentence, which is a natural property of human language.

Among the early attempts to provide more compelling compositional functions in VSMs is
the work of Kintsch (2001) who is using a more sophisticated composition function to model
predicate–argument structures. Kintsch (2001) argues that the neighboring words “strengthen
features of the predicate that are appropriate for the argument of the predication” (p. 178). For
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instance, the predicate run depends on the noun as its argument and has a different meaning in,
for example, “the horse runs” and “the ship runs before the wind.” Thus, different features are used
for composition based on the neighboring words. Also, not all features of a predicate vector are
combined with the features of the argument, but only those that are appropriate for the argument.

An alternative seminal work on compositional distributional semantics is by Widdows (2008).
Widdows proposes a number of more advanced vector operations well-known from quantum
mechanics for semantic compositionality, such as tensor product and convolution operation to
model composition in vector space. Given two vectors u ∈R

d and v ∈R
d, the tensor product of

two vectors is a matrixQ ∈R
d×d withQ(i, j)= u(i)v(j). Since the number of dimensions increases

by tensor product, the convolution operation was introduced to compress the tensor product
operation to R

d space. Widdows shows the ability of the introduced compositional models to
reflect the relational and phrasal meanings on a simplified analogy task and semantic similarity
which outperform additive models.

Mitchell and Lapata (2010) formulate semantic composition as a function m= f (w1,w2, R,K)
where R is a relation between w1 and w2 and K is additional knowledge. They evaluate the model
with a number of addition and multiplication operations for vector combination and introduce
dilation as another composition operation. The dilation method decomposes v into a parallel and
an orthogonal component to u and then stretches the parallel component to adjust v along u:

p(i)= v(i)
∑
j

u(j)u(j)+ (λ− 1)u(i)
∑
j

u(j)v(j),

where λ is the dilation factor and p is the composed vector. Therefore, u affects relevant elements
of vector v in the composition. Evaluation is done on their developed compositional semantic
similarity dataset of two-word phrases. They conclude that element-wise vector multiplication
outperforms additive models and non-compositional approaches in the semantic similarity of
complex expressions.

Giesbrecht (2009) evaluates four vector composition operations (addition, element-wise multi-
plication, tensor product, convolution) in vector space on the task of identifyingmulti-word units.
The evaluation results of the three studies (Widdows 2008; Giesbrecht 2009; Mitchell and Lapata
2010) are not conclusive in terms of which vector operation performs best; the different outcomes
might be attributed to the underlying word space models; for example, the models of Widdows
(2008) and Giesbrecht (2009) feature dimensionality reduction while that of Mitchell and Lapata
(2010) does not.

Guevara (2010) proposes a linear regression model for adjective–noun (A–N) compositional-
ity. He trains a generic function to compose any adjective and noun vectors and produce the A–N
representation. The model which is learned by partial least square regression (PLSR) outperforms
additive and multiplicative models in predicting the vector representation of A–Ns. However,
the additive model outperforms PLSR in predicting the nearest neighbors in the vector space.
As opposed to this work, semantic compositionality in our approach is regardless of the parts
of speech (POS), and therefore, the model can be trained to represent different compositional
compounds with various POS tags.

Some approaches for obtaining distributional representation of words in VSMs have also been
extended to compositional distributional models. Turney (2012) proposes a dual-space model for
semantic compositionality. He creates two VSMs from the word-context co-occurrence matrix,
one from the noun as the context of the words (called domain space) and the other from the
verb as the context of the word (called function space). Therefore, the dual-space model consists
of a domain space for determining the similarity in topic or subject, and a function space for
computing the similarity in role or relationship. He evaluates the dual-space model on the task
of similarity of compositions for pairs of bigram–unigram in which bigram is a noun phrase and
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unigram is a noun. He shows that the introduced dual-space model outperforms additive and
multiplicative models.

Few approaches using matrices for distributional representations of words have been intro-
duced more recently, which are then used for capturing compositionality. A method to drive a
distributional representation of A–N phrases is proposed by Baroni and Zamparelli (2010) where
the adjective serves as a linear function mapping the noun vector to another vector in the same
space, which presents the A–N compound. In this method, each adjective has a matrix represen-
tation. Using linear regression, they train separate models for each adjective. They evaluate the
performance of the proposed approach in predicting the representation of A–N compounds and
predicting their nearest neighbors. Results show that their model outperforms additive and multi-
plicative models on average. A limitation of this model is that a separate model is trained for each
adjective, and there is no global training model for adjectives. This is in contrast to our proposed
approach in this work.

Maillard and Clark (2015) describe a compositional model for learning A–N pairs where, first,
word vectors are trained using the skip-grammodel with negative sampling (Mikolov et al. 2013b).
Then, each A–N phrase is considered as a unit, and adjective matrices are trained by optimizing
the skip-gram objective function for A–N phrase vectors. The phrase vectors of the objective func-
tion are obtained by multiplying the adjective matrix with its noun vector. Noun vectors in this
step are fixed. Results on the phrase semantic similarity task show that the model outperforms the
standard skip-gram with addition and multiplication as the composition operations. Moreover,
the model outperforms additive and multiplicative models in the semantic anomaly task.

More recently, Chung et al. (2018) introduced a learning method for a matrix-based composi-
tionality model using a deep learning architecture. They propose a tree-structured long short-term
memory (LSTM) approach for the task of natural language inference (NLI) to learn the word
matrices. In their method, the model learns to transform the pre-trained input word embeddings
(e.g., word2vec) to wordmatrix embeddings (lift layer). Then wordmatrices are composed hierar-
chically using matrix multiplication to obtain the representation of sentences (composition layer).
The sentence representations are then used to train a classifier for the NLI task.

Semantic Compositionality Evaluation. Table 2 summarizes the literature on techniques to
evaluate the existing compositional models on capturing semantic compositionality.

Reddy et al. (2011) study the performance of compositional distributional models on com-
positionality prediction of multi-word compounds. For this purpose, they provide a dataset
of noun compounds with fine-grained compositionality scores as well as literality scores for
constituent words based on human judgments. They analyze both constituent-based models
and composition-function-based models regarding compositionality prediction of the proposed
compounds. In constituent-based models, they study the relations between the contribution of
constituent words and the judgments on compound compositionality. They argue if a word is used
literally in a compound, most probably it shares a common co-occurrence with the correspond-
ing compound. Therefore, they evaluate different composition functions applied on constituent
words and compute their similarity with the literality scores of phrases. In composition-function-
based models, they evaluate weighted additive and multiplicative composition functions on their
dataset and investigate the similarity between the composed word vector representations and
the compound vector representation. Results show that in both models, additive composition
outperforms other functions.

Biemann and Giesbrecht (2011) aim at extracting non-compositional phrases using automatic
distributional models that assign a compositionality score to a phrase. This score denotes the
extent to which the compositionality assumption holds for a given expression. For this purpose,
they created a dataset of English andGerman phrases which attracted several models ranging from
statistical association measures and word space models submitted in a shared task of SemEval’11.
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Table 2. Summary of the literature review in compositionality prediction

Study Evaluated compositional models Test dataset

Reddy, McCarthy, and
Manandhar (2011)

Composition-function-based models:
weighted additive, multiplicative models

Fine-grained compositionality scores for noun
compounds (bigrams)



Biemann and Giesbrecht
(2011)

Approaches based on statistical
association measures (e.g., PMI) and
approaches based on word space models

Fine-grained English and German compounds
(bigrams) with different parts of speech



Salehi, Cook, and
Baldwin (2015)

Constituent and composition-
function-based approaches on three
different vector-space models:
count-based models, word2vec, and
multi-sense skip-gram

Fine-grained English noun compounds, binary
English verb particle constructions, and
fine-grained German noun compounds



Yazdani, Farahmand,
and Henderson (2015)

Additive andmultiplicative models in
vector space, neural network, linear
regression, and polynomial regression

Fine-grained English MWEs (bigrams)



Cordeiro et al. (2016) Various distributional semantic models
(GloVe, word2vec, and PPMI-based
models) with normalized vector addition
as composition operation

Nominal English and French compounds



Li, Lu, and Long (2017) A model based on the external context and
component words with a compositionality
constraint, additive andmultiplicative
models in vector space

English semantic relatedness and similarity
datasets

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cordeiro et al. (2019) Various distributional semantic models
(GloVe, word2vec, and PPMI-based
models) with weighted vector addition as
composition operation and also average
similarity between the compound and its
components

Nominal English, French, and Portuguese
compounds

Salehi et al. (2015) explore compositionality prediction of MWEs using constituent-based and
composition-function-based approaches on three different VSMs, consisting of count-basedmod-
els, word2vec, and multi-sense skip-gram model. In constituent-based models, they study the
relation between the contribution of constituent words and the judgments on compound com-
positionality. In the composition-function-based models, they study the additive model in vector
space on compositionality.

Yazdani et al. (2015) then explore different compositional models ranging from simple to com-
plex models such as neural networks (NNs) for non-compositionality prediction of a dataset
of MWEs. The dataset is created by Farahmand, Smith, and Nivre (2015), which consists of
MWEs annotated with non-compositionality judgments. Representation of words is obtained
from word2vec of Mikolov et al. (2013a) and the models are trained using compounds extracted
from a Wikipedia dump corpus, assuming that most compounds are compositional. Therefore,
the trained models are expected to give a relatively high error to non-compositional compounds.
They improve the accuracy of the models using latent compositionality annotation and show that
this method improves the performance of nonlinear models significantly. Their results show that
polynomial regression model with quadratic degree outperforms other models.

Cordeiro et al. (2016) and their extended work (Cordeiro et al. 2019) are closely related to our
work regarding the compositionality prediction task. They explore the performance of unsuper-
vised vector addition and multiplication over various DSMs (GloVe, word2vec, and PPMI-based
models) regarding predicting semantic compositionality of noun compounds over previously pro-
posed English and French datasets in Cordeiro et al. (2016) and a combination of previously and
newly proposed English, French, and Portuguese datasets in Cordeiro et al. (2019). Normalized
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vector addition in Cordeiro et al. (2016) is considered as the composition function, and the per-
formance of word embeddings is investigated using different setting of parameters for training
them.

Cordeiro et al. (2019) consider a weighted additive model as the composition function in which
the weights of head and modifier words in the compounds range from 0 to 1, meaning that the
similarity between head only word and the compound, the similarity between modifier only word
and the compound, as well as the similarity between equally weighted head and modifier words
and the compound are evaluated. Moreover, they consider the average of the similarity between
head-compound pair andmodifier-compound pair and compute the correlation between the aver-
age similarity score and the human judgments on the compositionality of compound. In both
works, they also study the impact of corpus preprocessing on capturing compositionality with
DSMs. Furthermore, the influence of different settings of DSMs parameters and corpus size for
training is studied. In our work, we evaluate our proposed compositional model using their intro-
duced English dataset. We compare the performance of our model with the weighted additive
model as well as other unsupervised and supervised models and provide a more comprehensive
collection of compositional models for evaluation. In the weighted additive model, we report the
best model obtained by varying the weights of the head and modifier words of the compound.

In a work by Li et al. (2017), a hybrid method to learn the representation of MWEs from their
external context and constituent words with a compositionality constraint is proposed. The main
idea is to learn MWE representations based on a weighted linear combination of both external
context and component words, where the weight is based on the compositionality of the MWEs.
Evaluations are done on the task of semantic similarity and semantic relatedness between bigrams
and unigrams. Recent deep learning techniques also focus on modeling the compositionality of
more complex texts without considering the compositionality of the smaller parts such asWu and
Chi (2017), which is out of the scope of our study. None of the mentioned works, however, have
investigated the performance of CMSMs in compositionality prediction of short phrases onMWE
datasets.

Compositional Sentiment Analysis. There is a lot of research interest in the task of sentiment
analysis in NLP. The task is to classify the polarity of a text (negative, positive, neutral) or assign
a real-valued score, showing the polarity and intensity of the text. In the following, we review the
literature, which is summarized in Table 3.

Yessenalina and Cardie (2011) propose the first supervised learning technique for CMSMs
in fine-grained sentiment analysis on short sequences after it was introduced by Rudolph and
Giesbrecht (2010). This work is closely related to ours as we propose learning techniques for
CMSMs in the task of fine-grained sentiment analysis. Yessenalina and Cardie (2011) apply
ordered logistic regression (OLogReg) with constraints on CMSMs to acquire a matrix represen-
tation of words. The learning parameters in their method include the wordmatrices as well as a set
of thresholds (also called constraints), which indicate the intervals for sentiment classes since they
convert the sentiment classes to ordinal labels. They argue that the learning problem for CMSMs
is not a convex problem, so it must be trained carefully and specific attention has to be devoted
to a good initialization, to avoid getting stuck in local optima. Therefore, they propose a model
for ordinal scale sentiment prediction and address the optimization problem using OLogReg with
constraints on sentiment intervals to relax the non-convexity. Finally, the trained model assigns
real-valued sentiment scores to phrases. We address this issue in our proposed learning method
for CMSMs. As opposed to Yessenalina and Cardie (2011)’s work, we address a sentiment regres-
sion problem directly and our learning method does not need to constrain the sentiment scores
to the certain intervals. Therefore, the number of parameters to learn is reduced to only word
matrices.

Recent approaches have focused on learning different types of NNs for sentiment analysis,
such as the work of Socher et al. (2012) and (2013). Moreover, the superiority of multiplicative
composition has been confirmed in their studies. Socher et al. (2012) propose a recursive NN
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Table 3. Summary of the literature review in compositional sentiment analysis. SST denotes Stanford Sentiment Treebank
dataset

Study Research goal Approach Dataset

Yessenalina and
Cardie (2011)

Fine-grained sentiment
analysis on short sequen- ces
in matrix space

Ordered logistic regression
(OLogReg)

MPQA



Socher et al.
(2012)

Binary and fine-grained
sentiment analysis in vector
space

Recursive neural network
using tree structure

SST



Socher et al.
(2013)

Binary and fine-grained
sentiment analysis in vector
space

Recursive neural tensor
network

SST



Irsoy and Cardie
(2015)

Fine-grained sentiment
analysis in matrix-space

Multiplicative recurrent neu-
ral network

MPQA and SST



Kiritchenko and
Mohammad
(2016b)

Binary and fine-grained
sentiment analysis in vector
space

Support-vector egression with
word2vec embedding

Sentiment Composition
Lexicon with Opposing
Polarity Phrases



Le and Mikolov
(2014)

Binary and fine-grained
sentiment analysis in vector
space

Stochastic gradient descent SST

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hong and Fang
(2015)

Binary and fine-grained
sentiment analysis in vector
space

Long short-termmemory and
deep recursive neural network
vector space

Stanford Large Movie
Review Dataset (IMDB) and
SST



Wang, Jiang, and
Luo (2016)

Fine-grained sentiment
analysis in vector space

Convolutional neural network
and recurrent neural network

Movie reviews and SST

which learns the vector representations of phrases in a tree structure. Each word and phrase is
represented by a vector v and a matrix M. When two constituents in the tree are composed,
the matrix of one is multiplied with the vector of the other constituent. Therefore, the compo-
sition function is parameterized by the words that participate in it. Socher et al. (2012) predict the
binary (only positive and negative) sentiment classes and fine-grained sentiment scores using the
trained recursive NN on their developed Stanford Sentiment Treebank dataset. This means that
new datasets must be preprocessed to generate the parse trees for evaluating the proposedmethod.
A problem with this method is that the number of parameters becomes very large as it needs to
store a matrix and a vector for each word and phrase in the tree together with the fully labeled
parse tree. In contrast, our CMSM does not rely on parse trees, and therefore, preprocessing of
the dataset is not required. Each word is represented only with matrices where the compositional
function is the standard matrix multiplication, which replaces the recursive computations with a
sequential computation.

Socher et al. (2013) address the issue of the high number of parameters in the work by Socher
et al. (2012) by introducing a recursive neural tensor network in which a global tensor-based
composition function is defined. In this model, a tensor layer is added to their standard recursive
NN where the vectors of two constituents are multiplied with a shared third-order tensor in this
layer and then passed to the standard layer. The output is a composed vector of words which is
then composed with the next word in the same way. The model is evaluated on both fine-grained
and binary (only positive and negative) sentiment classification of phrases and sentences. Similar
to Socher et al. (2012), a fully labeled parse tree is needed. In contrast, our model in this work does
not rely on parse trees.

Irsoy and Cardie (2015) propose a multiplicative recurrent NN (mRNN) for fine-grained sen-
timent analysis inspired from CMSMs (Rudolph and Giesbrecht 2010). They show that their
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proposed architecture is more generic than CMSM and outperforms additive NNs in sentiment
analysis. In their architecture, a shared third-order tensor is multiplied with each word vector
input to obtain the word matrix in CMSMs. They use pre-trained word vectors of dimension 300
from word2vec (Mikolov et al. 2013b) and explore different sizes of matrices extracted from the
shared third-order tensor. The results on the task of sentiment analysis are compared to the work
by Yessenalina and Cardie (2011). We also compare the results of our model training on the same
task to this approach since it is closely related to our work. However, in our approach, we do not
use word vectors as input. Instead, the input word matrices are trained directly without using a
shared tensor. We show that our model performs better while using fewer dimensions.

Kiritchenko and Mohammad (2016a) create a dataset of unigrams, bigrams, and trigrams,
which contains specific phrases with at least one negative and one positive word. For instance,
a phrase “happy tears” contains a positive-carrying sentiment word (happy) and a negative word
(tears). They analyze the performance of support-vector regression (SVR) with different features
on the developed dataset. We show that our approach can predict the sentiment score of such
phrases in matrix space with a much lower number of features than SVR.

There are a number of deep NN models on the task of sentiment compositional analysis such
as Hong and Fang (2015) who apply LSTM and deep recursive-NNs, and Wang et al. (2016) who
combine convolutional NNs and recurrent NNs leading to a significant improvement in sentiment
analysis of short text. Le andMikolov (2014) also propose paragraph vector to represent long texts
such as sentences and paragraphs, which is applied in the task of binary and fine-grained sentiment
analysis. The model consists of a vector for each paragraph as well as the word vectors, which
are concatenated to predict the next word in the context. Vectors are trained using stochastic
gradient descent method. These techniques do not focus on training word representations that
can be readily composed and therefore are not comparable directly to our proposed model.

3. Preliminaries
In this section, we recap some aspects of linear algebra to the extent needed for our considerations
about CMSMs. For a more thorough treatise, we refer the reader to a linear algebra textbook (such
as Strang 1993).

Vectors. Given a natural number n, an n-dimensional vector v over the reals can be seen as a
list (or tuple) containing n real numbers r1, . . . , rn ∈R, written v= (r1 r2 · · · rn). Vectors
will be denoted by lowercase bold font letters and we will use the notation v(i) to refer to the
ith entry of vector v. As usual, we write Rn to denote the set of all n-dimensional vectors with
real-valued entries. Vectors can be added entry-wise, that is, (r1 · · · rn)+ (r′1 · · · r′n)=
(r1+r′1 · · · rn+r′n). Likewise, the entry-wise product (also known as Hadamard product) is
defined by (r1 · · · rn) � (r′1 · · · r′n)= (r1 · r′1 · · · rn · r′n).
Matrices. Given two natural numbers n and m, an n×m matrix over the reals is an array of real
numbers with n rows and m columns. We will use capital letters to denote matrices and, given a
matrixM we will writeM(i,j) to refer to the entry in the ith row and the jth column:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(1, 1) M(1, 2) · · · M(1, j) · · · M(1,m)

M(2, 1) M(2, 2)
...

...
...

M(i, 1) M(i, j)
...

...
...

M(n, 1) M(1, 2) · · · · · · · · · M(n,m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The set of all n×m matrices with real number entries is denoted by R
n×m. Obviously, m-

dimensional vectors can be seen as 1×m matrices. A matrix can be transposed by exchanging
columns and rows: given the n×m matrix M, its transposed version MT is an m× n matrix
defined byMT(i, j)=M(j, i).

Third-order Tensors. A third-order tensor of dimension d × n×m over real values is a d-array
of n×m matrices. Third-order tensors are denoted by uppercase bold font letters, and T(i, j, k)
refers to row j and column k of matrix i in T. Rd×n×m indicates the set of all tensors with real
number elements.

Linear Mappings. Beyond being merely array-like data structures, matrices correspond to a
certain type of functions, so-called linear mappings, having vectors as input and output. More pre-
cisely, an n×mmatrixM applied to anm-dimensional vector v yields an n-dimensional vector v′
(written: vM = v′) according to

v′(i)=
m∑
j=1

v(j) ·M(i, j).

Linear mappings can be concatenated, giving rise to the notion of standard matrix multiplication:
we writeM1M2 to denote the matrix that corresponds to the linear mapping defined by applying
firstM1 and thenM2. Formally, the matrix product of the n× �matrixM1 and the �×mmatrix
M2 is an n×mmatrixM =M1M2 defined by

M(i, j)=
�∑

k=1

M1(i, k) ·M2(k, j).

Note that the matrix product is associative (i.e., (M1M2)M3 =M1(M2M3) always holds, thus
parentheses can be omitted) but not commutative (M1M2 =M2M1 does not hold in general, that
is, the order of the multiplied matrices matters).

Permutations.Given a natural number n, a permutation on {1 . . . n} is a bijection (i.e., a mapping
that is one-to-one and onto)� : {1 . . . n} → {1 . . . n}. A permutation can be seen as a “reordering
scheme” on a list with n elements: the element at position i will get the new position �(i) in the
reordered list. Likewise, a permutation can be applied to a vector resulting in a rearrangement of
the entries. We write�n to denote the permutation corresponding to the n-fold application of�
and�−1 to denote the permutation that “undoes”�.

Given a permutation�, the corresponding permutation matrix M� is defined by

M�(i, j)=
⎧⎨
⎩ 1 if�(j)= i,

0 otherwise.

Then, obviously permuting a vector according to � can be expressed in terms of matrix
multiplication as well, since we obtain, for any vector v ∈R

n,
�(v)= vM�.

Likewise, iterated application (�n) and the inverses�−n carry over naturally to the corresponding
notions in matrices.

4. A matrix-basedmodel of compositionality
Frege’s principle of compositionality states that “the meaning of an expression is a function of the
meanings of its parts and of the way they are syntactically combined” (Partee 2004, p. 153). Also,
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Figure 1. Semantic mapping as homomorphism.

according to Partee, ter Meulen, and Wall (1993, p. 334) the mathematical formulation of the
compositionality principle involves “representing both the syntax and the semantics as algebras
and the semantic interpretation as a homomorphic mapping from the syntactic algebra into the
semantic algebra.”

The underlying principle of compositional semantics is that the meaning of a composed
sequence can be derived from the meaning of its constituent tokensc by applying a composi-
tion operation. More formally, the underlying idea can be described mathematically as follows:
given a mapping [[ · ]]:�→ S from a set of tokens (words) � into some semantic space S (the
elements of which we will simply call “meanings”), we find a semantic composition operation
�	 :S∗ → S mapping sequences of meanings to meanings such that the meaning of a sequence of
tokens s= σ1σ2 . . . σk can be obtained by applying �	 to the sequence [[σ1]][[σ2]] . . . [[σk]]. This
situation, displayed in Figure 1, qualifies [[·]] as a homomorphism between (�∗, ·) and (S, �	 ).

A great variety of linguistic models are subsumed by this general idea ranging from purely
symbolic approaches (like type systems and categorial grammars) to statistical models (like vector
space and word space models). At the first glance, the underlying encodings of word semantics
as well as the composition operations differ significantly. However, we argue that a great variety
of them can be incorporated – and even freely inter-combined – into a unified model where the
semantics of simple tokens and complex phrases is expressed by matrices and the composition
operation is standard matrix multiplication that considers the position of tokens in the sequence.

More precisely, in CMSMs, we have S=R
m×m, that is, the semantic space consists of quadratic

matrices, and the composition operator �	 coincides with matrix multiplication as introduced in
Section 3.

We next provide an argument in favor of CMSMs due to their “algebraic plausibility.” Most
linear-algebra-based operations that have been proposed to model composition in language mod-
els (such as vector addition or the Hadamard product) are both associative and commutative.
Thereby, they realize a multiset (or bag-of-words) semantics which makes them oblivious of
structural differences of phrases conveyed through word order. For instance, in an associative
and commutative model, the statements “Oswald killed Kennedy” and “Kennedy killed Oswald”
would be mapped to the same semantic representation. For this reason, having commutativity
“built-in” in language models seems a very arguable design decision.

On the other hand, language is inherently stream-like and sequential; thus, associativity alone
seems much more justifiable. Ambiguities which might be attributed to non-associativity (such as

cWe use the term token for the atomic language elements and the term (token) sequence for the composed units, to avoid
misunderstandings due to ambiguity: In formal languages, the atomic elements are called letters from some alphabet, which
can be composed into words. In compositional semantics, the atomic elements are the words which can be composed into
phrases or sentences.
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Figure 2. Simulating compositional VSM via CMSMs.

the different meanings of the sentence “The man saw the girl with the telescope.”) can be resolved
easily by contextual cues.

As mentioned before, matrix multiplication is associative but non-commutative, whence we
propose it as more adequate for modeling compositional semantics of language.

5. The power of CMSMs
In the following, we argue that CMSMs have diverse desirable properties from a theoretical
perspective, justifying our confidence that they can serve as a generic approach to modeling
compositionality in natural language.

5.1 CMSMs capture compositional VSMs
In VSMs, numerous vector operations have been used tomodel composition (Widdows 2008).We
show how common composition operators can be simulated by CMSMs.d For each such vector
composition operation �	 :Rn ×R

n →R
n, we will provide a pair of functions ψ�	:Rn →R

m×m

and χ�	:Rm×m →R
n satisfying χ�	(ψ�	(v)))= v for all v ∈R

n. These functions translate between
the vector representation and the matrix representation in a way such that for all v1, . . . , vk ∈R

n

holds
v1 �	 . . . �	 vk = χ�	(ψ�	(v1) . . . ψ�	(vk)),

where ψ�	(vi)ψ�	(vj) denotes matrix multiplication of the matrices assigned to vi and vj. This
allows us to simulate a �	-compositional VSM by a matrix-space model where matrix multipli-
cation is the composition operation (see Figure 2). We can in fact show that vector addition,
element-wise vector multiplication, holographic reduced representation, and permutation based
composition approaches are captured by CMSMs. See Appendix A for detailed discussion and
proofs.

5.2 CMSMs capture symbolic approaches
Now we will elaborate on symbolic approaches to language, that is, discrete grammar formalisms,
and show how they can conveniently be embedded into CMSMs. This might come as a surprise,
as the apparent likeness of CMSMs to VSMs may suggest incompatibility to discrete settings.
Group Theory. Group theory and grammar formalisms based on groups and pre-groups play
an important role in computational linguistics (Lambek 1958; Dymetman 1998). From the

dIn our investigations, we will focus on VSM composition operations which preserve the format (i.e., which yield a vector of
the same dimensionality), as our notion of compositionality requires models that allow for iterated composition. In particular,
this rules out dot product and tensor product. However, the convolution product can be seen as a condensed version of the
tensor product.
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perspective of our compositionality framework, those approaches employ a group (or pre-group)
(G, ·) as the semantic space S where the group operation (often written as multiplication) is used
as composition operation �	.

According to Cayley’s theorem (Cayley 1854), every group G is isomorphic to a permutation
group on some set S. Hence, assuming finiteness of G and consequently S, we can encode group-
based grammar formalisms into CMSMs in a straightforward way using permutation matrices of
size |S| × |S|.
Regular Languages. Regular languages constitute a basic type of languages characterized by a
symbolic formalism. We will show how to select the assignment [[ · ]] for a CMSM such that the
matrix associated with a token sequence exhibits whether this sequence belongs to a given regular
language, that is, if it is accepted by a given finite state automaton. As usual, we define a nondeter-
ministic finite automaton A= (Q,�,	,QI,QF) with Q= {q0, . . . , qm−1} being the set of states,
� the input alphabet, 	⊆Q×� ×Q the transition relation, and QI and QF being the sets of
initial and final states, respectively.

Then we assign to every token σ ∈� them×mmatrix [[σ ]]=M with

M(i, j)=
⎧⎨
⎩ 1 if (qi, σ , qj) ∈	,

0 otherwise.

Hence essentially, the matrixM encodes all state transitions which can be caused by the input σ .
Likewise, for a sequence s= σ1 . . . σk ∈�∗, the matrix Ms:= [[σ1]] . . . [[σk]] will encode all state
transitions mediated by s.

5.3 Intercombining CMSMs
Another central advantage of the proposed matrix-based models for word meaning is that sev-
eral matrix models can be easily combined into one. Again assume a sequence s= σ1 . . . σk of
tokens with associated matrices [[σ1]], . . . , [[σk]] according to one specific model and matrices
([σ1]), . . . , ([σk]) according to another.

Then we can combine the two models into one {[ · ]} by assigning to σi the matrix

{[σi]} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

[[σi]]
...
. . .

0 0

0 · · · 0
...
. . . ([σi])

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By doing so, we obtain the correspondence

{[σ1]} . . . {[σk]} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

[[σ1]] . . . [[σk]]
...

. . .

0 0

0 · · · 0
...

. . . ([σ1]) . . . ([σk])

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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In other words, the semantic compositions belonging to two CMSMs can be executed “in par-
allel.” Mark that by providing non-zero entries for the upper right and lower left matrix part,
information exchange between the two models can be easily realized.

6. Eliciting linguistic information frommatrix representations
In the previous sections, we have argued in favor of using quadratic matrices as representatives
for the meaning of words and – by means of composition – phrases. The matrix representation
of a phrase thus obtained then arguably carries semantic information encoded in a certain way.
This necessitates a “decoding step” where the information of interest is elicited from the matrix
representation and is represented in different forms.

In the following, we will discuss various possible ways of eliciting the linguistic information
from the matrix representation of phrases. Thereby we distinguish if this information is in the
form of a vector, a scalar, or a boolean value. Proofs for the given theorems and propositions can
be found in Appendix B.

6.1 Vectors
Vectors can represent various syntactic and semantic information of words and phrases and are
widely used in many NLP tasks. The information in matrix representations in CMSMs can be
elicited in a vector shape allowing for their comparison and integration with other NLP vector-
space approaches. There are numerous options for a vector extraction function χ :Rm×m →R

n,
among them the different functions χ�	, introduced in Section 5.1.

One alternative option can be derived from an idea already touched in the second part of
Section 5.2, according to which CMSMs can be conceived as state transition systems, where
states are represented by vectors, and multiplying a state-vector with a matrix implements a
transition from the corresponding state to another. We will provide a speculative neuropsycho-
logical underpinning of this idea in Section 9. If we assume that processing an input sequence will
always start from a fixed initial state α ∈ Rm, then the state after processing s= σ1 . . . σk will be
αMσ1 . . .Mσk = αMs. Consequently, one simple but plausible vector extraction operation would
be given by the function χα where the vector v associated with a matrixM is

v= χα(M)= αM.

6.2 Scalars
Scalars (i.e., real values) may also represent semantic information in NLP tasks, such as semantic
similarity degree in similarity tasks or sentiment score in sentiment analysis. Also, the information
in scalar form requires less storage than matrices or vectors. To map a matrix M ∈R

m×m to a
scalar value, we may employ anym2-ary function which takes as input all entries ofM and delivers
a scalar value. There are plenty of options for such a function. In this article, we will be focusing on
the class of functions brought about by two mapping vectors from R

m, called α and β , mapping a
matrixM to the scalar value r via

r = αMβ�.
Again, we can motivate this choice along the lines of transitional plausibility. If, as argued in the
previous section, α represents an “initial mental state,” then, for a sequence s, the vector vs =
αMs ∈R

m represents the mental state after receiving the sequence s. Then rs = αMsβ� = vsβ�
is the scalar obtained from a linear combination of the entries of vs, that is, rs = b1 · v(1)+ . . .+
bm · v(m), where β = (b1 · · · bm).

Clearly, choosing appropriate “mapping vectors” α and β will dependent on the NLP task and
the problem to be solved. However, it turns out that with a proper choice of the token-to-matrix
mapping, we can restrict α and β to a very specific form.
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To this end, let
α= e1 = (1 0 · · · 0) and β = em = (0 · · · 0 1) ,

which only moderately restricts the expressivity of our model as made formally precise in the
following theorem.

Theorem 1 Given matrices M1, . . . ,M� ∈R
m×m and vectors α, β ∈R

m, there are matrices
M̂1, . . . , M̂� ∈R

(m+1)×(m+1) such that for every sequence i1 · · · ik of numbers from {1, . . . , �} holds

αMi1 · · ·Mikβ
� = e1M̂i1 · · · M̂ike

�
m+1.

In words, this theorem guarantees that for every CMSM-based scoring model with arbitrary
vectors α and β there is another such model (with dimensionality increased by one), where α and
β are distinct unit vectors. This theorem justifies our choice mentioned above.

6.3 Boolean values
Boolean values can be also obtained from matrix representations. Obviously, any function
ζ :Rm×m → {true, false} can be seen as a binary classifier which accepts or rejects a sequence of
tokens as being part of the formal language Lζ defined by

L= {σ1 . . . σk | ζ ([[σ1]] . . . [[σk]])= true}.
One option for defining such a function ζ is to first obtain a scalar (for instance using the mapping
discussed before), as described in the preceding section and then compare that scalar against a
given threshold value.e Of course, one can also perform several such comparisons. This idea gives
rise to the notion ofmatrix grammars.

Definition 1 (Matrix Grammars). Let � be an alphabet. A matrix grammar M of degree m
is defined as the pair 〈 [[ · ]], AC〉 where [[ · ]] is a mapping from � to m×m matrices and
AC = {〈α1, β1, r1〉, . . . , 〈α�, β�, r�〉}with α1, β1, . . . , α�, β� ∈R

m and r1, . . . , r� ∈R is a finite set of
acceptance conditions. The language generated byM (denoted by L(M)) contains a token sequence
σ1 . . . σk ∈�∗ exactly if αi[[σ1]] . . . [[σk]]βTi ≥ ri for all i ∈ {1, . . . , �}. We will call a language L
matricible if L= L(M) for some matrix grammarM.

Then, the following proposition is a direct consequence from the preceding section.

Proposition 1 Regular languages are matricible.

However, as demonstrated by the subsequent examples, many non-regular and even non-
context-free languages are also matricible, hinting at the expressivity of matrix grammars.

Example 1 DefineM〈 [[ · ]], AC〉 with� = {a, b, c} as well as

[[a]]=

⎛
⎜⎜⎜⎜⎜⎝

3 0 0 0

0 1 0 0

0 0 3 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , [[b]]=

⎛
⎜⎜⎜⎜⎜⎝

3 0 0 0

0 1 0 0

0 1 3 0

1 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , [[c]]=

⎛
⎜⎜⎜⎜⎜⎝

3 0 0 0

0 1 0 0

0 2 3 0

2 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , and

AC = { 〈(0 0 1 1), (1 −1 0 0), 0〉,
〈(0 0 1 1), (−1 1 0 0), 0〉}.

eIn the world of weighted finite automata, a language obtained this way would be denoted as cut language.
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Then L(M) contains exactly all palindromes from {a, b, c}∗, that is, the words d1d2 . . . dn−1dn for
which d1d2 . . . dn−1dn = dndn−1 . . . d2d1.

Example 2 DefineM= 〈 [[ · ]], AC〉 with� = {a, b, c} as well as

[[a]]=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, [[b]]=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, [[c]]=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and

AC = { 〈(1 0 0 0 0 0), (0 0 1 0 0 0), 1〉,
〈(0 0 0 1 1 0), (0 0 0 1 −1 0), 0〉,
〈(0 0 0 0 1 1), (0 0 0 0 1 −1), 0〉,
〈(0 0 0 1 1 0), (0 0 0 −1 0 1), 0〉 }.

Then L(M) is the (non-context-free) language {ambmcm |m> 0}.
The following properties of matrix grammars and matricible language are straightforward.

Proposition 2 All languages characterized by a set of linear equations on the letter counts are
matricible.

Proposition 3 The intersection of two matricible languages is again a matricible language.

Note that the fact that the language {ambmcm |m> 0} is matricible, as demonstrated in
Example 2, is a straightforward consequence of the Propositions 1, 2, and 3, since the language
in question can be described as the intersection of the regular language a+b+c+ with the language
characterized by the equations xa − xb = 0 and xb − xc = 0.We proceed by giving another account
of the expressivity of matrix grammars by showing undecidability of the emptiness problem.

Proposition 4 The problem whether there is a word which is accepted by a given matrix grammar
is undecidable.

These results demonstrate that matrix grammars cover a wide range of formal languages.
Nevertheless some important questions remain open and need to be clarified next:

• Are all context-free languages matricible? We conjecture that this is not the case.f Note that
this question is directly related to the question whether Lambek calculus can be modeled by
matrix grammars.

• Are matricible languages closed under concatenation? That is: given two arbitrary matrici-
ble languages L1, L2, is the language L= {w1w2 |w1 ∈ L1,w2 ∈ L2} again matricible? Being a
property common to all language types from the Chomsky hierarchy, answering this question
is surprisingly non-trivial for matrix grammars.

In case of a negative answer to one of the above questions it might be worthwhile to introduce an
extended notion of context grammars to accommodate those desirable properties. For example,

fFor instance, we have not been able to find a matrix grammar that recognizes the language of all well-formed parenthesis
expressions.
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allowing for some nondeterminism by associating several matrices to one token would ensure
closure under concatenation.

7. On learning of CMSMs
In the previous sections, we have shown many advantageous theoretical properties of CMSMs,
demonstrating their principled suitability and expressivity in compositional NLP tasks.

However, for practical applicability, methods are needed to automatically acquire the word-
to-matrix assignments from available data. This important aspect – learning of CMSMs –
has remained largely unexplored with few notable exceptions (Yessenalina and Cardie 2011;
Giesbrecht 2014). Methods for training such models can be inspired by appropriate machine
learning methods. Training CMSMs is supposed to yield a type of word embedding, assigning
to each word a preferably low-dimensional real-valued matrix. Thereby, similar to word vectors,
each word matrix is supposed to contain syntactic and semantic information about the word. In
the following, we describe options for supervised learning of CMSMs.

As discussed by Asaadi and Rudolph (2016), there is a close relationship between CMSMs and
weighted finite automata (WFA, cf. Sakarovitch 2009), so the problem of learning CMSMs could
be mapped to the problem of learning WFA to extract the matrix representation of words. In fact,
several methods for learning WFAs have been described (Balle, Hamilton, and Pineau 2014; Balle
and Mohri 2015), for example based on the principles of expectation maximization (Dempster,
Laird, and Rubin 1977) and method of moments (Pearson 1894). However, in the context of the
NLP tasks investigated by us, these techniques performed very poorly in terms of scalability and
accuracy; hence, we reverted to gradient descent-based methods.

Gradient descent is an iterative optimization algorithm which is applied to linear and nonlin-
ear problems. In gradient descent, the goal is to find the local minimum/maximum of an objective
function by taking steps proportional to the negative/positive gradient of the function at the cur-
rent point toward the local optimum. In many problems, gradient descent is used to minimize the
cost function or the error function by estimating the parameter values of the model.

There are several variants of gradient descent optimization methods. One basic distinction
made is that of batch versus stochastic learning. Given a set of training examples, in batch gradient
descent, parameter updates are done at each iteration to minimize the sum of the error functions
of all training examples, while in stochastic gradient descent parameters are updated after seeing
a training example. We found stochastic gradient descent to be a suitable optimization method
for learning CMSMs. The specific learning task is to train the model by adapting the word matrix
representations iteratively to locally minimize the cost function. Each word matrix is updated
according to the gradient descent update principle until finally, the trained word matrices in the
CMSM represent (good approximations of) the syntactic and semantics of compositional texts.

In the following, we will describe three variants of CMSM learning methods for two different
scenarios: First, in Section 7.1, we will look into learning techniques for compositional phrase
scoring models, that is, tasks where phrases are assigned a “score,” being a scalar value. Two vari-
ants of CMSM learning, that is, plain gradient descent and gradual gradient descent, are designed
for this purpose and will be investigated in the sentiment analysis task. Second, in Section 7.2, we
address the scenario aimed at simulating a compositional vector embedding for phrases by means
of a CMSM, for which we also present a gradient descent learning method. This approach will be
investigated for the compositionality prediction task.

7.1 Gradient descent for phrase scoring
We start by describing the supervised learning task for phrase scoring. We assume to be given a
training set containing pairs (si,ωi) of phrases si and real values ωi (representing si’s associated
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score) for i ∈ {1, . . . ,N} with N the size of training set, in which si = σ1 . . . σki is a phrase consist-
ing of ki tokens (words) andωi is a scalar value as the score of the corresponding sequence (phrase)
si. Recall that a CMSM assigns to each word σj a matrixMσj ∈R

m×m. Then the matrix representa-
tion of some phrase s= σ1 . . . σk is the matrix product of the word matrices in the corresponding
order:

Ms =Mσ1Mσ2 . . .Mσk = [[σ1]][[σ2]] . . . [[σk]].
To finally associate a scalar value ωs to a phrase s, we map the matrix representation of s to a real
number using the mapping vectors e1, em ∈R

m as follows:

ωs = e1Mse�m.

7.1.1 Plain gradient descent
We first take all the words in the training set as our vocabulary, creating for each a quadratic
matrix of size m×m. This provides us with the initial word-to-matrix mapping [[ · ]]. For every
phrase si = σ1 . . . σki from the training set, we compute its predicted score ω̂i as given above, that
is, via

ω̂i = e1Msie�m = e1[[σ1]][[σ2]] . . . [[σki]]e
�
m.

Then, we apply the batch gradient descent optimization method on the training set to minimize
the error function defined as the sum of the squared error (SSE)

E([[ · ]])= 1
2

N∑
i=1

(ω̂i −ωi)2,

where ω̂i is the predicted score, ωi is the target score from the training set to be learned, and N is
the size of the training set. To prevent from over-fitting and ill-conditioned matrices in learning,
we let

C([[ · ]])= E([[ · ]])+ penalty([[ · ]]),
adding a penalty term to the optimization problem. In this work, we consider L2 regularization,
that is, we let

penalty([[ · ]])= λ

2
∑
σ

||[[σ ]]||22 ,

where λ is the regularization parameter. In batch gradient descent, at each iteration, parameter
values are updated to converge to the local optimum. In this work, the parameters to be updated
are the word matrices. Therefore, we update each word matrixMσ according to

M′
σ =Mσ − η · (∂C([[ · ]])

∂Mσ

)=Mσ − η · (∂E([[ · ]])
∂Mσ

+ λMσ ),

where η is the step size toward the local minimum of the error function, called learning rate. L2
regularization is used because it is differentiable with respect to weight matrices.

Following Petersen and Pedersen (2012), the derivative of the predicted score ω̂i for a phrase
si = σ1 . . . σki with respect to the j-th word-matrixMσj = [[σj]] is computed by

∂ω̂i
∂Mσj

= ∂(αMσ1 · · ·Mσj · · ·Mσki
β�)

∂Mσj
= (αMσ1 · · ·Mσj−1 )

�(Mσj+1 · · ·Mσkβ
�)�.

If a word xj occurs several times in the phrase, then the partial derivative of the phrase with
respect toMσj is the sum of partial derivatives with respect to each occurrence ofMσj .
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7.1.2 Gradual gradient descent
In gradual gradient descent optimization, we (1) perform an “informed initialization” exploiting
available scoring information for one-word phrases (unigrams), (2) apply a first learning step
only on parts of the matrices and using scored one- and two-word phrases from our training set
(unigrams and bigrams), and (3) use the matrices obtained in this step as initialization for training
the full matrices on the full training set.

Initialization. In this step, we first take all the words in the training data as our vocabulary, creat-
ing quadratic matrices of sizem×m with entries from a normal distributionN (μ, σ 2). Then, we
consider the words which appear in unigram phrases si = σ with associated score ωi in the train-
ing set. We exploit the fact that for any matrixM, computing e1Me�m extracts exactly the entry of
the first row, last column ofM, that is,

ω̂i = e�1 Mem =

⎛
⎜⎜⎜⎝
1
...

0

⎞
⎟⎟⎟⎠
� ⎛
⎜⎜⎜⎝
x1,1 · · · x1,m
...
. . .

...

xm,1 · · · xm,m

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
0
...

1

⎞
⎟⎟⎟⎠ = x1,m.

Hence, to minimize the error, we update this entry in every matrix Mσ that corresponds to a
unigram si = σ of a scored unigram phrase (si,ωi) in our training set by this value, that is, we let

Mσ =

⎛
⎜⎜⎜⎝

· · · · ωi
...
. . .

...

· · · · ·

⎞
⎟⎟⎟⎠.

This way, we have initialized the word-to-matrix mapping such that it leads to perfect scores on
all unigrams mentioned in the training set.

First Learning Step. After initialization, we consider bigram phrases. The predicted score ω̂i of a
bigram phrase si = σσ ′ is now computed by

ω̂i = e1MσM′
σ e�m =

⎛
⎜⎜⎜⎝
1
...

0

⎞
⎟⎟⎟⎠
�⎛
⎜⎜⎜⎝
x1,1 · · · x1,m
...
. . .

...

xm,1 · · · xm,m

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
y1,1 · · · y1,m
...
. . .

...

ym,1 · · · ym,m

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
0
...

1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
x1,1
...

x1,m

⎞
⎟⎟⎟⎠
�⎛
⎜⎜⎜⎝
y1,m
...

ym,m

⎞
⎟⎟⎟⎠=

m∑
j=1

x1,jyj,m.

(1)

We observe that for bigrams, multiplying the first row of the first matrix (row vector) with the
last column of the second matrix (column vector) yields the score of the bigram phrase. Hence, as
far as the scoring of unigrams and bigrams is concerned, only the corresponding row and column
vectors are relevant – thanks to our specific choice of the vectors α = e1 and β = em.

This observation justifies the next learning step: we use the unigrams and bigrams in the
training set to learn optimal values for the relevant matrix entries only.

Second Learning Step. Using the entries obtained in the previous learning step for initialization,
we finally repeat the optimization process, using the full training set and optimizing all the matrix
values simultaneously, as described in the previous section.

7.2 Gradient descent for vector extraction with pre-trained vector embeddings
The type of learning method discussed here is different from the previous ones. As opposed to
these, we are not aiming at a scoring model that assigns scalars to phrases, but want to associate
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phrases with vectors. This is particularly suitable for NLP tasks that require linguistic entities to be
mapped into a vector space for comparison via distance or similarity measures. In such a setting,
the training data consists of pairs (si, vi), where si is a phrase and vi the vector associated to it. Such
training data can be obtained in different ways. One of the popular methods is to use the word2vec
model (Mikolov et al. 2013b), in which a two-layer NN is trained to produce high-dimensional
vectors for words. In this model, short phrases can also be considered as units and the model is
trained to extract a vector representation for phrases as well as for words (Mikolov et al. 2013b).

The model we train for this task is along the lines of Section 6.1. That is, given the word-to-
matrix mapping [[ · ]], we obtain the predicted vector v̂i for a phrase si = σ1 . . . σk through the
multiplication of its word matrices [[σj]] ∈R

m×m and the projection of the resulting matrix to the
vector space Rm using a mapping vector α ∈R

m as follows:

v̂i = α[[σ1]] . . . [[σk]]. (2)

We could now train the wordmatrices directly similar to the approach introduced in Section 7.1.1.
However, we will exploit the fact that for every word σ a pre-trained vector vσ is readily available
and, as previous studies in DSMs have shown, semantic similarity between two words σ and σ ′
correlates with smaller distances between their vector representations vσ and v′

σ (Padó and Lapata
2007; Mitchell and Lapata 2008; Turney and Pantel 2010). We want to preserve that information
by making sure that closeness of vσ and v′

σ entails similarity of [[σ ]] and [[σ ′]]. To this end, in the
learning algorithm, we let

[[σ ]]= vσT,

where T ∈R
m×m×m is a shared third-order tensor and vσT yields the matrixM with

M(i, j)=
m∑
k=1

vσ (k)T(k, i, j).

Besides having the above-mentioned effect, the usage of a shared tensor significantly reduces the
number of model parameters to be trained. Using a shared tensor in this way is inspired by Irsoy
and Cardie (2015).

Tmust produce suitable word matrices, which consequently result in vector representation of the
corresponding phrase. Therefore, we train the tensor in a regression model. Stochastic gradient
descent optimization is used to train the tensorT as a regression task tominimize the loss function
defined as SSE, namely

ET =
N∑
i=1

||v̂i − vi||22.

Note that [[σ1]] . . . [[σk]] in Equation (2) is the compositional matrix representation of the com-
pound, but since the training dataset is only available in vector space, we use a global mapping
vector α to map the final matrix to a vector representation.

The output is to learn a composition function ψ , which predicts the vector v̂i for a compound
si = σ1 . . . σki through the multiplication of its word matrices [[σj]] ∈R

m×m, obtained from the
trained tensor T, and the projection of the resulting matrix to the vector spaceRm using the global
mapping vector α ∈R

m as follows:

v̂i =ψ(si)= α�[[σ1]] . . . [[σki]].

Finally, the CMSM learns to compose the word matrix representations and predicts the vector
representation of the compound by mapping the final compound matrix to the vector space.
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8. Experiments
As discussed before, CMSMs can be used as alternative models to compositional VSMs in various
NLP tasks. In this section, we conduct experiments to evaluate the performance of CMSMs on
predicting compositionality. First, we investigate CMSMs on compositionality prediction of a sub-
category of MWEs, that is, nominal compounds, and compare to popular baseline compositional
VSMs. Then, considering sentiment analysis tasks, we study how well CMSMs capture sentiment
composition of different types of short phrases.

8.1 Evaluation on fine-grained compositionality prediction
MWEs are short compounds with two or more words showing a range of semantic composi-
tionality (semantic idiomaticity). The semantics of a compositional MWE can be understood
from the meaning of its components such as graduate student, whereas the semantics of a non-
compositional compounds cannot be predicted from the semantics of its parts, such as kick the
bucket. The meaning of this compound is “to die,” which cannot be obtained from the meaning of
kick and bucket (Baldwin and Kim 2010). MWEs are of different types such as nominal and verbal
MWEs. Predicting the degree of compositionality of MWEs is specially important in NLP appli-
cations such as phrase-based machine translation (Kordoni and Simova 2014) and word sense
disambiguation (Finlayson and Kulkarni 2011). Therefore, suitable models to capture the degree
of semantic compositionality of MWEs are required for downstream applications. In this experi-
ment, we evaluate the performance of several baseline CDSMs on predicting the degree of MWEs’
compositionality and compare them to CMSMs.

Baseline Compositional Distributional Semantic Models. Each model defines a composition
function f over the constituent word vectors to predict the compound vector. Given two words wi
and wj with associated vectors vi ∈R

m and vj ∈R
m, we evaluate the following baseline CDSMs:

• Weighted additive model: In this model, the predicted compound vector representation is
obtained as the weighted sum of the constituent word vectors (Mitchell and Lapata 2008;
Reddy et al. 2011), letting

v̂ij = f (wi,wj)= λ1vi + λ2vj with λ1 + λ2 = 1,
where λ1 and λ2 are the weight coefficients.

• Multiplicative model: In this model, the predicted compound vector representation is the
element-wise product of the constituent word vectors (Mitchell and Lapata 2008; Reddy et al.
2011), that is,

v̂ij = f (wi,wj)= vi � vj.
• Polynomial regression model: In this model, to predict the compound representation vij, the
constituent word vectors are stacked together [vi, vj] and a polynomial function ψ is applied
to them (Yazdani et al. 2015), yielding

v̂ij = f (wi,wj)=ψ([vi, vj])θ ,
where θ is the weight matrix to be trained, and ψ is the quadratic transformation

ψ(x1 · · · x2m)= (x21 · · · x22m x1x2 · · · x2m−1x2m x1 · · · x2m)
applied to the input vectors.

• Feedforward NN: In this model, the constituent word vectors are stacked together as the
input vector, and the input and output weight matrices are trained to predict the vector
representation of the compound (Yazdani et al. 2015), defined by

v̂ij = f (vi, vj)= σ ([vi, vj]W)V ,
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where W and V are the input-to-hidden and hidden-to-output layer weight matrices to be
trained and σ is a nonlinear function, such as the sigmoid function. The size of the hidden
layer h in the network is set to 300.

• Recurrent NN (RNN): In this model, the input word vectors are fed into the network
sequentially. The hidden state at time step t is computed by

ht = g(vtU + ht−1W + b),

where g is an activation function, such as tanh, to introduce nonlinearity. The hidden state
ht−1 from previous time step is combined with the current input vt and a bias b. The new
hidden state ht that we computed will then be fed back into the RNN cell together with the
next input and this process continues until the last input feeds into the network. Inputs are
the word vectors of the compounds in a sequence. The size of the hidden layer is set to 300.
We only require the output of the last time step T in the sequence, and therefore we pass
the last hidden layer hT through a linear layer to generate the predicted compound vector
representation via

v̂ij = hTV + c,

where V is the shared weight matrix of the linear layer.
• Compositional Matrix-Space Model: this model has been introduced in Section 7.2.

LSTMnetworks have been developed to deal with long input sequences of variable length and van-
ishing gradients (Hochreiter and Schmidhuber 1997; Yu et al. 2019). However, our investigations
focus on sequences of length just two, so plain RNNs do not suffer from the vanishing gradient
problem. Thus, we refrain from separately reporting on LSTMs, as their performance does not
significantly differ from that of plain RNNs.

For all models tested, the predicted compound vectors are compared to the true (target) vector
representation of the compounds through the similarity measurements. Note that the constituent
word vectors and the target compound vectors are obtained by training the vector embeddings
of all words and compounds using word2vec (Mikolov et al. 2013a) and fastText (Bojanowski
et al. 2017) on English Wikipedia dump 2018g as our corpus. It has been shown that these models
capture the semantics of short compositional phrases as well as words (Mikolov et al. 2013b). We
report the results of word2vec and fastText separately.

Training Data. For supervised models (CMSM, polynomial regression model, Feedforward NN,
and RNN), we fit the composition function f using supervised learning methods to capture the
compositional representation of the compounds. Therefore, as described in Section 7.2, we cre-
ate a training dataset from frequent two-word compounds extracted from our corpus Wikipedia
dump 2018. We create two training datasets for our experiments: one dataset consists of com-
pounds with associated target representations obtained from word2vec, and the other includes
the same compounds with associated target representations obtained from fastText. We limit our
experiments to bigrams as they are the most basic compositional structures and to respect the
evaluation datasets standard. We assume the majority of compounds are compositional and train
the compositional models on each training dataset separately. From each created training data, we
extracted about 0.1 of the data as the development set.

Evaluation Datasets. Finally, we use two recent gold standard evaluation datasets which reflect
the compositionality judgments of MWEs to evaluate all compositional models:

ghttps://dumps.wikimedia.org/.
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• Farahmand15h (Farahmand et al. 2015) provides 1,042 English noun–noun (N–N)
compounds (bigrams) extracted from Wikipedia which were annotated with a non-
compositionality degree between 0 (fully compositional) to 1 (fully non-compositional)
using crowdsourcing. Each compound was annotated by four annotators for binary non-
compositionality judgments, and the average of annotations was considered as the final score
of the compound which is a value from {0, 0.25, 0.5, 0.75, 1}.

• Reddy++i (Ramisch et al. 2016; Reddy et al. 2011) provides 180 English N–N and A–
N compounds (bigrams) with real-valued compositionality degree ranging from 0 (fully
non-compositional) to 5 (fully compositional) obtained from crowdsourcing and averaged
over around 10–20 annotators per compound. The dataset contains 143 N–N and 37 A–N
compounds.

The vector representation of bigrams in the evaluation datasets is obtained from word2vec and
fastText for examining the learned compositional models.

Experimental Setting and Results. In the experiments with word2vec, some compounds of the
datasets are not available in the word embeddings. Therefore, to test each model we consider 800
compounds from the Farahmand15 dataset and 148 compounds from the Reddy++ dataset. The
size of the training and development set are 7692 and 854 compounds, respectively, and fixed
for all models. In the experiments with fastText, all compounds of the Farahmand15 and the
Reddy++ datasets are included in fastText and therefore, we test eachmodel on the whole dataset.
The size of the training and development set are 11,566 and 1156 compounds, respectively, and
fixed for all models. The batch size for the training is set to b= 10. The learning rate is adapted
experimentally for each model.

We apply early stopping by computing the loss value of the development set to prevent over-
fitting. If the absolute difference of development loss in two consecutive iterations is lower than
the threshold of ε = 10−5, we stop the training. Once the model is trained, we evaluate the per-
formance of the trained model on both test datasets. The tensor T in the CMSM is initialized with
Gaussian distribution N (0, 0.01). The size of all vectors is set to 300 in both experiments with
word2vec and fastText. We report the average results over 15 runs.

To measure the closeness (proximity) between the predicted compound representations using
CDSMs and the true (target) representations of compounds, we compute cosine similarity as
well as the loss between the two representations. Cosine similarity computes the cosine between
the predicted composed vector and the true vector representation of the compound. To obtain
the loss, we compute the squared error loss (SE loss) between the predicted and the true vector
representation of the compound being sensitive to small errors. We expect a high loss value for
non-compositional compounds as the composition functions are not able to capture their repre-
sentations (Yazdani et al. 2015). Then, we compute the linear relationship between the computed
similarity values and the compositionality judgments from the test datasets. For this purpose, we
use the Pearson coefficient value r where a linear correlation between the values is computed
ranging from −1 to 1 with higher values showing more correlation between the predicted and
gold standard values.

Tables 4 and 5 show the average Pearson correlation coefficient r between the predicted similar-
ity values and the gold standard values in each dataset for different compositional models. Table 4
shows the results of the word2vec word embedding, and Table 5 shows the results of the fast-
Text word embeddings. Compositionality prediction of models is shown in two ways as described
before. First, if a method captures the compositional representation of the compounds, the cosine
similarity between the predicted and true representations has a higher value, otherwise the cosine

hhttps://github.com/meghdadFar/en_ncs_noncompositional_conventionalized.
ihttp://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds.

https://doi.org/10.1017/S1351324921000206 Published online by Cambridge University Press

https://github.com/meghdadFar/en_ncs_noncompositional_conventionalized
http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds
https://doi.org/10.1017/S1351324921000206


Natural Language Engineering 57

Table 4. Pearson value r for compositionality prediction using word2vec

Compositionality measures Cosine similarity SE loss

Model Dataset Reddy++ Farahmand15 Reddy++ Farahmand15

Additive 0.631 0.398 0.621 0.393
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiplicative 0.218 0.055 0.225 0.057
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiple regression 0.699± 0.008 0.404± 0.005 0.698± 0.008 0.394± 0.005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedforward NN 0.658± 0.027 0.395± 0.016 0.642± 0.029 0.382± 0.018
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RNN 0.688± 0.011 0.394± 0.006 0.687± 0.010 0.382± 0.006
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CMSM 0.710± 0.012 0.401± 0.005 0.700± 0.011 0.389± 0.004

Table 5. Pearson value r for compositionality prediction using fastText

Compositionality measures Cosine similarity SE loss

Model Dataset Reddy++ Farahmand15 Reddy++ Farahmand15

Additive 0.355 0.527 0.348 0.523
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiplicative 0.091 0.021 0.104 0.028
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiple regression 0.583± 0.011 0.521± 0.003 0.576± 0.011 0.513± 0.003
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedforward NN 0.583± 0.009 0.493± 0.004 0.586± 0.010 0.482± 0.005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RNN 0.565± 0.005 0.505± 0.003 0.557± 0.005 0.495± 0.003
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CMSM 0.617± 0.009 0.513± 0.004 0.605± 0.009 0.503± 0.004

similarity has a low value. Therefore, the cosine similarity column in both tables shows the result
of Pearson correlation value between the cosine similarity of the representation and the gold stan-
dard values in the test datasets, which are normalized between −1 (non-compositional) and 1
(compositional) compounds. Second, if a method captures the compositional representation of
the compounds, following Yazdani et al. (2015), the loss value between the predicted and true
representation of a compositional compound must be low and close to 0, otherwise it is a high
value. Therefore, the squared error loss (SE loss) column in the tables shows the result of the cor-
relation of the loss value (between the representations) with the gold standard values in the test
datasets, which are normalized to 0 (fully compositional) and 1 (fully non-compositional). The
tables demonstrate that the two measures provide very similar results.

We report the best results of the additive and multiplicative models obtained by adapting λ1
and λ2 (ranging from 0 to 1 with step size of 0.1) in these models. As we observe in both tables,
the multiplicative model is not powerful enough to predict compositionality. These results are
in line with the results in the work by Yazdani et al. (2015). The CMSM is trained to predict
the compositionality better than other models in the Reddy++ dataset in both tables, which
means that CMSM gives a higher loss value and lower cosine similarity to non-compositional
compounds. Moreover, the CMSM converges to its best model in fewer training iterations on
average. The number of training iterations for each supervised compositional model to reach its
optimal performance is shown in Table 6.

As is observed, CMSM converges faster than NN in both word embeddings and faster than
multiple regression in the fastText embedding, which shows an advantage of the model in
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Table 6. Average number of training iterations for each super-
vised model trained using word2vec and fastText

Average iterations Average iterations

Model in word2vec in fastText

Multiple regression 114 221
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neural network 320 258
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RNN 98 126
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CMSM 124 169

Figure 3. Sample compounds from Reddy++with predicted average compositionality scores by different models and gold
standard scores. Results of fastText embeddings are reported. Gold standard scores are between 0 (non-compositional) and
1 (fully compositional). A, adjective; N, noun; FF, Feedforward.

convergence speed with the same vector dimensionality. It is not significantly slower than other
models. The different iteration numbers in the two-word embeddings are due to the different
learning rate adapted to obtain the best models on the word embeddings. Various parameters such
as the training data and vector embeddings impact the performance of the models. Therefore, in
our experiments, we used the same training data and vector embeddings for all models to obtain
a more reliable indication regarding the relative performance of the models.

In the Farahmand15 dataset, the additive model outperforms CMSM while in the Reddy++
dataset, the CMSMoutperforms the additivemodel considerably.We speculate that this is because
the Reddy++ is a dataset with much more fine-grained values and CMSMs tend to be more accu-
rate in predicting the nuanced values than other models. Moreover, Reddy++ contains A–N and
N–N compounds as opposed to Farahmand15, which contains only noun compounds. Therefore,
we conclude that CMSMs can learn to capture the compositionality degree of the combination of
different compound types and predict the compositionality of A–N compounds better than the
studied compositional models. Figures 3 and 4 present sample compounds from Reddy++ and
Farahmand15 datasets with predicted compositionality degrees by different models. In both fig-
ures, we analyze the prediction of models that are trained using fastText embeddings and cosine
similarity is the compositionality measure showing the scores. As can be seen in Figure 3, we
choose different A–N and N–N compounds from Reddy++ with varying gold standard scores
from 0, that is,wet blanket to 1, that is, insurance company. The relationship between gold and pre-
dicted scores in the figure describes the Pearson correlation value presented in Table 5. Compared
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Figure 4. Sample compounds from Farahmand15 with predicted average compositionality scores by different models and
gold standard scores. Results of fastText embeddings are reported. Gold standard scores are between 0 (non-compositional)
and 1 (fully compositional). FF, Feedforward.

to the competitive additive model, CMSM follows an increasing trend in the predicted scores. It
assigns a slightly higher score to the A–N compound mental disorder than to cellular phone. All
models fail to predict the score of the A–N compound private eye, which can be due to the lower
frequency of its subwords in the given Wikipedia training corpus. Multiplicative model fails to
follow the increasing trend in the predicted scores as opposed to other models.

We randomly selected 15 compounds from the Farahmand15 dataset. Figure 4 confirms the
increasing trend in the predicted scores by all models except by the multiplicative model. In
general, compounds with the same gold standard score are not assigned to the same score in
regression tasks. The high difference in some compounds, such as in face value and zip code, could
be due to different frequencies and distributions of their subwords, resulting in different com-
positionality prediction. In most cases, CMSM predictions are closer than the additive model’s
predictions, for example, in building block, navy blue and touch screen compounds.

Note that while this work is similar to the very recent work by Cordeiro et al. (2019), our corpus
size and parameter settings for training word embeddings, such as embedding size, are different.
Therefore, their results are not directly comparable to our results and we repeated the experiment.
Higher performance reported in Cordeiro et al. (2019) is due to a much bigger training corpus
of word and compound embeddings and larger embedding size, which consequently consumes
memory. They only experiment on unsupervised approaches as opposed to our work, in which
we evaluate supervised approaches as well.

According to these results, we can conclude that a CMSM can be trained to capture the seman-
tic compositionality of compounds more efficiently than baseline VSMs. Moreover, CMSMs are
sensitive to syntactic properties such as the word order of the compound which affects the mean-
ing of complex expressions. The results suggest that matrix multiplication should be considered
instead of additive models as the composition operation to capture semantic composition along
long texts.

8.2 Evaluation on fine-grained sentiment analysis
Sentiment analysis is one of the most popular tasks in NLP. The task is to determine the sentiment
polarity and intensity of a text, for example, “a very good movie” indicates a positive sentiment
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Figure 5. Sentiment composition of a short phrase with matrix multiplication as a composition operation in CMSMs.

about themovie while “a very badmovie” carries a negative sentiment.With the increasing impor-
tance of review websites for marketing, a lot of research has been done in sentiment analysis to
automatically extract the opinion of people about a certain topic. In general, the task of sentiment
analysis is to rate the sentiment of a text using either binary classification (negative, positive) or
multiple classes (negative, positive, neutral) with intensities (weak, medium, extreme), the latter
being called fine-grained sentiment analysis. The sentiment score can be also computed as a real-
valued score in a continuous interval showing the polarity and intensity of the text, which then
can be mapped to classification problem by discretization.

Sentiment analysis can be applied to a single word or texts of varying length including short
and long texts. There are several aspects which must be considered when analyzing complex texts.
First, different types of constituents and functional words such as negators, adjectives, adverbs,
and intensifiers affect the total sentiment of the text differently. Second, a different order of the
words results in a different sentiment score. Yessenalina and Cardie (2011) showed an application
of CMSMs in compositional sentiment analysis task (see an example in Figure 5) and how it cap-
tures compositionality and the above properties in this task. They proposed a supervised machine
learning technique for learning CMSMs in sentiment analysis of short texts. The proposedmethod
learns a matrix representation for each word which captures compositionality properties of the
language.

In high dimensional matrix-space models, each dimension is a model parameter to be esti-
mated in the optimization problem. Some parameters might not be relevant to the problem,
and the number of parameters is usually higher than the size of the data. Parameters in a high-
dimensional space are also dependent on each other. Due to these properties, several local optima
in the objective surface can be found during the optimization of the objective function. In such
a situation, the solution depends heavily on initialization to provide a better starting point for
exploration of optimal points and avoid immediate local optima. Furthermore, training steps can
be designed carefully to help effective exploration and exploitation.

Training CMSMs using machine learning techniques yields a type of word embedding for
each word, which is a low-dimensional real-valued matrix. Similar to word vectors in VSMs,
each word matrix is supposed to contain syntactic and semantic information about the word.
Since we consider the task of sentiment analysis, word embeddings must be trained to contain
sentiment-related information.

In the following, we train CMSMs to capture the sentiment score of compositional phrases.
We apply our learning approach introduced in Section 7.1.2 to train CMSMs. Word matrices are
initialized in two ways: random initialization from the Normal distribution and identity matri-
ces plus a noise value from the Normal distribution. Our approach with the introduced informed
initialization and two learning steps (see Section 7.1.2) is called gradual gradient descent-based
matrix-space models (Grad-GMSM) in which the word matrices are initialized randomly. The
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Table 7. Phrase polarities and their occur-
rence frequencies in the SCL-OPP dataset

Polarity Frequency

Negative 647
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neutral 12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Positive 519

Table 8. Phrase polarities and intensities in theMPQA corpus, their translation
into sentiment scores and their occurrence frequency

Polarity Intensity Score Frequency

Negative High, extreme −1.0 1581
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Negative Medium −0.5 1940
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neutral Medium, high, extreme 0.0 4475
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Positive Medium 0.5 1151
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Positive High, extreme 1.0 354

same approach with the identity plus a noise value as the initialization for matrices is called Grad-
GMSM+IdentityInit. We conduct several experiments with two different datasets and discuss the
results in detail.

Datasets.We use the following datasets for our experiment purposes:

• SCL-OPP (Sentiment Composition Lexicon with Opposing Polarity Phrases)j: this dataset con-
sists of 602 unigrams, 311 bigrams, and 265 trigrams that have been taken from a corpus
of tweets, and annotated with real-valued sentiment scores in the interval [− 1,+1] by
Kiritchenko and Mohammad (2016b). Each multi-word phrase contains at least one nega-
tive word and one positive word. The dataset contains different noun and verb phrases. The
frequency of polarities is as per Table 7.

• MPQA (Multi-Perspective Question Answering) opinion corpusk: this dataset contains
newswire documents annotated with phrase-level polarity and intensity. We extracted the
annotated verb and noun phrases from the corpus documents, obtaining 9501 phrases. We
removed phrases with low intensity similar to Yessenalina and Cardie (2011). The levels
of polarities and intensities, their translation into numerical values, and their occurrence
frequency are as per Table 8.

8.2.1 Evaluation on SCL-OPP
The purpose of this experiment is to investigate the performance of the CMSMs in predicting
the sentiment composition of phrases that contain words with opposing polarities. The sentiment
value of words (unigrams) is given for training the CMSM. In the first part, we compare the results

jhttp://www.saifmohammad.com/WebPages/SCL.html.
khttp://mpqa.cs.pitt.edu/corpora/mpqa_corpus/.
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to the results obtained from word2vec embeddings in the work by Kiritchenko and Mohammad
(2016b). In the second part, we explore different choices of dimensionality in learning CMSMs.

For the purposes of the first experiment, we set the dimension of matrices to m= 200 to be
able to compare the results with those reported in Kiritchenko and Mohammad (2016b) as well
asm= 5, and number of iterations to T = 400. We choosem= 5 based on practical experiments,
and as we will show in Table 11, by increasing the dimensions from 2 to 5 better performance
could be obtained, however, with higher dimensions we did not observe significant improvement
in the performance of themodel.Wordmatrices are initialized with an identity matrix plus a noise
from Gaussian distributionN (0, 0.01) as it is also suggested in previous works (Socher et al. 2012;
Maillard and Clark 2015). We use the sentiment value of unigrams to initialize the corresponding
element in the word matrices. The learning rate η in gradient descent is set to 0.017 and 0.001 for
dimension 200 and 5, respectively. We use the Pearson correlation coefficient r for performance
evaluation, which measures the linear correlation between the predicted and the target sentiment
value of phrases. Pearson coefficient value ranges from −1 to 1 with higher values showing more
correlation between the predicted and target values.

We first report the results for training only trigrams in the dataset since training bigrams does
not train all the elements in word matrices. When bigrams are trained using the mapping vectors
e1 and em, only the first row of the first word matrix and the last column of the second word
matrix are trained and other elements of the matrices remain fixed. This can be seen in Equation
(1). Then, we combine trigrams and bigrams as our training set and apply our regular training
procedure on the whole dataset. We consider it important that the learned model generalizes well
to phrases of variable length; hence, we consider the training of one model per phrase length not
conducive. Rather, we argue that training CMSM can and should be done independent of the
length of phrases, by ultimately using the combination of different length phrases for training and
testing, given the sentiment value of unigrams.

We apply a 10-fold cross-validation process on the training data as follows: eight folds are used
as training set, one fold as validation set, and one fold as test set. We average over 10 repeated runs
to obtain the final results. At each run, folds are selected randomly and we report the best results
obtained from early stopping in T iterations. As a measure of statistical dispersion, we report the
standard deviation of Pearson values in 10 repeated runs.

Kiritchenko and Mohammad (2016b) study different patterns of sentiment composition in
phrases. They analyze the efficacy of baseline and supervised methods on these phrases, and the
effect of different features such as POS tags, pre-trained word vector embeddings, and sentiment
score of unigrams in learning sentiment regression. Table 9 shows the results of different meth-
ods for training the trigrams. As baseline, they evaluate the last unigram of the phrase (Row 1),
POS tags of the phrase (Row 2), and most polar unigram of the phrase (Row 3) to predict the
overall sentiment score of the phrase. As a supervised method, they apply RBF kernel-based SVR
(RBF-SVR). In RBF-SVR, different set of features are evaluated on predicting real-valued sen-
timent scores. Row 8 considers the following features which give the best results: all unigrams
(uni), their sentiment scores (sent. score), POS tags (POS), and concatenation of unigram embed-
dings (emb(conc)). Results show that concatenation of unigram embeddings as the composition
operation outperforms average of unigram embeddings (emb(ave)) and maximal embeddings
(emb(max)). The embeddings are obtained from word2vec (Mikolov et al. 2013a). They analyze
the results for bigrams and trigrams separately. Our approach does not use information extracted
from other resources (such as pre-trained word embedding) nor POS tagging techniques, that is,
we perform a light-weight training with fewer features, which can be considered as an advantage
of CMSMs. As it is shown in Table 9, we observe better performance of Grad-GMSM on trigram
phrases (Rows10) over baseline methods and emb(ave) as the composition operation (Row 7).
We also obtained similar results with significantly lower dimensions (Row 9), which still out-
performs the described models. In contrast, vector concatenation as the composition operation
(Rows 6 and 8) outperforms our model by transforming the embeddings to a different space (to a

https://doi.org/10.1017/S1351324921000206 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000206


Natural Language Engineering 63

Table 9. Performance comparison for different methods in SCL-OPP dataset considering only
trigram phrases

Pearson

Row Method r

1 Baseline last unigram 0.376
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Baseline POS rule 0.515
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Baseline most polar unigram 0.551
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 RBF-SVR (POS, sent. score) 0.578
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 RBF-SVR (POS, sent. score, uni) 0.711
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 RBF-SVR (POS, emb(conc), uni) 0.744
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 RBF-SVR (POS, sent. score, emb(avg), emb(max)) 0.710
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 RBF-SVR (POS, sent. score, uni, emb(conc)) 0.753
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Grad-GMSM+ IdentityInit (m=5) 0.741± 0.010
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Grad-GMSM+ IdentityInit (m=200) 0.737± 0.017

higher dimensional space). Matrix multiplication remains in the same space and this introduces
an advantage of matrix multiplication over vector concatenation. Table 10 presents the sentiment
score of some representative phrases with different POS predicted by CMSMs and their gold stan-
dard scores. On average, the predicted results correlate with the gold standard results. A small
discrepancy can be observed, for example, best winter break is expected to be more positive than
happy tears and tired but happy, but it is predicted as less positive.

Finally, we repeated the experiments on the Grad-GMSM+IdentityInit model with values of
m (i.e., different numbers of dimensions), and using the whole dataset (i.e., bigram and trigram
phrases). Note that unigrams are only included for initialization of the training step and we
excluded them from the validation and test sets. The noise values are drawn from Gaussian distri-
bution N (0, 0.01). Number of iterations are set to T = 400. The learning rate η is set to 0.01 and
0.001 for the first and second steps, respectively. For each dimension number, we take the average
of five runs of 10-fold cross validation. As shown in Table 11, the results improve only marginally
when increasing m over several orders of magnitude. Also the average number of required itera-
tions remains essentially the same, except form= 1, which does not exploit the matrix properties
and performs like the bag-of-wordsmodel.We see that – as opposed to VSMs – good performance
can be achieved already with a very low number of dimensions. By increasing the dimensionality,
the number of parameters to train grows, which leads the model to get stuck in local optima in the
objective surface.

8.2.2 Evaluation on MPQA
The purpose of this experiment is to evaluate the performance of CMSMs in predicting the senti-
ment value of phrases of variable length. We compare the performance of our proposed method
to two closely related approaches introduced by Yessenalina and Cardie (2011), called Matrix-
space OLogReg+BowInit, and by Irsoy and Cardie (2015), called mRNN. We choose these two
approaches because the first learning method focuses on training the CMSMs. The latter method,
inspired by CMSMs, generalizes the model and incorporates multiplicative interaction of matri-
ces for compositionality in RRNs in the task of sentiment analysis. First, we explain these methods
and their relevance to our work. Then, we discuss the obtained results in different methods.
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Table 10. Example phrases with average sentiment scores on 10-fold cross-
validation and different POS tags. A, adjective; N, noun; V, verb; &, and; D,
determiner

Phrase Grad-GMSM Gold-standard POS

Happy tears 0.644 0.828 A–N
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spent the afternoon 0.395 0.203 V–D–N
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tired but happy 0.599 0.438 A–&–A
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Best winter break 0.571 0.844 A–N–V
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Holiday madness 0.306 0.203 N–N

Table 11. Performance comparison for different dimensions of matrices in the
complete SCL-OPP dataset (i.e., considering bigrams and trigrams for the experi-
ment)

Number of Ranking Pearson Total number

dimensions loss r of iterations

1 0.389 0.463 283.48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.300 0.702 179.75
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.293 0.716 130.13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.289 0.722 153.60
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 0.292 0.724 150.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 0.293 0.721 151.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 0.291 0.722 153.30
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

200 0.289 0.724 157.15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

300 0.292 0.722 160.36

Yessenalina and Cardie (2011) propose a model to predict an ordinal sentiment score (e.g.,
label 0 for highly negative sentiment, 1 for medium negative, 2 for neutral, and so on) for a given
phrase. The model learns an interval for each sentiment label. Therefore, the model parameters
to optimize are the word matrices as well as a set of threshold values (also called constraints),
which indicate the intervals for sentiment classes as they convert sentiment classes to ordi-
nal labels. Word matrices are initialized in two ways: random initialization using the normal
distribution, and BOWs initialization. In the latter case, first a Bag-of-Words OLogReg (BOW-
OLogReg) model is trained on the same dataset in which each word in the BOWs model learns a
scalar weight using OLogReg. Then, a specific element of matrices is initialized with the learned
weights from BOW-OLogReg. They apply OLogReg to train word matrices and optimize the
threshold values by maximizing the probability of predicting the sentiment interval of given
phrases in the dataset or minimizing the negative log of the probability. To avoid ill-conditioned
matrices, they add a projection step to matrices after each training iteration by shrinking all
singular values of matrices close to one. The trained model with random initialization is called
Matrix-space OLogReg+RandInit and the one with BOW initialization is called Matrix-space
OLogReg+BowInit. The latter model outperforms the random initialization of the matrix-space
model. They argue that the learning problem for CMSMs is a non-convex optimization problem,

https://doi.org/10.1017/S1351324921000206 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000206


Natural Language Engineering 65

that is, the objective function of optimization problem can get stuck at local optima in the high
dimensional matrix space. Therefore, the model must be initialized and trained carefully to avoid
getting stuck in local optima.

We relax the non-convexity issue in our proposed learning method by introducing a spe-
cific initialization and gradual stochastic gradient descent learning strategy. Our results in the
sentiment analysis task demonstrate the effectiveness of the proposed initialization and training
strategy in obtaining better performance of the trainedmodel than existing approaches. Moreover,
Yessenalina and Cardie (2011) propose amodel for ordinal sentiment scale prediction and address
the optimization problem using the OLogReg method with constraints on sentiment intervals. As
opposed to their work, we directly address a sentiment regression task. Therefore, our learning
method does not need to constrain the sentiment scores to certain intervals, and thus, the number
of parameters to learn reduces to only word matrices.

Inspired by CMSMs, Irsoy and Cardie (2015) proposedmRNN to train the CMSMs. In mRNN,
a multiplicative interaction between the input vector and the previous hidden layer in a RNN is
introduced using a shared third-order tensor T ∈R

m×m×m. At each time step, the input word
vector v ∈R

m is multiplied with the weight tensor T, which results in a matrix M of size m×m.
Then the resulting matrix is multiplied with the previous hidden layer ht−1 to finally obtain the
current hidden layer at time step t. Therefore, if the current hidden layer of a RNN is defined by

ht = g(vtU + ht−1W + b),

then the mRNN computes the current hidden layer according to

ht = g(vtU + ht−1W + v�
t Tht−1 + b),

where in both equations,U andW are the shared weightmatrices for input-to-hidden and hidden-
to-hidden layers, respectively, and b is the bias of the network. g is a nonlinear activation function,
such as tanh function. vt is the specific input word at time t, while ht is the result of the current hid-
den layer. This means that the multiplicative relation between the input and the previous hidden
layer is added to the current hidden layer computation. Thus, by introducing the shared tensor
T, they incorporate multiplicative interaction in matrix space to RNNs using the term v�

t Tht−1.
They use pre-trained word vectors of dimensionm= 300 fromword2vec (Mikolov et al. 2013b) as
the input to their network. They show that the interactive multiplication outperforms the additive
interaction in vector space in RNNs in the task of compositional sentiment analysis. Moreover, in
this way, the number of parameters to learn in the CMSMs is reduced. Furthermore, as opposed
to the approach for compositionality via multiplicative interaction introduced by Socher et al.
(2013), parse trees are not required. Inspired by this model, we introduce a shared third-order
tensor to the model and train the tensor to obtain word matrix representations by multiplying
any word vector with the trained tensor. Then, word matrices are further utilized for captur-
ing compositionality of phrases in CMSMs using matrix multiplication. Moreover, similar to this
work, we aim at capturing compositionality through sequential multiplication without using parse
trees. However, as opposed to this work, we do not introduce nonlinear functions in our proposed
approach as we aim to keep the original characteristics of CMSMs.

As described above, word matrices are initialized in two ways. Our proposed approach in
Section 7.1.2 with random initialization of matrices from the Normal distribution is called Grad-
GMSM, and with identity matrices plus a noise value from the Normal distribution is called
Grad-GMSM+IdentityInit. To assess the effect of our gradual two-step training method, we study
the impact of different types of matrix initialization and compare the results of Grad-GMSM
against those obtained by random initialization followed by a single training phase where the
full matrices were optimized (RandInit-GMSM).

We apply a 10-fold cross-validation process on the training data as follows: eight folds are used
as training set, one fold as validation set, and one fold as test set. The initial number of iterations

https://doi.org/10.1017/S1351324921000206 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000206


66 S Asaadi et al.

Table 12. Ranking loss of compared methods

Ranking

Method loss

BOW-OLogReg (Yessenalina and Cardie 2011) 0.6665
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Matrix-space OLogReg+RandInit (Yessenalina and Cardie 2011) 0.7417
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Matrix-space OLogReg+BowInit (Yessenalina and Cardie 2011) 0.6375
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiplicative RNN (Irsoy and Cardie 2015) 0.5147
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RandInit-GMSM 0.3645± 0.007
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Grad-GMSM 0.3429± 0.013
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Grad-GMSM+ IdentityInit 0.3086± 0.009

in the first learning and second learning steps is set to T = 400 each, but we stop iterating when
we obtain the minimum ranking loss

E= 1
n

n∑
i=1

|ω̂i −ωi|

on the validation set. Finally, we record the ranking loss of the obtained model for the test set.
The learning rate η of the first and second training steps was adapted experimentally to 0.01 and
0.001, respectively. The dimension of matrices is set tom= 3 to be able to compare our results to
the related approaches described by Yessenalina and Cardie (2011) and Irsoy and Cardie (2015).
However, we study the impact of the number of dimensions on the CMSM performance.

Table 12 compares the result of our model to the explained Yessenalina and Cardie (2011)’s
models and Irsoy and Cardie (2015)’s model in the matrix space. As we observe, Grad-
GMSM+IdentityInit obtains a significantly lower ranking loss than previously proposed methods
and our Grad-GMSM approach.

By comparing Grad-GMSM+IdentityInit with Grad-GMSM, we also observe faster conver-
gence, since the lowest ranking loss of Grad-GMSM+IdentityInit is obtained after 114.55 number
of training iterations on average. In Grad-GMSM, the lowest ranking loss happens on average after
161.85 number of training iterations. RandInit-GMSM is not able to converge to its best model in
T iterations.

Table 13 shows the sentiment scores of some example phrases trained using these twomethods.
As shown in the table, the two approaches’ results coincide regarding the order of basic phrases:
the score of “very good” is greater than “good” (and both are positive) and the score of “very bad”
is lower than “bad” (and both are negative). Also, “not good” is characterized as negative by both
approaches. On the other hand, there are significant differences between the two approaches: for
example, our approach characterizes the phrase “not bad” as mildly positive while Yessenalina
and Cardie (2011)’s approach associates a negative score to it, the same discrepancy occurs for
“not very bad”. Intuitively, we tend to agree more with our method’s verdict on these phrases.

In general, our findings confirm those of Yessenalina and Cardie (2011): “very” seems to inten-
sify the value of the subsequent word, while the “not” operator does not just flip the sentiment
of the word after it but also dampens the sentiment of the words gradually. On the other hand,
the scores of phrases starting with “not very” defy the assumption that the described effects of
these operators can be combined in a straightforward way. Adverbs and negators in natural lan-
guage play an important role in determining the sentiment score of phrases. Our results showed
that multiplicative interaction in CMSMs captures the effect of adverbs and negators on the
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Table 13. Frequent phrases with average sentiment scores

Matrix-space

Phrase Grad-GMSM OLogReg+BowInit

Good 0.64 2.81
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Very good 0.84 3.53
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Not good –0.43 –0.16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Not very good –0.23 0.66
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bad –0.69 –1.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Very bad –0.81 –2.01
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Not bad 0.32 –0.54
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Not very bad 0.21 –1.36

Figure 6. The order of sentiment scores for sample phrases (trained on MPQA corpus).

sentiment score when composed with a phrase. Figure 6 provides a more comprehensive selec-
tion of phrases and their predicted scores by our approach. We obtained the range of sentiment
scores by taking the minimum and maximum values predicted in the 10-fold cross-validation.
We obtained an average of ω(very very good)= 0.98, which is greater than “very good”, and
ω(very very bad)= −0.95 lower than “very bad”. Therefore, we can also consider “very very” as an
intensifier operator. Moreover, we observe that the average score of ω(not really good)= −0.34
is not equal to the average score of ω(really not good)= −0.58, which demonstrates that the
matrix-based compositionality operation shows sensitivity to word orders, arguably reflecting the
meaning of phrases better than any commutative operation could.

Although the training data consists of only the values of Table 8, we consider a regression
method for training CMSMs. Thus, the training of the model is done in a way that sentiment
scores for phrases with more extreme intensity might yield real values greater than +1 or lower
than −1, since we do not constrain the sentiment scores to [− 1,+1]. Moreover, in our exper-
iments we observed that no extra precautions were needed to avoid ill-conditioned matrices or
abrupt changes in the scores while training.
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Table 14. Time cost for training CMSMs with different dimensionality and datasets. Time is
reported in minutes

Approach Time (MPQA) Time (SCL–OPP)

Grad-GMSM+IdentityInit (m=5) 13 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Grad-GMSM+IdentityInit (m=200) 270 90

To observe the effect of a higher number of dimensions on our approach, we repeated the
experiments for Grad-GMSM+IdentityInit with m= 50, and observed a ranking loss of e=
0.3092 ± 0.011 (i.e., virtually the same as for m= 3) and almost similar values for the number
of training iterations T = 122 confirming the observation of Yessenalina and Cardie (2011), that
increasing the number of dimensions does not significantly improve the prediction quality of the
obtained model.

In Table 14, we study the time cost required for training CMSMs in the studied training data
(SCL–OPP and MPQA) and with two different dimensionalities (5 and 200). Note that we report
the time cost for 10-fold cross-validation. Results show the advantage of smaller dimensionality
of CMSMs in faster convergence.

9. Discussion, conclusion, and future work
We have introduced a generic model for compositionality in language where matrices are associ-
ated with tokens and the matrix representation of a token sequence is obtained by iterated matrix
multiplication. On the theoretical side, we have given algebraic and structural plausibility indi-
cations in favor of this choice. We have shown that the proposed model is expressive enough to
cover and combine distributional and symbolic aspects of natural language, and simulate both
numeric and symbolic approaches to language in contrast to VSMs.

On the practical side, we have studied the behavior of CMSMs along different aspects
(e.g. dimensionality) experimentally. According to experimental investigations in Section 14,
CMSMs are a promising framework to model task-specific semantic compositionality such as
compositional sentiment analysis and compositionality prediction of short phrases. The pro-
posed approach for learning CMSMs in compositional sentiment analysis provides an informed
initialization for a better starting point for exploration of optimal points and a gradual gradi-
ent descent-based learning strategy to avoid immediate local optima. It outperforms previous
approaches to CMSMs in this task. Moreover, matrix product as the composition operation in
CMSMs outperforms vector averaging as the composition operation in VSMs in the same task
and on a special dataset consisting of opposing polarity phrases. Small dimensionality and inde-
pendence from extra preprocessing of the training data (e.g., POS tagging) can be put forward as
the advantages of CMSMs in compositional sentiment analysis.

In the compositionality prediction task, CMSMs outperform several vector-space baseline
models on a gold standard dataset consisting of N–N and A–N compounds. Results show that
CMSMs are more accurate in predicting the compositionality of A–N compounds than the stud-
ied VSMs. However, CMSMs do not outperform vector addition on another gold standard dataset
of N–N compounds, which is in contrast to the theoretical studies showing superiority of matrix
product over vector addition. We speculate that other aspects than compositionality play an
important role in such tasks, such as the approach to create the underlying gold standard dataset,
and the distribution of semantic representation of individual words in the space.

We have seen strong evidence that CMSMs embed relevant information in considerably fewer
dimensions than in VSMs on these specific tasks, which gives a clear advantage in terms of com-
putational cost and storage in training. Certainly, while CMSMs overcome certain limitations of
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VSMs, they may still inherit some of their foundational weaknesses (cf. Ježek 2016). We are aware
that experiments have been only done on short length sequences, and further investigation is
needed for examining the suitability of CMSMs for longer texts, such as sentences.

Matrix multiplication on long sequences introduces the vanishing or exploding gradient prob-
lem and can cause the final matrix to contain extremely small values. Hence, when updating word
matrices in the gradient descent algorithm, small values are obtained from the derivative of the
loss function with respect to a word matrix M, which may not update the word matrix values
adequately. Therefore, mechanisms are needed to avoid this issue when training CMSMs on long
sequences. Moreover, when CMSMs are trained on long sequences in a specific task, such as sen-
timent analysis, not all words contain task-specific information. A method could be introduced
to learn attention weights for words and give more weights to those words that carry the relevant
information, for instance, sentiment-carrying words in sentiment analysis.

Furthermore, due to associativity, matrix multiplication cannot capture all syntactic informa-
tion of a long sentence. Therefore, certain linguistic effects (like a-posteriori disambiguation)
cannot be modeled via associative mappings. Thus, we might equip CMSMs with nonlinear
functions to introduce non-associativity to the CMSMs and resolve word sense disambiguation
problems in natural language. For instance, one could apply some sort of sigmoid function to the
output of matrix multiplications for any given two matrices in a sequence. The resulting matrix
can then be multiplied with the next word matrix followed again by application of a nonlinear
mapping. Thus, another avenue of further research is to generalize from the linear approach,
very much in line with the current trend in deep learning techniques. For instance, when design-
ing deep neural architectures, we can incorporate word matrices and multiplicative composition
instead of additive vector composition into hidden layers of the network to obtain intermediate
representation for phrase matrices. That is, weight matrices in the hidden layers of a network are
replaced with third-order weight tensors, which results in matrix-space operations. A similar idea
has been proposed by Chung et al. (2018) who incorporate CMSMs into tree-structured LSTMs to
capture multiplicative interaction in the composition of words to sentences for natural language
understanding.

Recently, contextualized word representation models, such as ELMo (Peters et al. 2018) and
BERT (Devlin et al. 2019), have shown state-of-the-art performance in downstream NLP tasks.
These models have been trained on pre-training objectives, such as masked language modeling,
using huge text corpora. However, they need to be fine-tuned on downstream NLP tasks using
task-specific training data. Since CMSMs can be also trained using similar task-specific datasets,
we suggest that when dealing with NLP tasks where compositionality plays an important role,
such as in phrase-based statistical machine translation (Weller et al. 2014; Kordoni and Simova
2014), a comparative analysis of contextualized and non-contextualized representation models in
capturing the compositional meaning of phrases would be helpful to choose the best approach for
phrase-level compositional representation. CMSMs capture the nuances of compositional phrase
meaning and training these models needs lower computational cost, which could be useful in
situations where limited computational resources are available.

Overall, this work demonstrates that CMSMs compose attractive theoretical features and prac-
tical behavior, which strongly suggest CMSMs as a suitable model of semantic compositionality
in downstream NLP applications. Moreover, recent research in psycholinguistics has focused on
assessing the cognitive plausibility of DSMs and word embeddings in VSMs. We can similarly
argue for the psychological plausibility of CMSMs, which is presented in Appendix C. However,
we leave the justification of these models as a separate research work since systematic analysis of
these models in psychologically related tasks, such as semantic priming, is needed.

As future work, we will explore how to train task-independent CMSMs to capture the dis-
tributional representation of words similar to non-contextualized distributional VSMs such as
word2vec and even contextualized language representation models such as pre-trained BERT
(Devlin et al. 2019) in which distinct embeddings of a word can be obtained when occurring in
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different contexts. One immediate advantage of employing distributional matrix-space models is
that matrix multiplication is an operation which is most natural, plausible on several levels, word-
order-sensitive, and allows for a dynamic composition of word matrices to longer phrases and
even sentences. However, if and how semantic information can be embedded in fewer dimensions
than BERT or word2vec still needs to be investigated.

Another interesting line of research on CMSMs is to investigate the performance of CMSMs
in capturing compositionality in other languages such as German, where individual words can be
combined to make compounds leading to infinite number of German compounds. However, suit-
able preprocessing techniques for compound splitting would be needed for this purpose (Weller
et al. 2014).
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A. CMSMs capture compositional vector-space models
A.1 Vector addition
As a simple (and arguably the most straight-forward) basic model for semantic composition,
vector addition has been proposed. Thereby, tokens σ get assigned (usually high-dimensional)
vectors vσ and to obtain a representation of the meaning of a sequence s= σ1 . . . σk, the vector
sum of the vectors associated with the constituent tokens is calculated: vs =∑k

i=1 vσi .
This kind of composition operation is subsumed by CMSMs; suppose in the original model, a

token σ gets assigned the vector vσ , then by defining

ψ+(vσ )=

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 0 0
...
. . .

...

0 1 0

vσ 1

⎞
⎟⎟⎟⎟⎟⎠

(mapping n-dimensional vectors to (n+ 1)× (n+ 1) matrices) as well as
χ+(M)= (M(m, 1) M(m, 2) · · · M(m,m− 1))

(that is, given a matrixM, extract the lowest row omitting the last entry), we obtain for a sequence
s= σ1 . . . σk

χ+(ψ+(vσ1 ) . . . ψ+(vσk))= vσ1 + . . .+ vσk = vs.
Proof. The correspondence is a direct consequence of the equality ψ+(vσ1 ) . . . ψ+(vσk)=
ψ+(vσ1 + . . .+ vσk) which we prove by induction over k. For k= 1, the claim is trivial. For k> 1,
we have

ψ+(vσ1 ) . . . ψ+(vσk−1 )ψ+(vσk)
i.h.= ψ+

⎛
⎝k−1∑

i=1
vσi

⎞
⎠ψ+(vσk)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 0
...

. . .
...

0 1 0
k−1∑
i=1

vσi(1) · · ·
k−1∑
i=1

vσi(n) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 0 0
...

. . .
...

0 1 0

vσk(1) · · · vσk(n) 1

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 0
...

. . .
...

0 1 0
k∑

i=1
vσi(1)· · ·

k∑
i=1

vσi(n) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=ψ +
(

k∑
i=1

Vσ i
)

=ψ+(vσ 1+ ...+ vσk) q.e.d.

A.2 Component-wise multiplication
On the other hand, the Hadamard product (also called entry-wise product, denoted by �) has
been proposed as an alternative way of semantically composing token vectors.
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Using a different encoding into matrices, CMSMs can simulate this type of composition
operation as well. By letting

ψ�(vσ )=

⎛
⎜⎜⎜⎜⎜⎜⎝

vσ (1) 0 · · · 0

0 vσ (2)
...

. . . 0

0 · · · 0 vσ (n)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

as well as

χ�(M)= (M(1, 1) M(2, 2) · · · M(m,m))

(i.e., χ� extracts the values of M’s diagonal), we obtain an n× n matrix representation such that
for any sequence s= σ1 . . . σk holds

χ�(ψ�(vσ1 ) . . . ψ�(vσk))= vσ1 � . . .� vσk = vs.

Proof. The correspondence is a direct consequence of the equality ψ�(vσ1 ) . . . ψ�(vσk)=
ψ�(vσ1 � . . .� vσk) which we prove by induction on k. For k= 1, the claim is trivial. For k> 1,
we have
ψ�(vσ1 ) . . . ψ�(vσk−1 )ψ�(vσk)

i.h.= ψ�
(⊙k−1

i=1 vσi
)
ψ�(vσk)

=

⎛
⎜⎜⎝
∏k−1

i=1 vσi(1) · · · 0
...

. . .
...

0 · · ·∏k−1
i=1 vσi(n)

⎞
⎟⎟⎠
⎛
⎜⎜⎝
vσk(1) · · · 0
...

. . .
...

0 · · · vσk(n)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
∏k

i=1vσi(1) · · · 0
...

. . .
...

0 · · ·∏k
i=1vσi(n)

⎞
⎟⎟⎠

=ψ�

⎛
⎝ k⊙

i=1
vσi

⎞
⎠=ψ�(vσ1 � . . .� vσk)

q.e.d.

A.3 Holographic reduced representations
Holographic reduced representations as introduced by Plate (1995) can be seen as a refinement of
convolution products with the benefit of preserving dimensionality: given two vectors v1, v2 ∈R

n,
their circular convolution product v1 � v2 is again an n-dimensional vector v3 defined by

v3(i+ 1)=
n−1∑
k=0

v1(k+ 1) · v2((i− k mod n)+ 1)

for 0≤ i≤ n− 1. Now let ψ�(v) be the n× nmatrixM with

M(i, j)= v((j− i mod n)+ 1).

In the three-dimensional case, this would result in

ψ�(v(1) v(2) v(3))=

⎛
⎜⎜⎝
v(1) v(2) v(3)

v(3) v(1) v(2)

v(2) v(3) v(1)

⎞
⎟⎟⎠ .

Figure A1 illustrates the computation of circular convolution operation as a compressed outer
product of two vectors.
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Figure A1. Circular convolution operation on two three-dimensional vectors v1 and v2. Illustration adapted from Plate
(1995).

Furthermore, let
χ�(M)= (M(1, 1) · · · M(1, n))

that is, χ� extracts the first row ofM. Then we obtain, for any sequence s= σ1 . . . σk, the desired
correspondence

χ�(ψ�(vσ1 ) . . . ψ�(vσk))= vσ1 � . . .� vσk = vs.
Proof. We first show the following claim ( ∗ ): for any v1, v2 ∈R

n holds ψ�(v1 � v2)=
ψ�(v1)ψ�(v2). To this end, let v3 = v1 � v2 and N =ψ�(v3), furthermore, let N1 =ψ�(v1) and
N2 =ψ�(v2) as well as N′ =N1N2. Then

N(i, j)= v3((j− i mod n)+ 1)=
n−1∑
k=0

v1(k+ 1) · v2(((j− i mod n)− k mod n)+ 1)

=
n−1∑
k=0

v1(k+ 1) · v2((j− i− k mod n)+ 1)

as well as

N′(i, j)=
n∑
�=1

N1(i, �) ·N2(�, j)=
n∑
�=1

v1((�− i mod n)+ 1) · v2((j− � mod n)+ 1)

=
n−1∑
k=0

v1(k+ 1) · v2((j− i− k mod n)+ 1),

where, in the last step, we substituted � by k+ i mod n and reordered the sum. Hence, we have
shown that all entries ofN andN coincide and thereforeψ�(v1 � v2)=N′ =N =ψ�(v1)ψ�(v2),
proving ( ∗ ).

Now we proceed to show the original statement, which is a direct consequence of the equality
ψ�(vσ1 ) . . . ψ�(vσk)=ψ�(vσ1 + . . .+ vσk) by induction on the length of s. For the base case
(w= σ1), this equality is trivial. For the induction step, we find

ψ�(vσ1 ) . . . ψ�(vσk−1 )ψ�(vσk)
i.h.= ψ�(vσ1 � . . .� vσk−1 )ψ�(vσk)

(∗)= ψ�(vσ1 � . . .� vσk),
which finishes our proof. q.e.d.
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A.4 Permutation-based approaches
Sahlgren, Holst, and Kanerva (2008) use permutations on vectors to account for word order.
In this approach, given a token σm occurring in a sentence s= σ1 . . . σk with predefined
“uncontextualized” vectors vσ1 . . . vσk , we compute the contextualized vector vs,m for σm by

vs,m =�1−m(vσ1 )+ . . .+�k−m(vσk).
Note that the approach is still token-centered, that is, a vector representation of a token σm is
endowed with contextual representations of surrounding tokens. To transfer this setting into
a sequence-centered one, we define the vector representation of a sequence s= σ1 . . . σk to be
identical to the contextualized vector representation of its last token σk, that is,

vs = vs,k =
k∑
�=1

��−k(vσ�)=
k∑
�=1

vσ�M
k−�
� .

Note that from this vs, the contextualized vector representations for any other token σm can
then be easily retrieved by applying �k−m to vs. Now, given some permutation �, we define the
function ψ� which assigns to every vσ the matrix

ψ�(vσ )=

⎛
⎜⎜⎜⎜⎜⎝

0
M�

...

0

vσ 1

⎞
⎟⎟⎟⎟⎟⎠ ,

where M� denotes the permutation matrix associated with � as described in Section 3.
Furthermore, we let

χ�(M)= (M(m, 1) M(m, 2) · · · M(m,m− 1))
(i.e., given a matrix M, extract the lowest row omitting the last entry). Then we obtain for a
sequence s= σ1 . . . σk

χ�
(
ψ�(vσ1 ) . . . ψ�(vσk)

)= vs.
Proof. The statement is a direct consequence of the following equality, which we show by

induction on k:

ψ�(vσ1 ) . . . ψ�(vσk)=

⎛
⎜⎜⎜⎜⎜⎝

0
Mk
�

...

0∑k
�=1 vσ�M

k−�
� 1

⎞
⎟⎟⎟⎟⎟⎠ .

For the base case, that is, s= σ1, the statement follows from the definition. For the induction step,
we find

ψ�(vσ1 ) . . . ψ�(vσk)=
(
ψ�(vσ1 ) . . . ψ�(vσk−1 )

)
ψ�(vσk)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
Mk−1
�

...

0
k−1∑
�=1

vσ�M
k−1−�
� 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0
M�

...

0

vσk 1

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
Mk−1
� M�

...

0
( k−1∑
�=1

vσ�M
k−1−�
�

)
M� + vσk 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
Mk
�

...

0
k∑
�=1

vσ�M
k−�
� 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

q.e.d.
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B. Proofs for Section 6
Proof of Theorem 1. If α is the zero vector, all scores will be zero, so we can let all Ŵh be the
(m+ 1)× (m+ 1) zero matrix.

Otherwise letW be an arbitrarym×mmatrix of full rank, whose first row is α, that is, e1W =
α. Now, let

M̂h:=
⎛
⎝WMhW−1 MMhβ

�

0 · · · 0 0

⎞
⎠

for every h ∈ {1, . . . , �}. Then, we obtain

M̂gM̂h =
⎛
⎝WMgMhW−1 WMgMhβ

�

0 · · · 0 0

⎞
⎠

for every g, h ∈ {1, . . . , �}. This leads to
e1M̂i1 · · · M̂ike�m+1

= e1WMi1 · · ·Mikβ
�

= αMi1 · · ·Mikβ
�

q.e.d.

Proof of Proposition 2. Suppose� = {a1, . . . an}. Given a word w, let xi denote the number of
occurrences of ai in w. A linear equation on the letter counts has the form

k1x1 + . . .+ knxn = k
(
k, k1, . . . , kn ∈R

)
Now define [[ai]]=ψ+(ei), where ei is the ith unit vector, that is, it contains a 1 at the ith

position and 0 in all other positions. Then, it is easy to see that w will be mapped to M =
ψ+(x1 · · · xn). Due to the fact that en+1M = (x1 · · · xn 1) we can enforce the above
linear equation by defining the acceptance conditions

AC = { 〈en+1, (k1 . . . kn − k), 0〉,
〈−en+1, (k1 . . . kn − k), 0〉}.

q.e.d.

Proof of Proposition 3. This is a direct consequence of the considerations in Section 5.3
together with the observation, that the new set of acceptance conditions is trivially obtained from
the old ones with adapted dimensionalities. q.e.d.

Proof of Proposition 3. The undecidable post correspondence problem (Post 1946) is described
as follows: given two lists of words u1, . . . , un and v1, . . . , vn over some alphabet �′, is there a
sequence of numbers h1, . . . , hm (1≤ hj ≤ n) such that uh1 . . . uhm = vh1 . . . vhm?

We now reduce this problem to the emptiness problem of a matrix grammar. W.l.o.g., let�′ =
{a1, . . . , ak}. We define a bijection # from�′∗ to N by

#(an1an2 . . . anl)=
l∑

i=1
(ni − 1) · k(l−i)

Note that this is indeed a bijection and that for w1,w2 ∈�′∗, we have
#(w1w2)= #(w1) · k|w2| + #(w2).
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Now, we defineM as follows:

� = {b1, . . . bn} [[bi]]=

⎛
⎜⎜⎝

k|ui| 0 0

0 k|vi| 0

#(ui) #(vi) 1

⎞
⎟⎟⎠

AC = { 〈(0 0 1), (1 − 1 0), 0〉,
〈(0 0 1), (− 1 1 0), 0〉}

Using the above fact about # and a simple induction onm, we find that

[[ah1 ]] . . . [[ahm]]=

⎛
⎜⎜⎝

k|uh1...uhm | 0 0

0 k|vh1...vhm | 0

#(uh1 . . .uhm) #(vh1 . . .vhm) 1

⎞
⎟⎟⎠ .

Evaluating the two acceptance conditions, we find them satisfied exactly if #(uh1 . . . uhm)=
#(vh1 . . . vhm). Since # is a bijection, this is the case if and only if uh1 . . . uhm = vh1 . . . vhm .
Therefore,M accepts bh1 . . . bhm exactly if the sequence h1, . . . , hm is a solution to the given post
correspondence problem. Consequently, the question whether such a solution exists is equivalent
to the question whether the language L(M) is non-empty. q.e.d.

C. Discussion on cognitive plausibility of CMSMs
Recent research in psycholinguistics has focused on assessing the cognitive plausibility of dis-
tributional semantic models and word embeddings in VSMs. Mandera, Keuleers, and Brysbaert
(2017) evaluate the performance of prediction-based models, for example, skip-gram and CBOW
(Mikolov et al. 2013a), and count-based models, for example, word-context matrix, on pre-
dicting behavioral data on psychologically relevant tasks, such as semantic priming. In their
experiments, Mandera et al. (2017) show that prediction-based models reflect human behavior
better than count-based models on semantic-related tasks. They argue that learning in cogni-
tive systems is incremental and all information is not simultaneously available to the learning
system. Thus, prediction-based models, such as word2vec, which are also trained incremen-
tally, are suggested as being much better grounded psychologically. Günther, Rinaldi, and Marelli
(2019) also show that recent models, such as word2vec, show psychologically plausible learning
mechanisms to obtain semantic meaning of words through semantic-related tasks. In this arti-
cle, we proposed a learning technique for CMSMs, which is generally based on the distributional
hypothesis. Incremental learning of the trainedmodel is feasible by employing new data and infor-
mation. Thus, these models are considered as prediction-based models, and their psychological
plausibility can be analyzed systematically via psychologically relevant tasks, such as semantic
priming and similarity/relatedness rating tasks. We leave this line of work as a future research in
psycholinguistics.

Moreover, a recent study on vector-space DSMs by Sassenhagen and Fiebach (2019) shows
that, when dealing with semantics, there is a correlation between the brain’s activity and semantic
information in distributional models. They argue that a state in the human brain can be encoded
in vectors, and therefore, vector mappings can be decoded from brain activity. More specifically,
they show that there is a correspondence between the structure of brain activity and semantic
vector spaces when processing language. With this in mind, suppose a state of a human’s brain at
one specific moment in time can be encoded by a vector v of numerical values. Then, an exter-
nal stimulus or signal, such as a perceived word, will result in a transition of the mental state.
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Figure C1. Matrices as cognitive state transformations.

Thus, the external stimulus can be seen as a function being applied to v yielding as result the vec-
tor v′ that corresponds to the human’s mental state after receiving the signal. Therefore, it seems
sensible to associate with every signal (in our case: word σ ) a respective function (a linear map-
ping), represented by a matrix Mσ = [[σ ]] that maps mental states to mental states (i.e., vectors
v to vectors v′ = vMσ ).l Consequently, the subsequent reception of inputs σ , σ ′ associated with
matrices Mσ and M′

σ will transform a mental vector v into the vector (vMσ )M′
σ which by asso-

ciativity equals v(MσM′
σ ). Therefore, MσM′

σ represents the mental state transition triggered by
the signal sequence σσ ′, as illustrated by Figure C1. Naturally, this consideration carries over to
sequences of arbitrary length. This way, abstracting from specific initial mental state vectors, our
matrix space S, introduced in Section 4, can be seen as a function space of mental transformations
represented by matrices, whereby matrix multiplication realizes subsequent execution of those
transformations triggered by external stimulus sequence, such as input token sequence. This way,
we speculate the coherency of CMSMs with mental state progression; However, this needs to be
confirmed by practical analysis in a similar way to the work by Sassenhagen and Fiebach (2019)
in vector-space DSMs. Using matrices to represent these transitions restricts them to linear map-
pings. Although this restriction brings about benefits in terms of computability and theoretical
accessibility, the limitations introduced by linearity assumption need to be further investigated.

lWe are, however, not aware of findings that would favor linear mappings over other types of functions, so our argument
remains somewhat speculative.
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