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The probability density function (p.d.f.) of the streamwise velocity has been shown to
indicate the presence of uniform momentum zones in wall-bounded turbulent flows. Most
studies on the topic have focused on the instantaneous characteristics of this p.d.f. In this
work, we show how the use of time-resolved particle image velocimetry data highlights
robust features in the temporal behaviour of the p.d.f. and how these patterns are associated
with the change of the number of zones present in the flow over time. The use of a limited
resolvent model provides a clear link between this experimentally observed behaviour
and the underlying velocity structures and their phase characteristics. This link is further
supported by an extended resolvent model consisting of self-similar hierarchies centred in
the logarithmic region, with triadically consistent members, yielding much more complex
patterns in the p.d.f. Results indicate that the geometric similarity of these members
instantaneously, as well as their relative evolution in time (dictated by their wall-normal
varying wave speed), both inherent to the model, can reproduce many experimentally
identified features.
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1. Introduction

The structural organisation of wall-bounded turbulent flows has been a topic of great
interest for the past several decades and significant development has been achieved during
this time. The regions from the wall up to the free stream are shown to be populated with
a range of coherent structures. Near the wall, the main building elements are low-speed
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streamwise streaks in the viscous sublayer, first identified by Kline et al. (1967), with a
spanwise spacing of 100 wall units (ν/uτ , where ν is the fluid’s kinematic viscosity and
uτ the friction velocity), while further away from the wall, hairpin vortices of various
scales are prominent, a structural element originally hypothesised by Theodorsen (1952)
and later observed experimentally (Offen & Kline 1975; Head & Bandyopadhyay 1981;
Adrian, Meinhart & Tomkins 2000). More recently, very-large-scale motions (VLSMs)
or superstructures (internal or external geometries, respectively) were identified in the
logarithmic region, and large-scale motions (LSMs) in the outer region, linked to the
formation of downstream-leaning ramp-like bulges at the boundary with the irrotational
free stream (see Kim & Adrian 1999; Zhou et al. 1999; Guala, Hommema & Adrian 2006;
Balakumar & Adrian 2007; Hutchins & Marusic 2007; Monty et al. 2009, among others).
Associated with these characteristic elements is another structural feature, observed
initially by Meinhart & Adrian (1995) in the outer region of turbulent boundary layers: the
organisation of the streamwise velocity into large zones of uniform momentum (UMZs),
separated by internal shear layers of concentrated vorticity.

In the seminal work by Adrian et al. (2000), the presence of UMZs in turbulent boundary
layers was incorporated into the conceptual model of a hairpin packet: the backflow
originating from consecutive hairpin vortices forming a packet is responsible for the
long regions of low momentum, while the shear layers forming behind the hairpin heads
demarcate the limits of these zones. Additionally, the probability density function (p.d.f.)
of the streamwise velocity was shown to be a good indicator for the presence of UMZs:
each region of almost uniform momentum is associated with a local maximum in the
p.d.f. and a narrow distribution around it. Further analysis of the statistical characteristics
of these zones for a range of Reynolds numbers was performed by de Silva, Hutchins
& Marusic (2016) and of the shear layers demarcating them by Eisma et al. (2015)
and de Silva et al. (2017), among others. Chen, Chung & Wan (2020) extended these
observations in the case of turbulent pipe flow, while Morris et al. (2007) showed for the
first time that this particular flow organisation is also present in atmospheric boundary
layers at very high Reynolds number, Re, an observation later supported in much more
extensive measurements by Heisel et al. (2018). Time-resolved volumetric particle tracking
velocimetry measurements from Bross, Fuchs & Kähler (2019) indicated the presence of
UMZs in adverse pressure gradient boundary layers, while the very high spatial resolution
allowed identification of these zones already from the viscous sublayer near the wall, all
the way up to the logarithmic region. On average 2–3 UMZs were detected below the
log region, linked to near-wall streaks in the buffer layer and viscous sublayer. Including
high- and low-speed superstructures in the log region and regions convecting with the
mean, a model was proposed by the authors illustrating all possible combinations of UMZs
depending on the sign of each of these features across y (Bross et al. 2019).

All the above studies are statistical in nature and UMZs are identified in independent
snapshots as instantaneous entities. Laskari et al. (2018) provided some insights into the
temporal evolution of these structures, however, a link between time information and the
statistical picture is still missing. The first goal of the present work is to highlight such
connections, particularly between the time evolution of the number of zones, NUMZ , and
the resulting Gaussian distribution of NUMZ , when a sufficient number of independent
instantaneous realisations is available (see de Silva et al. 2016).

Together with experimental work, modelling efforts have been able to highlight essential
flow features that give rise to the development of UMZs, such that the experimentally
observed statistical behaviour is reproduced, without the need for the full velocity fields
but with minimal input information. Moreover, the use of well-defined building blocks
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allows for the investigation of specific velocity and vorticity structures that are linked
to the presence and evolution of UMZs, without the additional layer of complexity that
is added when the p.d.f. is computed, something that is not possible from experimental
data alone. In this context, de Silva et al. (2016) employed the attached eddy model
(Marusic & Perry 1995; Perry & Marusic 1995) to generate instantaneous velocity fields
and showed that it can successfully capture many statistical characteristics of the UMZs.
Bautista et al. (2019) recently developed a model, where the concentrated vorticity in the
shear layers separating the UMZs was modelled as vortical fissures, distributed in the
inertial and subinertial domains (as defined from the analysis of the mean momentum
equation) and adhering to self-similarity scaling arguments and the step-like behaviour
of the instantaneous velocity profile. Ensembles of streamwise velocity profiles were
subsequently constructed using random displacement of the fissures and were shown to
approximately reproduce streamwise velocity statistics up to fourth-order moments. UMZs
were also examined from the lens of travelling wave solutions in Saxton-Fox & McKeon
(2017). The authors used a resolvent model of an LSM structure in the outer region of a
turbulent boundary layer and were able to recreate many elements of UMZ behaviour.

A particular advantage of models based on travelling wave solutions, such as the
resolvent model (McKeon & Sharma 2010), in contrast to statistical ones (based on the
mean momentum balance or attached eddies) is their inherent temporal continuity that
allows them to capture the time evolution of important flow features; as such, they are
particularly suitable for the current analysis. The second point of focus of this work is
therefore to evaluate how well a simple travelling wave model, based on the resolvent
framework and informed by experimental results, can reproduce the experimentally
observed temporal evolution of the p.d.f. More importantly, by leveraging its low-order
nature, the characteristics of the underlying velocity structures that lead to this behaviour
can be identified. Finally, building upon that, a resolvent model of self-similar hierarchies
with triadically consistent members is also used to evaluate to which extent the inherent
geometric similarity and relative convection speed of the members in each hierarchy can
reproduce the observed patterns.

2. Datasets

Throughout this paper, we use the coordinate system x, y and z to denote the streamwise,
wall-normal and spanwise directions, respectively and u, v, w to denote the corresponding
velocity components. Lower case letters denote the fluctuating fields and overbars the
time-averaged means, following a Reynolds decomposition of the flow: U = Ū + u.
Vectors are denoted with bold letters. Unless specified otherwise, all velocity components
are in outer units, normalised using the free-stream velocity, U∞ (or centreline velocity
UCL for internal geometries).

2.1. Experimental dataset
The experimental database used in the present work is time-resolved, planar particle
image velocimetry (PIV) data of a turbulent boundary layer at a friction Reynolds
number Reτ = 5300 (Laskari et al. 2018), henceforth referred to as E1. The database
includes 37 time-resolved sets (acquisition frequency of 800 Hz) of 10 944 images in
streamwise–wall-normal planes and a field of view (FOV) of approximately 0.5δ × 1.8δ in
x and y, respectively. The nominal flow conditions can be found in table 1. The boundary
layer thickness was computed based on the Jones integral (Jones, Marusic & Perry 2001)
and the friction velocity was estimated using the Clauser chart method (Clauser 1954).
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Friction velocity Re Reτ 5300
Free-stream velocity U∞ 0.99 (m s−1)

Friction velocity Uτ 3.60 × 10−2 (m s−1)

Boundary layer thickness δ 0.14 (m)

Table 1. E1. Nominal flow conditions.

Filtering in time (effective time step of dt = 0.027δ/U∞) and space (two-dimensional
Gaussian filter with a 3 × 3 point kernel) was performed to minimise pixel-locking effects
that can have an effect on UMZ detection (see Kwon et al. 2014; de Silva et al. 2016).
More details on the experimental set-up can be found in Laskari et al. (2018).

2.2. Model datasets
Alongside experiments, three model datasets are used, based on the resolvent framework
(McKeon & Sharma 2010), with the focus solely on the streamwise velocity component.
For two of them, a mean velocity profile from a channel flow at a Reτ = 15 000, constant
in the wall-parallel directions, is used (turbulent viscosity model as described in Moarref
et al. 2013), while only velocity fluctuations within the logarithmic region are considered.
For completeness, an additional model dataset with a mean velocity profile from a channel
flow at Reτ = 5300 (equal to the one in E1) was also included. Although there are
documented differences between internal (model datasets) and external (experimental
dataset) geometries, particularly with respect to the largest energetic scales (Monty et al.
2009), the main structural elements that give rise to the experimental observations
discussed here are common in all wall-bounded flows, especially with respect to UMZs:
the methodology developed by Adrian et al. (2000) for identifying these zones in boundary
layers, was successfully applied by Kwon et al. (2014) in the case of a channel flow while
Chen et al. (2020) showed very similar behaviours in a pipe flow. Additionally, the velocity
fluctuations considered in the modelling databases are localised in the logarithmic region,
further minimising such differences.

Our goal here is to identify links between velocity structures and patterns observed
in the streamwise velocity p.d.f. and highlight the robustness of such analysis without
optimising for the best agreement between model and experiments. As such, the
focus on the logarithmic region also provides us with model databases consisting of
fluctuations localised within a region where their location and geometry is well defined
through self-similar relationships, instead of a random placing of space-filling structures
throughout y. Self-similarity is then not a requirement as such for recovering the
experimentally observed behaviour, but the underlying scaling relationships it provides
allow us to remove one layer of empiricism from our modelling assumptions when datasets
of increasing complexity are needed. Besides, the importance of the logarithmic region
in the formation of UMZs has been extensively documented; although the wake region
has also been known to be a contributor, the model datasets allowed us to determine
that the particular temporal behaviour analysed here is unaffected by structures located
higher than y/δ > 0.25: due to the mean shear profile and intensity decrease with y,
these fluctuations only add to the highest modal velocity peak. Finally, by focusing on
the log region we are neglecting 2–3 UMZs that have been observed in the near-wall
region (Bross et al. 2019). As will be discussed later, this has an effect on the modal
velocity range and the overall complexity of the p.d.f., without, however, altering the main
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patterns observed experimentally; besides, resolution effects and difficulty in measuring
in the wall vicinity are limiting effects for experimental datasets as well, when near-wall
UMZs are concerned. Based on the above, the chosen, well-defined but localised velocity
structuring proposed here can provide enough information to represent the key features
observed, while minimising the number of assumptions.

Regarding the choice of Re, a logarithmic increase in the average number of zones with
increasing Re is expected (de Silva et al. 2016). Since the fluctuations in the model datasets
are centred in the log region, the high Re datasets are chosen to provide a way of relatively
balancing out the missing zones in the wake and near-wall region, in a statistical sense, as
well as to highlight the robustness of the phenomena observed. The use of the lower Re
model dataset was to facilitate more direct comparisons with the experimental dataset, E1.
We should, however, stress that the goal here is not a complete Re dependence study, but
rather showcasing the universality of the observed behaviour between datasets that differ
both in geometry and Re.

In all model datasets, the fluctuating velocity field consists of downstream propagating
travelling waves, periodic in x and z, each characterised by a wall-normal profile uk( y),
where k is the wavenumber triplet, k = (kx, kz, ω) consisting of the streamwise, spanwise
and temporal wavenumbers, respectively. In the resolvent framework for wall-bounded
turbulence, the Navier–Stokes (NS) equations are treated as an input–output system. In
that context, uk( y) is the streamwise component of the output response uk, from the
excitation of the linear NS operator (the resolvent, H) by the nonlinear term, which acts
as an intrinsic input forcing. Performing a singular value decomposition, the resolvent
operator can be written in terms of left and right singular functions and singular values,
per wavenumber triplet

Hk =
∞∑

j=1

ψk,jσk,jφ
∗
k,j. (2.1)

The required velocity response mode uk can then be decomposed in terms of the singular
functions and appropriate weighting functions (McKeon 2017)

uk =
∞∑

j=1

σk,jψk,jχ̄k,j =
∞∑

j=1

ψk,jχk,j. (2.2)

Key turbulent structures (specific wavenumber triplets) are captured with a rank-1
approximation (McKeon 2017) and in what follows only the first singular function will
be considered and the singular value subscript j will be dropped for clarity

uk = ψkχk. (2.3)

2.2.1. Single response mode
For the first model dataset, referred to as N1M1, a single response mode is considered,
localised around a critical layer yc, where the phase speed of the mode matches the
local mean velocity c = ω/kx = Ū( yc). For simplicity and to allow for changes in phase
variation across the critical layer, the wall-normal coherence of the mode, uk( y), is
directly estimated using an analytical function for the mode amplitude and imposing a
specified phase variation with increasing y. Dawson & McKeon (2019) used a wavepacket
pseudoeigenmode analysis to approximate the form of the class of leading resolvent modes
with footprints not concentrated close to the wall. We exploit the resulting formulation
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Dataset Reτ L+
x dx,+dy+ dt S kx kz yc c max |uk|

E1 5300 1590 27 0.027 — — — — — —
N1M1 15 000 1590 27 0.020 — 6 6 0.15h 0.82 0.1
N2M5 5300 1590 27 0.027 S1 4.6 133 0.28h 0.87 0.03

5300 1590 27 0.027 S2 2.8 82 0.28h 0.87 0.03
5300 1590 27 0.027 S3 1.8 51 0.28h 0.87 0.03

N2M6 15 000 1590 27 0.027 S1 5.2 246 0.27h 0.88 0.03
15 000 1590 27 0.027 S2 3.2 152 0.27h 0.88 0.03
15 000 1590 27 0.027 S3 2 94 0.27h 0.88 0.03

Table 2. Dataset details. Both c and max |uk| are normalised with UCL and dt with UCL/h. For N2M5
and N2M6 only the outmost modes (m = 1) of each hierarchy are included; the rest are found through the
appropriate geometric self-similarity arguments.

here, isolating the amplitude and phase functions separately. Thus we model the response
mode amplitude, |uk( y)|, using a Gaussian function given by

|uk( y)| = α exp(−( y − yc)
2/2L2

y), (2.4)

where the wall-normal location yc = 0.15δ, wall-normal extent Ly = 0.04δ and amplitude
α = 0.05, are chosen to best match the experimental results. In terms of the phase
variation, real and imaginary parts of uk( y) are tuned such that �[arg(uk)] → −π, as
y increases from the wall (see figure 2e), a phase variation (mode inclination to the
downstream direction) observed for wall-parallel modes and consistent with the presence
of a viscous critical layer (McKeon & Sharma 2010). The effect of both the prescribed
phase variation across the critical layer and the mode’s maximum amplitude on the
resulting temporal patterns of the p.d.f. of U, will be discussed in the next section.

We select λx = λz = h, where h is the channel half-height, for a streamwise or spanwise
vortex representation (table 2 and figure 1a). The streamwise convection velocity (and thus
the angular frequency) is prescribed by the chosen critical wall-normal location yc and the
temporal evolution of the constructed response mode is given by

u(x, y, z, t) = Re
[
uk( y) (exp (i(kx + kz − ωt))+ exp (i(kx − kz − ωt)))

]
. (2.5)

The present analysis is performed in streamwise–wall-normal planes to match the
experimental dataset; the x–y plane at z = 0 is used for that purpose. For a fluctuating
field consisting of a single mode, periodic in x and z, the choice of the spanwise location
will only have an impact on the resulting mode amplitude, the effect of which is discussed
in the next section.

As was mentioned above, the use of a single travelling wave, with prescribed amplitude
and phase variation across y, allows for the assessment of the effect of these velocity
characteristics on the resulting p.d.f. patterns, something an experimental dataset cannot
provide. However, the periodic nature of the solution does not allow for proper statistical
analysis of the p.d.f. transitions or a significant variation in the number of UMZs in order
to compare the trends observed in the experimental dataset. For this reason, two other
model datasets of increased complexity are constructed, as outlined in the next paragraph.

2.2.2. Self-similar hierarchies with triadically consistent members
The other two model datasets are based on a resolvent model consisting of three
self-similar hierarchies (S1, S2, S3) with triadically consistent members, henceforth
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Figure 1. Instantaneous velocity fields for N1M1 (a) and N2M6 (b).

referred to as N2M5 (Reτ = 5300) and N2M6 (Reτ = 15 000), which allow us to assess
the effect of a multiscale input on the resulting temporal behaviour of the p.d.f. Each
self-similar hierarchy contains five and six members respectively for each dataset, localised
within the logarithmic region and obeys the constraints for geometric self-similarity of its
members and self-similar behaviour of the resolvent as discussed by Moarref et al. (2013).
The triadic consistency of the three hierarchies is not a required feature of the model,
but is consonant with a self-sustaining resolvent model. The shortest member (m = 6
for N2M6) of each hierarchy is centred at the start of the inertial region in the mean
velocity profile, yc,6/h = 3/

√
Reτ = 0.0245 (Marusic et al. 2013), and defines the location

of all other members in the hierarchy through: yc,m = A6−myc,6 (see also McKeon 2019).
For N2M5, yc,5/h = 0.0412. In the present work the longest member in each hierarchy
(m = 1) is constrained by yc,1/h ≤ 0.4, thus prescribing the total number of members in
each hierarchy, while A is chosen equal to the golden ratio, φ = 1.6, leading to a slightly
denser hierarchy than the more commonly used factor of 2 (see also Perry & Chong
1982; McKeon 2019). The convection speed of each mode is dictated by its wall-normal
location: cm = Ū( yc,m) and we further select the wavelength of the largest mode in S3
to be representative of an LSM, with kx1 = 2 for N2M6 and kx1 = 1.8 for N2M5. The
corresponding spanwise wavenumber of the mode, kz1, is chosen such that, given the
scaling relationships λz ∼ yc and λx ∼ y2

c , the aspect ratio condition (γ = kz/kx � 1)
is satisfied all the way down to the mode closest to the wall (Moarref et al. 2013). The
wavenumbers of the outmost modes in hierarchies S1 and S2 are subsequently selected to
be triadically consistent, while being non-integer multiples of each other (see table 2 and
figure 1b). The temporal evolution for each hierarchy is given by

us(x, y, z, t) = Re

[ 6∑
m=1

ukm( y)(exp(i(kxm + kzm − ωmt))+ exp(i(kxm − kzm − ωmt)))

]
.

(2.6)

Unlike the single mode dataset above, where the velocity profile, uk( y), was estimated
directly, here the projection weights χkm (see (2.3)) have to be selected separately from the
response modes ψkm. They are chosen such that the resulting fluctuation intensity (u2

km)
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decreases logarithmically with y, with max |uk6| = 0.16UCL for the mode closest to the
wall (table 2). The fluctuating velocity field is then constructed as a sum of all hierarchies

u(x, y, z, t) =
3∑

s=1

us(x, y, z, t). (2.7)

The same as in N1M1, the plane z = 0 is used for the analysis. Since the three hierarchies
are selected such that neither their streamwise nor spanwise wavenumbers are multiple
integers of each other, the choice of a different z plane in these datasets leads to a different
amplitude balance between the hierarchies (similar to the effect of a weighted sum in
(2.7)). As such, the selection of the spanwise location dictates the largest scale present
in the flow, depending on which hierarchy is the most prominent (see table 2), a topic
that will be briefly revisited later on. In general, however, apart from slight changes in
the quantification of transition rates, as discussed in the following section, for all different
planes tested, the main conclusions presented here remained unaltered.

The superposition of three such hierarchies, whose members are triadically consistent
but whose wavenumbers are not multiple integers of each other, offers a deviation from
the strictly periodic behaviour observed in the single response mode model (N1M1) and
increases significantly the complexity of the resulting temporal patterns.

3. Methodology

3.1. The p.d.f. construction
The central focus of the current work is the interpretation of the temporal evolution of the
p.d.f. of streamwise velocity, P(U). In order to address this, a two-step process is followed.
Initially, spatial information from each snapshot is used to construct the corresponding
instantaneous p.d.f. (see figures 2a–c and 2g–i). For time-resolved snapshots, a p.d.f.
sequence in time can subsequently be plotted (figure 3) where the variation in the location
of each peak creates temporal patterns in the contours of P(U, t). Details of this process
are outlined below; the same approach is used for all datasets, with some minor differences
which are highlighted.

For each instantaneous velocity field, P(U) includes all vectors located within specified
limits in x and y. With respect to x, we specify a streamwise limit scaled on viscous units
(L+

x = 1590) such that there is consistency across the different Re datasets, following de
Silva et al. (2016) (figure 2 and table 2). Sensitivity of the results for L+

x = 1000–2500
will be discussed in the section that follows. In the wall-normal direction, only vectors
within the turbulent region are included. The turbulent/non-turbulent interface is identified
using a kinetic energy threshold for dataset E1, as described in Chauhan et al. (2014).
For the channel datasets N1M1, N2M5 and N2M6, the quiescent core is identified using
the isocontour lines of U = 0.95UCL, following Kwon et al. (2014). The velocity vectors
contained within these limits are then distributed in 67 bins for U/U∞ ∈ [0, 1] of size
approximately 0.4Uτ for all datasets (see figure 2b,e,h). Local maxima of P(U) indicate
modal velocities representative of UMZs. More details on the peak detection parameters
can be found in Laskari et al. (2018) (it should also be noted here that, given a slight
bias of the model datasets towards higher P(U) values, the detection thresholds for the
model datasets were proportionately adjusted). Apart from the spatial extent for the p.d.f.
construction, a comment should also be made here regarding the spatial resolution of the
datasets. In order to have an appropriate comparison with E1, both model datasets are
interpolated onto an equidistant grid where the grid spacing in wall units is comparable to
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Figure 2. Instantaneous velocity fields. Data from E1 (a–c), N1M1 (d–f ) and N2M6 (g–i). Panels (a,d,g) and
(c,f ,i) show the full and fluctuating velocity fields, U and u, respectively. Panels (b,h) show the corresponding
p.d.f. while the amplitude and phase profile of the individual mode is shown in panel (e). The region of the
fluctuating and full fields shown in colour denotes the streamwise extent used for the construction of the p.d.f.,
L+

x = 1590 for all datasets.

the experimental one (see table 2). Our choice is based on the fact that a finer resolution
close to the wall, common in spectral models, would create a bias towards lower velocities
in the p.d.f. when compared with equidistant PIV data, while a much finer resolution
throughout would lead to a bias towards the free stream, given the wall-normal variation
of the velocity profile.

As was mentioned above, dataset E1 includes 37 temporal records, 100δ/U∞ long
each, with a temporal resolution dictated by the acquisition frequency. For dataset N1M1,
a single temporal record is constructed with a length of 30δ/UCL and a resolution of
dt = 0.02δ/UCL. The temporal resolution is chosen according to the experimental dataset
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Figure 3. Moving from space to time: each instantaneous p.d.f. is constructed using velocity vectors contained
within a certain spatial extent (figure 2a). When plotted in a time sequence, the variation of each peak’s location
forms repeating temporal patterns in P(U, t), which now contains both space and time information (figure 3).

E1, and such that the fast transitions towards higher modal peaks in the p.d.f. can be
appropriately resolved. For the quantification of p.d.f. transitions in time, a single period
would be enough due to the periodicity of the solution; however, we chose a larger record
to provide better visual comparison with the experimental dataset. Finally, for datasets
N2M5 and N2M6, temporal records distinct from one another can be constructed: for all
three hierarchies each mode propagates downstream with a different convection velocity
and the streamwise wavenumbers within each triad are non-integer multiples of each
other. We construct 21 temporal records, each 30δ/UCL long with a temporal resolution
dt = 0.027δ/U∞. Four temporal records of P(U, t), one for each dataset, together with the
parameters used for their construction can be found in figure 4 and table 2, respectively.

3.2. Pattern identification
When plotted in time, P(U, t) exhibits repeated transitions to lower velocities and faster
jumps to higher velocities (figure 4). As expected, the experimental dataset leads to much
more complex temporal patterns as a result of the different scales involved (figure 4a).
A single mode at the outer edge of the logarithmic region (N1M1) leads to a purely
periodic variation in P(U, t), which, however, follows the main trends observed in the
experimental dataset, indicating that even the simplest model can provide valuable insight
into the skeleton of this spatio-temporal behaviour (figure 4b). When multiple velocity
modes are included throughout the log region (N2M5 and N2M6), the emerging picture is
no longer periodic and increases significantly in complexity (figure 4c,d). This highlights
how the presence of a range of scales leads to a branching in the clean transitions from
N1M1 (with the higher Re dataset exhibiting even finer branching) something that, albeit
not explicitly compared with the smaller variations in E1 in the present work, shows
promise in reproducing the full-scale picture. The goal is to quantify these large-scale
transitions, but most importantly identify their potential link to the underlying velocity
structures and the change in the number of UMZs in the flow. To this end, we analyse the
time history of U∗ defined as the minimum velocity for which the p.d.f. exceeds a certain
threshold value: U∗(t) = min(U|P(U, t) > Pth) (solid black lines in figure 4). As such,
U∗ traces the lowest velocities for which the p.d.f. exceeds Pth and essentially defines
the range [U∗, U∞] within which the p.d.f. might exhibit peaks. For high U∗ values it
is then expected that the number of peaks will be small. When U∗ values are low, the
chances are higher that multiple peaks could exist within [U∗, U∞] although not a priori
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Figure 4. Variation of P(U, t) in E1 (a), N1M1 (b), N2M5 (c) and N2M6 (d). Solid black lines denote
U∗(t) = U|P(U, t) > Pth with Pth = 0.1, 1 and 2.5.

true; given the Gaussian distribution of NUMZ , however, it should be expected (and will
be discussed later) that NUMZ will increase in these instances. A moving average (kernel
size of 0.1δ/U∞) is used to filter out noisy transitions in the U∗(t) signal and its effects on
the qualitative trends discussed here are found to be minimal. Different threshold values
can be used and the effect of varying Pth will be discussed in the following sections. It
should be noted here that an upper limit for this threshold is dictated by requiring U∗ to
be continuous in all snapshots, while a lower limit is imposed by requiring non-negligible
correlation between the resulting time signals of U∗ across all threshold values. A more
detailed discussion on the selection of these limits for both numerical and experimental
datasets can be found in appendix A.
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Figure 5. Transitions in P(U, t) from E1. (a) Identified φ+ (light colours) and φ− (dark colours) transitions in
U∗ (Pth = 2), overlaid on top of the corresponding P(U, t) contours (grey scale). (b) Definition of rate, tanφ,
and period, T , of transitions.

Using the time evolution of U∗, we identify regions where the gradient dU∗/dt
is continuously positive (negative) and exceeds a minimum value (|dU∗/dt| > 0.1)
throughout each transition (figure 5a). The absolute rate of transitions is then defined
as: | tanφ| = |δU∗/δt| (where δU∗ and δt are estimated by linearly interpolating U∗ in
each segment), while T denotes the total time elapsed between two pairs of opposite sign
transitions (figure 5b). Transitions to higher velocities (| tanφ| > 0) will be denoted with
φ+ and those to lower (| tanφ| < 0) with φ−. For the remainder of the analysis we will
focus on these transitions in U∗ in order to characterise the temporal evolution of P(U, t),
so it is important to further clarify the connection between them. High U∗ values (see
U∗

M1 in figure 5b) indicate a prominence of high-speed events in the instantaneous fields
leading to p.d.f. peaks clustered around U∞. Low U∗ values (see U∗

M2 in figure 5b) on the
other hand indicate that vectors with lower velocities are becoming more numerous, thus
high values of the p.d.f. (including local peaks) appear at lower velocities. From figure 4
(and especially figure 4b) it is also clear that φ− transitions in U∗ mark a continuous
migration of high P(U, t) values (and therefore modal peaks) to lower velocities. The
positive transitions in U∗, however, are faster and indicate a more abrupt jump from a
peak at a low velocity to a peak close to U∞. In other words, a velocity U∗

M2 < U∗ < U∗
M1

would correspond to a high P(U, t) value (and perhaps a modal peak) in the case of a φ−
transition, while the same velocity would be associated with a low P(U, t) value in the
case of a φ+ transition.

Finally, in order to link these transitions in U∗ with the variation in the number of UMZs
and the underlying velocity structures, we conditionally average NUMZ and u on φ+ (φ−)
transitions, using the same velocity bins for U∗ as those used for the construction of the
instantaneous p.d.f. Then the variation of both NUMZ|φ and u|φ across the different U∗
bins can be represented as a time dependence using |tanφ| = |δU∗/δt|.

4. Results

Following the procedure outlined above, the rates and periods of transitions in P(U, t) are
estimated for all datasets (see figure 6). The effect of both Lx and Pth on these estimates –
used for the construction of the p.d.f. and the estimation of U∗, respectively – is assessed
using dataset E1.

Results indicate that T̄ ∼ δ/U∞ and there is general agreement between all three
datasets, with both N2M5 and N2M6 sets slightly under-predicting the average period
(figure 6a). This value increases with increasing Lx. The streamwise extent Lx has
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Figure 6. Quantification of transitions in P(U, t). Mean period between two pairs of transitions, T̄ (a) and rate
of transition |tanφ| (b), for different Pth and Lx values (L+

x = 1060, 1590, 2120, 2550). Colours as in figure 5.
Solid, dash, dot and dot-dash lines denote E1, N1M1, N2M5, N2M6, respectively. Appropriate parameter
selection in the modelling datasets allows for sufficient agreement with experiments.

to be large enough to include a sufficient number of vectors for the p.d.f. to exhibit
well-converged peaks, since UMZs have a non-negligible streamwise extent by definition,
but also short enough to allow identification of the smallest zones, which would otherwise
be averaged out. Therefore, lower values of Lx lead to slightly noisier U∗ signals and
a higher number of short-lived transitions, thus resulting in lower values for T̄ . With
respect to the threshold used for U∗, there is an increasing trend in T̄ with increasing
Pth for Pth < 0.5, while for higher threshold values tracing stronger p.d.f. peaks, the
resulting period becomes almost independent of Pth. It should be noted that, although a
proportionality with outer scaling parameters is observed here and outer scaling is chosen
in what follows, informed by the large-scale nature of UMZs in general, that does not
necessarily establish a conclusive argument on the relevant temporal scaling for log region
structures, a topic which would require further analysis and/or datasets.

With respect to the rate of transitions, |tanφ|, the first thing to note is that, φ+ transitions
are shown to be relatively faster than φ− ones (i.e. |tanφ| is larger), especially in the
simplest model dataset N1M1 (see figures 4b and 6b). For the experimental dataset E1,
where multiple scales are present, this difference becomes more prominent for higher
values of Pth and therefore when tracking higher U∗ values. Sharper transitions towards
both higher and lower velocities are observed for an increase in Lx. This can be understood
when considering the effect of using larger streamwise extents in the p.d.f. construction:
short-lived transitions which act as small-scale variations superimposed on longer and
more uniform transitions (a branching that can be seen in figure 4c as opposed to figure 4b)
are filtered out. As such, the detected transitions are less noisy and their estimated rates
increase. General agreement can be observed across datasets, especially between E1 and
N2M5 and for lower Pth values. Further fine tuning of the modelling parameters can
provide improved agreement with experiments for both T and |tanφ|. This, however, is not
the primary goal here; due to the various thresholds and modelling parameters used, we
do not seek accurate quantification of these transitions. Rather, we want to showcase that
experimentally informed modelling parameters and consistency in the process followed for
the p.d.f. construction can generally provide temporal patterns that compare well with the
experimental ones but most importantly are associated with the same underlying velocity
structures.

The dataset E1 was selected for the assessment of the effect of both Pth and Lx on
the rate of transitions, since it contains all experimentally resolved scales, making it the
optimal choice for such a parameter study. However, for the sensitivity of the results on
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Figure 7. N1M1. Variation of | tanφ| with the maximum amplitude at yc, max[|uk|/Ūyc ] in (a,c) and the phase
change, �[arg(uk)] in (b,d). Contour plots at (a,b) show the evolution of P(U, t) for five representative cases,
which are indicated with dashed black lines in (c,d). An increase in amplitude of a single velocity mode leads
to an increase in the rate of transitions of either sign, while the phase jump across the critical layer of the mode
influences uniquely the orientation of the patterns observed in the p.d.f.

velocity amplitude and phase variation, some manipulation of the scales present in the
flow would be required that is not possible in either E1 or N2M5 and N2M6 (since the
projection weights are chosen a priori, the relative amplitude of the modes could be
tuned, however the phase variation across y is prescribed). The dataset N1M1 in contrast
is constructed such that these manipulations are possible. Increase of the maximum
mode amplitude relative to the mean velocity value at the critical layer of the mode,
max[|uk|/Ūyc], leads to an increase in the rate of both type of transitions in U∗ and is
monotonic in the case of φ− transitions (figure 7a). Values of max[|uk|/Ūyc] > 0.1, lead
to a drop in the rate of positive transitions, as the temporal pattern in P(U, t) starts to break
down (rightmost panel in figure 7a).

More interestingly, the trend of a slow φ− transition followed by a faster jump to U∞,
observed in both experiments and modelling results, is directly coupled with the phase
change across yc moving from the wall up. As was mentioned above, wall-parallel modes
are shown to have a phase variation across y, �[arg(uk)] → −π, consistent with the
presence of a viscous critical layer (McKeon & Sharma 2010). This phase variation is
equivalent to ramp-like velocity modes and is key to the temporal patterns observed in
P(U, t). Results indicate that, for a constant phase across y (�[arg(uk)] = 0, modes are
vertical with respect to x), the rates of transitions of either sign in the p.d.f. are equal
but not as pronounced as in cases where the modes are inclined in either direction with
respect to the horizontal (middle panel in figure 7b). On the contrary, if modes are inclined
upstream, �[arg(uk)] → π, the p.d.f. exhibits a reversal in the temporal patterns from
the experimentally observed ones: transitions in U∗ towards higher velocities are now
slower while those to lower velocities are faster. This means that, for an increase in the
phase variation from −π to π, φ+ transitions will initially be significantly faster than φ−,
they will equalise for a zero phase jump and eventually become much slower. In order
to analyse these observations further, knowledge of the underlying velocity structures
associated with such transitions is required, prompting us to consider conditionally
averaged velocity fields, which follows next. Generally though, large, ramp-like structures
are well documented in wall turbulence, so it comes as no surprise that the experimentally
and mathematically consistent phase variation would provide the desired temporal pattern;
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however, identifying which characteristics of P(U, t) are a direct consequence of this
geometry, is not trivial.

Fluctuating velocity fields are conditionally averaged on each type of transition in
U∗. The streamwise extent of interest is Lx, since only the vectors used for the p.d.f.
construction are responsible for the patterns observed in P(U, t). For a time continuous
φ− or φ+ transition in U∗ (symbols in left and right of figures 8, respectively), the
corresponding u fields are estimated (u|φ, contour plots in figure 8), together with the
locations of the maximum absolute amplitude y∗

c = argmax|u|φ| for increasing Pth (line
plots in figures 8(a) and 8(c) – the dataset N1M1 is excluded from this analysis since
the presence of a single mode dictates a constant y∗

c = yc). As was mentioned above,
the average transition rates for each dataset, |tanφ| = |δU∗/δt| are used to translate the
transitions in U∗ into temporal ones.

The first thing to note is that, for all datasets, the resulting velocity structures are similar,
in that both transitions in U∗ are associated with the passage of downstream inclined
structures with a high(low)-speed event followed in time by a low(high)-speed one in the
case of a φ− (φ+) transition in U∗ (contour plots in figures 8). The actual angle with
respect to the horizontal, directly equivalent to the phase change across yc for N1M1, is
shown to be lower compared to E1; a much better agreement is observed for N2M6, where
the large-scale ramp is now linked to the presence and relative location of the different
scales across y, rather than their individual phase variation. For N2M5, the conditional
velocity structure exhibits a similar behaviour, however, the resulting prominent scale is
shorter when compared to Lx. This is an indication of the importance of choosing the
appropriate large scales in the flow with respect to the streamwise extent used for the p.d.f.
construction, a topic which we will also revisit later. For dataset N1M1, where u consists
of a single travelling wave, the u|φ fields indicate that the same part of the wave passes
through the FOV during each transition (as expected for a periodic solution) and that it
agrees with the experimental results at the region where N1M1 has spatial support. The
similar conditional structures in N2M5 and N2M6, for which the velocity fields show a
much more complex structure instantaneously (see figure 2g–i), further indicate that, even
when multiple scales are involved in the model, most of them are averaged out in u|φ and
only the ones directly linked to the temporal patterns in the p.d.f. are highlighted.

The wall-normal location of maximum amplitude (line plots in figures 8a and 8c)
indicates another effect of Pth on the results, namely, that by choosing a higher threshold
when identifying U∗ in P(U, t), the identified transitions are due to the passage of
structures that sit at higher wall-normal locations. It is encouraging that this trend is also
present in both N2M5 and N2M6, where the superposition of three self-similar hierarchies
with multiple members each, provides enough scale separation in y to make this distinction
possible. In particular, although the ramp angle is more pronounced for lower thresholds,
the same large-scale trends are recovered for all threshold values, with structures localised
at higher wall-normal locations with increasing Pth.

Based on these results we can now revisit the link between the spatial orientation
of velocity structures with respect to the horizontal (associated with the phase change
across yc) and the temporal patterns observed in P(U, t) (as was depicted in figure 7b).
In the simplest case (dataset N1M1, see figure 4b), identified transitions in the p.d.f.
are between a high velocity, denoted U∗

M1, and the lowest velocity for which P > Pth,
U∗

M2 (see figure 5). It is then the mean gradient, dU/dy > 0, and the geometry of the
velocity structure in space (defining ∂u/∂y) that dictate the rate of each type of transition
between these two velocities. Since UMZs are discussed in terms of the full velocity,
it is instructive to think of full velocity contours and how their corrugation depends on
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Figure 8. Conditionally averaged streamwise velocity fluctuations for each type of transition, u|φ+ (left) and
u|φ− (right), from E1 (a), N1M1 (b), N2M5 (c) and N2M6 (d). Pth = (1, 3, 3, 3) for (a), (b), (c) and (d),
respectively. Top panels indicate the variation of U∗ during each transition. Dashed lines in (a) indicate the
location of the maximum absolute amplitude, y∗

c . Bottom panel in (a,c,d) indicate the variation of y∗
c for an

increase in Pth (from dark to light colours) from Pth = 0.1 to 2.5 in (a) and from Pth = 2 to 5 in (c,d). In order
to provide spatially continuous structures from left to right, time increases from right to left.
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the sign of u and ∂u/∂y. For u < 0 (equivalent to U∗
M1 in our scenario), there would

be an upwards corrugation of the U isocontours (McKeon 2017; Saxton-Fox & McKeon
2017), forming a bulge-like structure (see also figure 2 and the top schematic in figure 10).
Assuming alternating positive and negative fluctuation events in x, this u < 0 event would
be preceded and followed in space by opposite sign fluctuations (u > 0, equivalent to U∗

M2
in the p.d.f.). Even assuming complete symmetry for these structures in the fluctuating
field (as is the case in the travelling-wave models), their ramp-like geometry creates an
asymmetry in the full velocity field due to constructive or destructive interference of the
instantaneous shear with the mean shear (as discussed in detail by McKeon 2017). It is this
geometric asymmetry that leads to the difference in transition rates between φ+ and φ−. In
particular, at the back of this bulge, upstream of which u > 0, the geometry dictates that
∂u/∂y > 0, adding to the mean shear and creating a very strong local shear layer: closely
packed isocontours in U indicate very rapid change in values, inhibiting the formation of
UMZs. As such, as the back of the bulge crosses the FOV, a fast transition to high velocity
values is observed (contour plots on the left in figure 8, φ+ transition). On the other hand,
∂u/∂y < 0 at the front of the bulge, thus creating a destructive interference with the mean
shear, loosely packed isocontours in U, and the formation of UMZs: as the front of the
bulge crosses the FOV, U gradually decreases (contour plots on the right in figure 8, φ−
transition). Similar reasoning explains why the opposite result for the transition rates in
the p.d.f. is observed in the case of upstream-leaning velocity structures (see figure 7b).

Another important point highlighted from these conditional fields is that a certain
velocity value U∗ in the p.d.f. is associated with a different flow field (mainly with respect
to the wall-normal gradient) depending on whether it is part of a φ+ or φ− transition in
time, a distinction that would not be possible without the full temporal information. As
was mentioned earlier, a velocity in the middle of a φ− transition would indicate a peak in
P(U, t) at that velocity and would be associated with a negative wall-normal gradient in u
(contour plots on the right of figure 8). On the other hand, the same velocity in the middle
of a φ+ transition would be represented by a very small number of vectors spatially and
would be associated with a velocity snapshot where ∂u/∂y > 0 (see also contour panels
on the left in figure 8).

It should be noted that, for N1M1, placing the mode closer to the wall, such that there
are non-zero velocity fluctuations in the region close to the wall (i.e. if near-wall streak
structures are present), can lead to better agreement in both P(U, t) and u|φ (not shown
here). Specifically, the velocity range of the p.d.f. peaks increases, such that there are
peaks for U < 0.7U∞, in agreement with the experimental dataset (see figure 4), allowing
also better comparisons for the rest of the metrics discussed here. Although the main
focus in UMZ studies has predominantly been in the log and wake regions, this indicates
that the near-wall region has a significant imprint on the resulting p.d.f. However, it is
stressed here again that since the goal of the present work is not a data-driven search
for the perfect agreement between modelling and experiments but rather establishing a
connection between spatial structuring, temporal evolution and statistical behaviour using
as simple an input as possible, we focused on structures contained in the inertial region for
all model datasets.

Until this point, we have mostly focused our attention on the temporal characteristics
of P(U, t) and their link to the spatial signature of the underlying velocity structures.
The peaks of this p.d.f., however, have also been shown to be an important indication
of UMZs in the flow, the average number of which, NUMZ , follows a Gaussian distribution
in wall-bounded flows (de Silva et al. 2016). It is therefore natural to ask whether the
previously analysed temporal patterns in P(U, t) are also associated with a repeatable
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Figure 9. Conditionally averaged number of UMZs, ÑUMZ |U∗ in each type of transition, where (·̃) denotes that
the mean NUMZ has been subtracted for better comparison between datasets. (a) E1 and N2M5 for different Pth
values, denoted with solid and dot lines, respectively. (b) E1 and N2M6 for different Pth values, denoted with
solid and dot-dash lines, respectively. For E1 the Pth values used are Pth = [0.1, 0.2, 0.5, 1, 1.5, 2, 2.5] and for
N2M5 and N2M6 Pth = [2, 3, 4, 5]. Colours as in figure 5.

transition in NUMZ , leading to the observed statistical behaviour. To this end, the number
of identified peaks for datasets E1, N2M5 and N2M6 is conditionally averaged on φ+
and φ− transitions of U∗. Dataset N1M1 is excluded from this analysis, since the use of
a single velocity scale does not allow for a significant variation in the number of UMZs
or for a sensitivity analysis with respect to Pth. Results for the multiscale datasets (for
which inclusion of more scales provides better statistical representation) show that the
average number of UMZs for N2M6 (NUMZ|N2M6 = 3.2) is comparable to the E1 dataset
(NUMZ|E1 = 3.2) and higher than N2M5 (NUMZ|N2M5 = 2.2). As was mentioned earlier,
the limited number of modes in the model datasets leads to a lower NUMZ for N2M5,
while the increase in Re partly compensates for that in N2M6. This allows comparison of
the relative trends between the datasets, further facilitated by subtracting the mean in each
case. The repeating temporal transitions in U∗ are shown to be associated with clearly
defined transitions in the number of UMZs, similar for all datasets (figure 9). In particular,
φ+ (φ−) transitions in the p.d.f. are linked to a monotonic decrease (increase) in NUMZ
compared to the average. For dataset E1, different values of Pth show a marginal effect on
the observed trends. For N2M5, this effect is more pronounced (figure 9a), while for N2M6
it is the lowest values of Pth that provide the most well-defined patterns an effect of the
discrete nature of the model (figure 9b). Taking into account the corresponding conditional
velocity fields u|φ (figure 8), these trends are also in line with the correlations found by
Laskari et al. (2018) between the number of UMZs and large-scale sweep and ejection
events in the log region. For the temporal patterns analysed here, the focus is solely on the
u fluctuations since it is their geometry together with the mean shear profile that are of
importance for the observed behaviour. Generally though, given the prominence of sweep
and ejection events throughout the boundary layer, a joint u–v analysis could provide
further insight, particularly in a statistical sense, based on the observations from Laskari
et al. (2018). In that respect, the resolvent analysis providing the travelling wave models
is particularly advantageous since it gives specific information about the relationship
between u and v at the critical layer. In the same context, the corresponding behaviour
of the spanwise velocity component w, would also be an interesting point for future work,
since it is not measured or analysed as often.

All the above results and procedure followed for the analysis are summarised in a
conceptual sketch (figure 10): the asymmetry in the full velocity contours (denoted
with black lines at the top) leads to (faster) φ+ and (slower) φ− transitions in P(U, t)
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Figure 10. Conceptual sketch: two-mode representation of velocity fluctuations u, with full velocity contours
superimposed (black lines), highlighting the asymmetry induced due to the mean shear profile (top). Coloured
boxes indicate three representative spatial extents of the convecting structures, as identified in the conditional
velocity fields in figure 8, with dark and light colours denoting φ− and φ+ transitions, respectively (as in figures
5–9). The resulting temporal variations in U∗ and NUMZ during each transition are shown in the two circular
insets of P(U, t), the construction of which is depicted on the left. Increasing scale representation from N1M1
to the experimental dataset E1, is shown on the right.

(denoted with light and dark colours, respectively). Three representative spatial extents
for the velocity fluctuations (following the conditional fields from figure 8) during such
transitions are highlighted and the resulting variations of U∗ and NUMZ , conditioned on
such transitions, are depicted as insets to the full P(U, t) field. The process of constructing
P(U, t) is described on the right of figure 10, while the progressive increase in scale
representation for each dataset used is schematically shown on the left.

5. Discussion

There are several thresholding parameters used throughout the analysis presented here.
However, the effect of most was limited to the quantification of the p.d.f. characteristics
(figure 6), without altering any of the main conclusions. Instead, the parameter study
provided some coarse guidelines for data acquisition and processing while some of the
observed trends contributed to our physical understanding of the flow. Both of these were
further enhanced with the use of the model datasets: knowledge of the exact velocity scales
present in the flow significantly improved spatial and temporal resolution considerations,
while the manipulation of geometrical characteristics of the velocity field in a controlled
manner allowed us to isolate the spatial characteristics of u responsible for the temporal
patterns in P(U, t).

Starting at the instantaneous p.d.f. construction, P(U), the choice of velocity vectors
within the turbulent region should be appropriately limited in both x and y such that the
p.d.f. is sufficiently converged without averaging out modal peaks from smaller UMZs.
The choice of the limit in x was found to have an effect only on the estimated rates of
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transitions in P(U, t) due to increased filtering with increasing Lx (figure 6). A similar
parameter study also showed that Lx has a negligible effect on the average number of peaks
detected in the p.d.f. (for 250 < L+

x < 2500, de Silva et al. 2016). These authors further
concluded that, for consistency between different Re datasets, a viscous scaling of Lx is
appropriate. The multiscale numerical datasets employed here allow us to specify which
scales from a self-similar log-region hierarchy are represented in the p.d.f. (not filtered
out), when the largest scale in the hierarchy is fixed with respect to Lx. In particular,
for both N2M5 and N2M6, the two smallest modes have a negligible effect on the
p.d.f. evolution while for the latter, the third mode from the wall, although leading to a
more observable change in the p.d.f., still does not alter the metrics discussed. In other
words, it is the three larger modes within the logarithmic region that are relevant to the
temporal behaviour of the p.d.f. which is of interest here. Aside from the ratio between the
streamwise extent and the smallest scales in the flow, which has been sufficiently explored
in the literature, including a range of velocity modes in the flow while exactly controlling
their scales (as was the case in datasets N2M5 and N2M6) allowed us to also explore the
relationship between outer scaling and the largest modes present in the flow. The choice
of a constant L+

x for different Re datasets ensures that small UMZs can still be recovered
in high-Re flows; typically then, even in low-Re datasets, the resulting outer-normalised
extent will not exceed Lx = 1–2δ (de Silva et al. 2016). Given the well-known presence of
LSMs (∼2–3δ) and VLSMs (∼6δ) in wall-bounded flows, such a choice of experimental
datasets or broadband models also ensures that scales a few times larger than Lx will
be present in the flow; this is critical for the temporal p.d.f. patterns discussed in the
previous sections. The models analysed here, however, require an a priori choice of all
velocity scales introduced in the flow: following self-similar scaling, the largest scale in
the flow has then to be carefully selected. Specifically, in order to achieve good agreement
between experiments and modelling (Lx = 1590+ for both), the largest velocity scale in
the flow had to comply with δ < λx1 < 6δ; when the largest mode was closer to the lower
limit, temporal patterns in P(U, t) were limited to the main branching structure observed
in the single mode dataset (N1M1, figure 4b). This was particularly pronounced for N2M5
as was seen both in the p.d.f. patterns (figure 4c) and the conditional velocity structures
(figure 8c). For larger λx1, complexity increased with smaller-scale branching in P(U, t)
providing better agreement with the experimental results, however, closer to the higher
limit (λx1 = 6δ), not enough periods of the largest-scale transitions were present leading
to a significant decrease in the estimated average transition rates (for the same temporal
extent in outer units). Based on the previous, we chose an intermediate value of λx1 = 3δ
(kx1 = 2) for the largest scale in the flow, which resulted in the most favourable comparison
with experiments. The limit in y is selected such that vectors from the irrotational
free-stream region are removed. Although this boundary is necessary in order to allow
p.d.f. peaks below U∞ to be identifiable, a rough detection of the turbulent/non-turbulent
interface (quiescent core region in channel flows) is sufficient (such as the use
of a velocity threshold), while more detailed identification schemes (kinetic energy,
vorticity or scalar thresholds) further improve the temporal pattern identification in
the p.d.f.

In order to construct P(U, t), sufficient temporal resolution is important, however, given
the estimated periods of the p.d.f. transitions (figure 5a), time steps dT < 0.5δ/U∞ are still
expected to provide enough resolution for a coarse representation of the temporal patterns
discussed here. The length of each temporal record is also of importance for statistical
convergence, although, depending on the dataset and/or measurement limitations, multiple
records of shorter lengths can also be used.
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With respect to pattern identification, the parameter found to have the largest effect
on the results was the threshold on dU∗/dt used to identify continuous transitions in
time. Not surprisingly higher (lower) thresholds resulted in faster (slower) transitions on
average; however, exact quantitative description of these patterns was not the main goal
here. Rather, highlighting their connection with the underlying velocity structures was of
importance and for that the use of higher (lower) thresholds for φ+ (φ−) transitions in
U∗ led to much more well-defined conditionally averaged velocity fields. This choice was
more crucial in datasets E1 and N2M6, where more scales were involved and various rates
of transitions in U∗ were present. For consistency, the same threshold for both φ+ and
φ− transitions was used in all datasets for the results presented, however, this observation
indicates that the ramp-like velocity structures depicted in figure 8 are indeed linked with
the slowest φ− and fastest φ+ transitions. The values of Pth were shown to have minimal
influence on the estimated rate of transitions, however, lower thresholds were associated
with structures which were located closer to the wall and whose downstream angle was
much more well defined. This variation in the wall-normal location with Pth, was also
observed in the second model dataset and thus allows us to view the experimental dataset
from an ideal structural perspective: starting with an instantaneous velocity field consisting
of a superposition of structures of increasing size with increasing distance from the wall
and convecting in time, each mode will be associated with distinct temporal patterns in
the resulting p.d.f., appearing as branching of the large-scale transition (see figure 4c)
and as such, each will be identified by a different Pth value. In reality, the temporal
patterns in P(U, t) are much more complicated than that (figure 4a) and each Pth value
outlines transitions due to a multitude of scales; besides, our analysis mainly deals with the
large-scale component of these temporal patterns and therefore a more focused approach
would be needed to identify further similarities between the full-scale dataset and the
multiscale model. However, we still find it instructive in its simplicity, allowing us to
understand the main connections between the spatial structure and temporal behaviour
reflected in the p.d.f., as more scales are added in the flow.

The above discussions on scale selection for the model datasets highlight how this
freedom benefits the UMZ analysis, particularly with respect to understanding the links
between the geometry and size of u structures and the p.d.f. temporal patterns. On the
other hand, unless many different scales are added to the flow, statistical convergence is
much harder to attain and that can be seen in the NUMZ variation (figure 9), where the
choice of threshold affects the model datasets significantly more than E1. This greater
difficulty in predicting trends in NUMZ , as well as the sensitivity of the model to the
selected input scales, as discussed above, can be more pronounced in comparison to other
models which employ a broader scale representation (albeit without temporal information,
see for example de Silva et al. 2016). In that aspect, the underlying periodicity and limit of
the velocity fluctuations within the logarithmic region chosen here, although particularly
suited for the analysis of the temporal behaviour of the p.d.f., can further hinder statistical
predictions relying on broadband velocity input. Given these limitations, however, the
agreement achieved in the patterns observed, between datasets representing a full-scale
boundary layer (E1) and a low-order model of both a comparable and high-Re channel flow
of increasing scale representation (N1M1, N2M5 and N2M6) underscores the robustness
of the behaviour discussed here, regardless of flow geometry and Reynolds number.

Overall, we can say that the time-resolved velocity data (E1) allowed the observation
of temporal patterns in P(U, t) in their full complexity, and informed the parameter
choice in the model datasets. The purpose of the first model dataset (N1M1) was to
indicate the simplest model able to reproduce the core characteristics of the observed
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temporal behaviour. The use of multiscale model datasets (N2M5 and N2M6) yielded
more complex p.d.f. patterns, the finer scales of which, although not analysed here,
show promise in reproducing full-scale datasets. We particularly consider the comparison
between small-scale branching in the model p.d.f. with that of the experimental p.d.f. as
a quite relevant topic for future work. With respect to the large-scale temporal variations
of the p.d.f., which are the focus of the present analysis, the multiscale datasets supported
the observations from the single-scale model, indicating that the geometric similarity of
the members of each hierarchy, as well as their relative evolution in time (dictated by
their wall-normal varying wave speed), both inherent to the resolvent framework, can
reproduce these key experimental observations. Further, comparisons between N2M5
and N2M6 indicate that the behaviour observed is likely independent of Re, although a
more extensive analysis would be needed to confirm this trend, preferably including a
range of Re in full-scale experimental datasets. Conversely, all model datasets offered
a much deeper understanding of the experimental observations: complete control over
the geometric characteristics of a single velocity mode (N1M1) and user-defined scale
separation in multiscale models (N2M5, N2M6) highlighted structural characteristics and
scale relationships responsible for the experimental patterns, that could not be identified
from the experimental dataset alone.

6. Conclusions

A novel way of examining the probability density function of the streamwise velocity
using both experimental and numerical data is presented. This p.d.f. has commonly been
analysed instantaneously; we show how temporal information allows the observation of
repeating patterns in P(U, t). In particular p.d.f. peaks are observed to migrate slowly
to lower velocities and subsequently faster towards U∞, linked with a corresponding
monotonic increase and decrease of the average number of UMZs. The main skeleton
of these patterns is reproduced by considering the convection of a single velocity
structure modelled as a travelling wave. Much more complex temporal patterns are
observed when multiple velocity scales are included in two additional model datasets of
self-similar resolvent hierarchies, which are promising for comparisons with full-scale
datasets, although further analysis would be needed to establish similarities. For all
datasets, the large-scale temporal patterns are shown to be linked to the convection of
downstream-leaning velocity fluctuations of alternating sign in space. Manipulation of
the geometrical characteristics of the velocity structures in the model datasets further
demonstrates that it is their ramp-like nature that is mainly responsible for the observed
temporal behaviour. Next to the physical understanding, the achieved temporal and
statistical agreement between datasets is particularly hopeful from a modelling perspective
regarding the capability of capturing key turbulence features and statistics through
low-order models.
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Figure 11. Correlation coefficient RU∗
l U∗ for E1 (Pth,l = 0.1, solid line), N2M5 (Pth,l = 2, dashed line) and
N2M6 (Pth,l = 2, dotted line).

Appendix A. Choice of Pth

The choice of Pth is bound by an upper limit, Pth,u, set by requiring the resulting U∗
u signal

to be continuous in all snapshots, and a lower limit, Pth,l, set by requiring the resulting
U∗

l signals to be sufficiently correlated for Pth,l < Pth < Pth,u. The upper limit values
for the three datasets E1, N2M5 and N2M6 are Pth,u = 2.8, 7.3 and 8.1, respectively.
Regarding the lower limit, for the experimental dataset E1 we can use a threshold as low
as Pth,l = 0.1, which results in non-zero correlation for Pth,l < Pth < Pth,u (see solid line
in figure 11). The Pearson correlation coefficient used here is based on the U∗ signals, for
different threshold values

RU∗
l U∗(Pth) = cov(U∗

l ,U∗)
σU∗

l
σU∗

, (A1)

where U∗
l = min(U|P(U, t) > Pth,l) is constant for each dataset, and U∗ = min(U|P

(U, t) > Pth) varies with Pth. For the numerical datasets, the situation is slightly more
complicated. A significantly higher value of Pth,l = 2 has to be used in order to get a
U∗

l signal for which RU∗
l U∗ > 0, although, even then, this holds true for Pth,l < Pth < 5

(dashed and dotted lines in figure 11). However, for Pth = 5 the resulting U∗ still outlines
the appropriate temporal patterns at the highest velocities (figure 12), while the largest
mode from the numerical datasets is already identified in the conditionally averaged fields
(figure 13d). Thus, given that increasing values of Pth identify structures centred higher
from the wall, a further increase of the threshold would not provide any meaningful results.
In fact, for values of Pth > 6, the resulting U∗ signal reaches values close to 0.9, where the
p.d.f. values are almost constant over time, and as such no longer appropriately delineates
the repeating patterns in the p.d.f. that are of interest here. Subsequently, the resulting
conditional velocities also deviate from the patterns observed when intermediate and low
threshold values of Pth are used (see figures 8 and 13c). It is apparent that, for the numerical
datasets, the choice of an appropriate threshold range is more constrained than in the
experimental one, which should be expected given the difference in scales involved.

Based on the above restrictions, the range of Pth for E1 was chosen as 0.1 < Pth <
2.5 and for both numerical datasets (including more than a single velocity scale) as
2 < Pth < 5. These limits indicate that there is a bias of the numerical datasets
towards higher p.d.f. values clustered closer to higher velocities when compared to
the experimental database (illustrated clearly by the U∗ signals for the minimum and
maximum Pth values in figures 4a and 12). For the conditionally averaged velocity fields,
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Figure 12. Variation of P(U, t) for N2M5 (a), and N2M6 (b) as in figure 4. Solid black lines denote
U∗(t) = U|P(U, t) > Pth with Pth = 2 and 5.
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Figure 13. Conditionally averaged streamwise velocity fluctuations for each type of transition, u|φ+ (left) and
u|φ− (right) as in figure 8. (a) E1 for Pth = 0.1, (b) E1 for Pth = 2.5, (c) N2M5 for Pth = 2, (d) N2M5 for
Pth = 5.
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two intermediate values within those ranges (Pth = 1 for E1 and Pth = 3 for all three
numerical datasets) were chosen (figure 8). For completeness, we also present here the
conditional fields for E1 and N2M5 when the extreme values of the threshold are used
(see figure 13). The structures retain a similar character as the ones for intermediate Pth
values, albeit less clearly formed, especially for the φ+ transitions using high threshold
values in the experimental dataset (figure 13b).

Overall, we can say that the full-scale database (E1) allows the use of very low threshold
values Pth for the detection of the temporal transitions in P(U, t). These threshold values,
although far from the peak values of the p.d.f., still detect the appropriate temporal
patterns. In fact, the use of lower threshold values leads to better formed conditionally
averaged velocity structures and clearer trends for the variation in NUMZ during each type
of transition, indicating that it is the upper limit for Pth that needs to be more carefully
selected. In particular, it seems that it is the φ+ transitions which are less robust for
increasing Pth, while the opposite is true for the φ− ones for which the associated ramp-like
nature of the conditionally averaged velocities becomes more pronounced as Pth increases
(figure 13b, left). For the numerical datasets, on the other hand, the limited number of
scales present in the flow limits the choice of Pth on both ends: below a certain velocity
value, P(U, t) is close or equal to zero and above a certain threshold P(U, t) is close to
its maximum value: in either case there is little or no variation over time and as such the
selection of Pth has to be in between those limits in order to capture the temporal patterns
of interest.
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