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Abstract

Data assimilation in high-order ice flow modeling is a challenging and computationally costly
task, yet crucial to find ice thickness and ice flow parameter distributions that are consistent
with ice flow mechanics and mass balance while best matching observations. Failing to find
these distributions that are required as initial conditions leads to a disequilibrium between
mass balance and ice flow, resulting in nonphysical transient effects in the prognostic model.
Here we tackle this problem by inverting an emulator of the Stokes ice flow model based on
deep learning. By substituting the ice flow equations using a convolutional neural network
emulator, we simplify, make more robust and dramatically speed up the solving of the underlying
optimization problem thanks to automatic differentiation, stochastic gradient methods and
implementation of graphics processing unit (GPU). We demonstrate this process by simultan-
eously inferring the ice thickness distribution, ice flow parametrization and ice surface of ten
of the largest glaciers in Switzerland. As a result, we obtain a high degree of assimilation while
guaranteeing an equilibrium between mass-balance and ice flow mechanics. The code runs
very efficiently (optimizing one large-size glacier at 100 m takes < 1 min on a laptop) while it
is open-source and publicly available.

1. Introduction

The knowledge of today’s glacier ice thickness and parameters governing ice flow is crucial to
initialize prognostic glacier or ice-sheet models (e.g. Perego and others, 2014; Mosbeux and
others, 2016; Goelzer and others, 2018), which can predict their future evolution under climate
change, and the resulting consequences, e.g. in terms of sea-level rise (Marzeion and others,
2020; Edwards and others, 2021). Reconstructing the ice thickness of a glacier (or equivalently
the bedrock elevation) is an active research topic in glaciology that involves direct measure-
ment techniques – typically ground penetrating radar (Rutishauser and others, 2016) – and
a large diversity of methods (see Farinotti and others, 2017, for an overview) to produce esti-
mates where no direct data are available. These methods usually rely on observable data such
as surface ice topography, surface mass balance, surface ice flow speeds, ice thickness change
or a combination of these.

The majority of the existing methods rely on the inversion of mass conservation and/or on
the inversion of approximations of the conservation of momentum associated with Glen’s flow
law (Glen, 1953). The two approaches are intrinsically very different as they take different
input data (namely, mass balance and ice thickness change versus surface ice speeds) and
involve two different types of equations. Advantageously, the conservation of momentum
equation is time independent unlike mass conservation, avoiding dealing with climate variabil-
ity when using the second approach. Choosing the first and/or the second is generally a matter
of data availability.

In the first approach, a classical method (e.g. Farinotti and others, 2009; Morlighem and
others, 2011; Fürst and others, 2018; Maussion and others, 2019) is used to reconstruct ice
fluxes from the estimated mass balance/ice surface changes by integrating the divergence of
the flux and deducing the ice thickness from the shallow ice approximation (SIA). A key
advantage of this approach is that mass balance (unlike ice flow) can be estimated by modeling
without any prior knowledge of the sought ice thickness, and this can be generalized at a
global scale (Farinotti and others, 2019). However, this approach suffers from uncertainties
in the ice-flux reconstruction and shortcomings in the SIA. Indeed, the SIA neglects essential
components of the stress in the case of mountain glaciers, which feature significant basal
motion and/or steep bedrock even if the aspect ratio of the ice geometry is small (Le Meur
and others, 2004).

In the second approach, there exist various inversions of the ice flow mechanics at different
complexity levels including the SIA (e.g. Gantayat and others, 2014; Michel-Griessera and
others, 2014), the shallow shelf approximation (Goldberg and Heimbach, 2013), or
three-dimensional high-order models like Blatter or Stokes (Perego and others, 2014). The
inversion of non-SIA models is traditionally performed using an adjoint-based gradient
method to iteratively calculate basal conditions that minimize the misfit with observations
(Kirner, 2007). While these methods proved to be efficient in retrieving optimal basal friction
conditions alone (e.g. Gagliardini and others, 2013; Morlighem and others, 2013; Mosbeux
and others, 2016), the simultaneous optimization of ice thickness and sliding parametrization
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is rather rare (Goldberg and Heimbach, 2013; Perego and others,
2014). The latter work also includes a misfit of the flux divergence
to account for mass conservation, which ensures an equilibrium
between ice dynamics and mass balance, and limits nonphysical
effects at the initialization of the transient model (referred to as
‘shock’ in the following discussion). However, adjoint methods pre-
sent several difficulties: (1) the derivation of the adjoint problem is
cumbersome, (2) purely deterministic gradient methods are prone
to be locked into a local minimum affecting the robustness of the
method to find the global minimum, and (3) the method is usually
computationally expensive since it requires running the forward
model many times until convergence is reached. To address the
first issue, automatic differentiation has been successfully applied
for parameter and state estimation in a time-dependent marine
ice-sheet model (Goldberg and Heimbach, 2013).

When available, surface ice-flow speed is a key measurement
that is required when solving an inverse problem for ice thickness
or/and basal conditions. Indeed, the dynamics of ice solely
depend on the glacier geometry, basal conditions and internal vis-
cosity at a given time, and has negligible dependence on time in
the case of temperate glacier ice. Therefore, knowing the surface
topography and velocities in three dimensions at a given time is
theoretically sufficient to determine the ice thickness by inverting
an ice flow model for the given ice flow parameters and under
regularity assumptions. Furthermore, there is an inherent benefit
in using glacier flow compared to surface ice fluxes as forcing data
for the inversion because internal glacier fluxes are more stable
than surface ice fluxes, which fluctuate with climate variability.
Until recently, the observed surface ice flow field was sparsely
available, explaining why these key data have been rarely exploited
to date. However, recent advances in remote sensing techniques to
capture horizontal glacial flow promise increasing observation
coverage (e.g. Scambos and others, 2016; Friedl and others,
2021; Millan and others, 2022), opening new perspectives for
ice thickness inference globally.

The complexity and computational costs of inversion methods
for high-order ice flow models (Blatter or Stokes) as well as the
lack of observed velocity data hinder their generalization at a
large scale and the possibility to optimize several variables simul-
taneously. In this paper, we take advantage of a new global dataset
for surface ice flow speeds (Millan and others, 2022), and present
a new method to simultaneously seek ice thickness and basal con-
ditions of valley glaciers by inverting an emulated Stokes ice flow
model in form of the convolutional neural network (CNN) pro-
posed by Jouvet and others (2021). Doing so with a CNN emula-
tor instead of a traditional Stokes model has two major advantages
(i) automatic differentiation techniques avoid the manual deriv-
ation of an adjoint problem and (ii) once trained, CNNs are com-
putationally inexpensive, especially with graphics processing unit
(GPU) considerably speeding-up their evaluation. We test our
method on ten of the largest glaciers in Switzerland, for which
all necessary forcing and validation data are available.

Like in many other disciplines, machine learning has attracted
a lot of interest in glaciology in the last few years for diverse appli-
cations such as the modeling of surface mass balance (Bolibar and
others, 2022) or the analysis of remote-sensing glacier-related
products (Mohajerani and others, 2019). The use of artificial
neural networks (ANNs) for estimating basal conditions – and
the bedrock location in particular – is not new (Clarke and others,
2009). Recently, Leong and Horgan (2020) used a generative
model based on a neural network to downscale existing recon-
structed basal topography of Antarctica in high-resolution. Haq
and others (2021) used an ANN trained from a digital elevation
model and glacier extent data to estimate the ice thickness of indi-
vidual glaciers. A few studies have worked at including ice flow
physics in data-driven neural networks to infer the bedrock

topography (Monnier and Zhu, 2021) or slippery information
(Riel and others, 2021). Lastly, Brinkerhoff and others (2021)
used a neural network to emulate an expensive coupled ice
flow/subglacial hydrology model, and infer the optimal para-
meters that best reproduce the observed surface velocities using
a Bayesian approach.

In the following, we first describe our data assimilation
method including the data generation with a Stokes model, the
training and inversion of the resulting ice flow emulator. Then,
we present ice thickness reconstructions for an ensemble of ten
glaciers with different variants of the optimization method, and
assess their performance. Lastly, we discuss our results and the
potential of the method for global glacier modeling.

2. Methods

Here we denote b(x, y), h(x, y, t) and s(x, y, t) = b(x, y) + h(x,
y, t) the bedrock elevation, ice thickness and ice surface elevation,
respectively. We call �u = (�u, �v) and us = (us, vs) the vertically-
averaged and surface horizontal ice velocity fields (Fig. 1). We
assume the horizontally modeled domain to be a rectangle,
which is subdivided by a regular 2D grid with uniform spacing
in x and y – the variable h, s, b, �u, �v, us, vs being defined at the
center of each cell.

In the following, we first review the Stokes instructor model,
how it is used to generate data, and how the data are used to
train the ice flow emulator. As this workflow was already
described (Jouvet and others, 2021), we refer to this paper for
details and only provide a short description in the following sec-
tion. Then, we describe our method to invert the ice flow emula-
tor, which is the key contribution of this paper.

2.1. Stokes instructor model

To train our deep learning-based ice flow emulator, we carry out
an ensemble of simulations to generate a large dataset of glacier
dynamical states using a time-evolution glacier model based on
Stokes equations (Jouvet and others, 2008). The ice deformation
is modeled by coupling the momentum conservation equation
to Glen’s flow law (Glen, 1953):

D = Atn, (1)

where D is the strain rate tensor, τ is the deviatoric stress tensor, A
is the so-called rate factor (a parameter that controls the ice vis-
cosity), and n = 3 is Glen’s exponent. On the other hand, basal
sliding is modeled with a nonlinear sliding law – known as
Weertman’s law (Weertman, 1957):

ub = ctnb, (2)

where ub is the norm of the basal velocity, τb is the basal shear
stress, and c is a constant sliding coefficient.

While the Stokes equations are solved by finite elements, the
glacier surface evolution is obtained by solving a transport equa-
tion for the volume of fluid, which proved to be a robust method
to model the time evolution of complex glacier shapes (Jouvet and
others, 2008). Here, we used a simple mass-balance model, which
is a linear function of the elevation with accumulation and abla-
tion vertical gradients of 0.005 and 0.009 a−1, respectively, and
maximum accumulation rates of 2 m a−1. The advance and retreat
of the glacier is forced by the equilibrium line altitude (ELA).

The Stokes model has two critical parameters that control the
ice flow; the sliding coefficient c and the rate factor A in Glen’s
law, which is a function of the ice temperature. The simultaneous
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inference of A and c from the observed surface velocity leads to
nonunique solutions (both shearing or sliding dominant flows
producing similar surface speeds) in the absence of additional dis-
criminating data. Therefore an additional constraint on the rela-
tionship between A and c must be imposed on the problem in
order to find a unique solution.

In this paper, we formulate this assumption from the following
statement: basal motion is unlikely (respectively likely) to append
when the ice is cold (respectively temperate) at bed. This trans-
lates into the assumption that either c = 0 kmMPa−3 a−1 and A
< 78MPa−3 a−1 for cold ice, or c > 0 for A = 78MPa−3 a−1, for
temperate ice, which is the typical value at pressure-melting
point (Cuffey and Paterson, 2010). Under this assumption, we
can reduce the two parameters A and c to a single one

Ã = A+ lc, (3)

where λ = 1 km−1 is set arbitrarily (which is not a problem since Ã
is tuned to data), and therefore force the optimization problem to
be well-posed. The new parameter Ã should be understood as a
generic control on the ice flow strength; raising this parameter
permits one to describe regimes from non-sliding and low shear-
ing cold ice (low A, c = 0) to fast and sliding dominant temperate
ice (A = 78MPa−3 a−1, and high c), with Ã = 78MPa−3 a−1 repre-
senting a mid-way value corresponding to non-sliding and shear-
ing temperate ice (A = 78MPa−3 a−1, c = 0 kmMPa−3 a−1), as
represented in Figure 2. While Ã is defined by (3), (A, c) can
be inferred from Ã:

A = min(Ã, 78), c = max(Ã− 78, 0).

While constant values for A and c (and then for Ã) are taken for
training, we allow Ã to vary spatially (i.e. Ã = Ã(x, y)) for the inver-
sion later on to permit a local control of the ice flow strength.
However, it must be stressed that Ã does not depend on z (i.e. it
represents the depth-average value). The counterpart of this assump-
tion is that the dynamics of an ice layer, which shows a cold surface
and temperate base (Greve and Blatter, 2009), is approximated with
an intermediate control value Ã, which averages low A (due to cold
ice) and c > 0 (due to basal sliding). Note that the inversion method
presented in this paper is not conditioned to this assumption, and
that other constraints on the pair (A,c) can be enforced.

2.2. Data generation

Equipped with the Stokes instructor model, the goal is now to
construct diverse dynamical states to obtain a heterogeneous data-
set that describes large/narrow, thin/thick, flat/steep, long/small
glaciers that can be met in future modeling. For that purpose,
we have taken existing valleys from the European Alps and New
Zealand, that are today ice-free but were likely covered by ice dur-
ing the last glaciation, and prescribed mass-balance conditions to
build glaciers there. In more detail, we have picked ten diverse val-
leys with drainage basins ranging from 80 to 700 km2, which have
proved to produce an heterogeneous dataset (Jouvet and others,
2021). For each one, we built a 100 m resolution two-dimensional
structured mesh and projected it in three dimensions onto the
digital elevation model (DEM) from the NASA Shuttle Radar
Topographic Mission (SRTM, http://srtm.csi.cgiar.org/). A three-
dimensional mesh was then vertically extruded with 10 m thick
layers. All simulations were initialized with ice-free conditions,
and the model was run forward-in-time for 100 years using a
low ELA to allow glaciers to grow and advance. After 100 years,
the glacier has spread over most of the drainage basin. Then,
the ELA was raised for the next 100 years to let the glacier retreat.
Runs were carried out with varying parameters (A, c) (or Ã):

(A, c) [ {(11, 0), (30, 0), (54, 0), (78, 0),

(78, 6), (78, 12), (78, 25), (78, 70)}

or

Ã [ {11, 30, 54, 78, 84, 90, 103, 148}

to describe a large range of ice flow from slow shearing to rapid
sliding (Fig. 2). Note that A =11, 30, 54, 78 MPa−3 a−1 corre-
sponds to the rate factor for ice at − 10, − 5, − 2 and 0°C, respect-
ively (Cuffey and Paterson, 2010).

2.3. Ice flow emulator

Following Jouvet and others (2021), our ice flow emulator predicts
vertically average and surface horizontal velocity from ice thick-
ness, surface slope and ice flow strength parameter Ã:

F : {h,
∂s
∂x

,
∂s
∂y

, Ã} −� {�u, �v, us, vs}

RNX×NY×4 −� RNX×NY×4

(4)

where input and output are two-dimensional fields, which are
defined over the discretized computational domain (or subparts)
of size NX ×NY. The above emulator is the one introduced by Jouvet
and others (2021) but augmented with the surface velocity in the
output variable set as necessary to define a misfit with observations.

We approximate F by means of an ANN, which maps input to
output variables using a sequence of network layers connected by

Fig. 1. Cross-section of a glacier with annotations. The data assimilation consists of
finding ice thickness distribution h and ice flow parametrization (c, A) (red) variables,
which optimize the match with observational (blue) variables such as surface eleva-
tion, surface velocity (materialized by arrows) or measured ice thickness profiles.

Fig. 2. In this paper, the ice flow strength is controlled by a single parameter
Ã = A+ lc, where A is the rate factor in Glen’s flow law that controls the ice shearing
from cold-ice case (low A) to temperate ice case (A = 78 MPa−3 a−1), c is a sliding coef-
ficient that controls the strength of basal motion from no sliding (c = 0) to high sliding
(high c) and λ = 1 km−1 is a given parameter.
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trainable linear and non-linear operations with weights, which are
adjusted (or trained) to a dataset. Here we use a CNN (Long and
others, 2015), which is a special type of ANN that additionally
includes local convolution operations to extract
translation-invariant features as trainable objects and then learn
spatially-variable relationships from given fields of data (LeCun
and others, 2015). CNNs are therefore suitable to learn from a
high-order ice flow model, that determines the velocity solution
from topographical variables and their spatial variations.

Here, we used the network architecture from Jouvet and others
(2021), which was found to be optimal in terms of model fidelity
to number of parameters. At training, we minimize the sole L1
loss function using a stochastic gradient method – the Adam opti-
mizer (Kingma and Ba, 2014) – with a learning rate of 0.0001, a
batch size of 64 and 200 epochs (or iterations) to reach conver-
gence. As a result, the CNN is several orders of magnitude
cheaper to evaluate than the original Stokes problem, with fidelity
levels above 90% provided the solution is in the ‘hull’of the train-
ing dataset. In other words, one has to make sure that the glacier
to be modeled has some close analogs in terms of size, thickness,
slope and speed in the pool of training glaciers. Here our emulator
is suitable for mountain glaciers thinner than 800 m, but not for
thicker ice caps or ice sheets.

In contrast, fast flowing ice with a larger spatial dependence as
found in tidewater glaciers and ice shelves (not considered here)
might be better learned with more elaborated multiscale architec-
tures such as the U-Net one (Ronneberger and others, 2015). The
latter has not been selected here as it did not show any superiority
over CNNs for local mountain glacier-like flow. The Python code
for training CNN and U-Net is publicly available at https://github.
com/jouvetg/dle, and can be used to manufacture specific ice flow
emulators from modeled data.

2.4. Inversion algorithm

In this section, we present the optimization method to simultan-
eously seek optimal input fields h, Ã and s of the ice flow emulator
(Eqn (4)) that fit the best given observations including: (i) observed
ice surface velocities uobss = (uobss , vobss ), (ii) ice thickness profiles
{hobsp , p [ [0, . . . , P]} at given locations (each hp is defined
along a given measured profile {(xpi , y

p
i ), i = 1, . . . , Mp}) (iii)

top ice surface sobs, and (iv) an ice-free mask Mice-free, and/or
(iv) observed flux divergence dobs obtained from surface mass
balance and ice thickness change. Our choice to include the top
ice surface field s as an optimization variable allows accounting
for possible observation errors of sobs or time shift between data
(e.g. uobss and sobs may refer to slightly different years).

Here, we closely follow Perego and others (2014) by setting up
a cost function J , which represents the difference between mod-
eled and observed variables. The key difference with Perego and
others (2014) is that the modeled velocity field is the output of
a trained ANN instead of the direct solution of a physical ice
flow model. As the problem is usually not well-posed (several
combinations of ice thickness and ice flow parameters yield the
same surface velocities), we additionally impose smoothness con-
straints to h and Ã by using regularization terms. The least square
optimization problem consists of finding spatially varying fields h,
Ã and s that minimize the cost function

J (h, Ã, s) = Cu + Ch + Cs + Cdpoly +Rh +RÃ +Ph, (5)

where

Cu =
∫
V

1
2s2

u

uobss −F h,
∂s
∂x

,
∂s
∂y

, Ã

( )∣∣∣∣
∣∣∣∣
2

(6)

is the misfit between modeled and observed surface ice velocities
(F is the output of (4)),

Ch =
∑

p=1,...,P

∑
i=1,...,Mp

1
2s2

h

|hobsp (xpi , y
p
i )− h(xpi , y

p
i )|2 (7)

is the misfit between modeled and observed ice thickness profiles,

Cs =
∫
V

1
2s2

s

s− sobs
∣∣ ∣∣2 (8)

is the misfit between the modeled and observed top ice surface,

Cdpoly =
∫
V

1
2s2

d

∇ · (h�u)− dpoly
∣∣ ∣∣2, (9)

is a misfit term between the flux divergence ∇ · (h�u) and its poly-
nomial regression dpoly with respect to the ice surface elevation s
(x, y) to enforce smoothness with linear dependence to s,

Rh = ah

∫
h.0

(|∇h · ũobss |2 + b|∇h · (ũobss )⊥|2 − gh) (10)

is a regularization term to enforce anisotropic smoothness and
convexity of h (see next paragraph),

RÃ = aÃ

∫
V

|∇Ã|2 (11)

is a regularization term to enforce smooth Ã, and

Ph = 1010 ×
∫
h,0

h2 +
∫
Mice-free

h2
( )

, (12)

is a penalty term to enforce nonnegative ice thickness. Here ũobss
in Eqn (10) is the observed surface velocity field uobss after apply-
ing a Gaussian smoothing (σ = 3) and normalizing, and (ũobss )⊥ is
its orthogonal field. Lastly, we denote σu, σh, σd, σs as the user-
defined confidence levels (possibly spatially varying) errors of
observations for uobss , hobsp , dobs and sobs, respectively, and
ah, g, aÃ . 0, 0 < β < 1 are fixed parameters.

In the above definition of J , the choice of the regularization
term Rh of the ice thickness h defined by (10) is motivated by
the following statements:

(i) Glacier beds (or equivalently ice thicknesses) are in general
smoother along the ice flow direction than in the across dir-
ection due to glacial erosion.

(ii) In the absence of data for ice thickness, the convexity of J
can be artificially enforced in the early stages of the iterative
optimization scheme to facilitate convergence.

To account for (i), we have projected the gradient of the ice thickness
along flow direction and the orthogonal to obtain directional deriva-
tives and enforce smoothing of h in an anisotropic way, i.e. we impose
further smoothness along the ice flow direction – the anisotropy
being controlled by user-defined parameter 0 < β < 1. To account
for (ii), Rh includes the term − �

V
gh that aims at enforcing a slight

convexity (controlled by parameter γ) of the ice thickness when no
observational data are available to aid convergence without impact-
ing the optimal solution. Heuristically, β = 1 minimizing Rh (i.e.� |∇h|2 − gh) is equivalent to solving the Euler–Lagrange equation
− Δh = γ, which is the well-known Poisson problem with loading γ.
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Lastly, we have imposed a smooth flux divergence through the
regularization term Cdpoly defined by (9) in J to counter non-physical
oscillations (Fig. 8). On the other hand, the linear dependence in z
we imposed is a common feature of mass balance and elevation
change of mountain glaciers. However, when observation of the
divergence flux is available dobs, we may replace Cdpoly by:

Cdobs =
∫
V

1
2s2

d

∇ · (h�u)− dobs
∣∣ ∣∣2. (13)

Note that the flux divergence ∇ · (h�u) is approximated by finite-
difference using an upwind first-order scheme similar to the solv-
ing of the mass conservation equation in the glacier evolution
model (Appendix A, Jouvet and others, 2021).

We have written the above optimization problem in the most
general case for convenience, however, it is straightforward to
optimize only for h or Ã if information on one of the variables
is already known, or in case the system is under-constrained by
lack of data to define the cost function. Indeed, while ice surface
velocity data uobss are now available globally (Millan and others,
2022), measured ice thickness profile data are only available for
sparse sites. In case these data are not available, we would fix Ã
and optimize for the ice thickness h only as it is a stronger control.

The above-mentioned optimization problem is solved using a
stochastic gradient descent method with adaptive learning rate,
namely, the Adam optimizer (Kingma and Ba, 2014). For that pur-
pose, gradients of J with respect to the input variables h, Ã, s are
obtained by automatic differentiation. The optimization scheme is
stopped when the cost function no longer decreases. The Adam
scheme is initialized with zero ice thickness h = 0 and constant
Ã = 78MPa−3 a−1, which corresponds to the neutral non-sliding
temperate ice shearing case (Fig. 2), and observed ice surface s = sobs.

2.5. Implementation

The optimization is implemented within the framework of the
‘Instructed Glacier Model’ (IGM, https://github.com/jouvetg/
igm) (Jouvet and others, 2021), which is a Python open-source
code based on the Tensorflow library (https://www.tensorflow.
org), and which can be used for prognostic glacier simulations
based on the ice flow emulator (Eqn (4)). IGM runs both on cen-
tral and graphics processing units (CPU and GPU). To automat-
ically differentiate J with respect to the input variables h, Ã, s,
TensorFlow records all operations and the derivatives from inputs
to the cost function J . Then, during the backward pass,
TensorFlow goes through this list of operations in reverse order
to compute gradients with a chain rule of derivatives.

3. Results

We tested our method on ten of the largest Swiss glaciers, which
feature an impressive number of available measurements: Grosser
Aletsch, Unteraar, Rhone, Corbassière, Oberaletsch, Zmutt,
Findelen, Trift, Otemma and Zinal Glaciers. It must be stressed
that none of these glaciers were used for training the ice flow emu-
lator, however, all of them are in the ‘hull’ of the training dataset
(i.e. they have close analogs in the dataset). While the Grosser
Aletsch Glacier spreads over ∼ 80 km2 and has ∼ 12 km3 of ice,
the nine others are several times smaller: their areas range
between 12 and 22 km2, and their estimated volumes range
between 0.7 and 3 km3 (Grab and others, 2021). For all these gla-
ciers, the following measurements are available:

(i) observed surface ice velocities (uobss ) from Millan and others
(2022), corresponding to the 2017–2018 time period, and
with σu = 5 m a−1 as confidence level,

(ii) glacier surface DEMS (sobs) from swisALTI3D (www.swisstopo.
admin.ch), corresponding to the 2016–2017 time period, and
with σs = 5 m as confidence level,

(iii) ice thickness profiles (hobsp ) and their confidence errors σh
from ground-penetrating radar from Grab and others
(2021) (these ice thickness profiles were homogenized by
subtracting glacier bed elevation profiles data from the
swisALTI3D DEM so that they all refer to 2016–2017),

(iv) glacier outlines, and resulting mask Mice-free from the Swiss
Glacier Inventory 2016 (Linsbauer and others, 2021) (this inven-
tory may refer to the years preceding 2016, which is justifiable,
as the given outlines serve to discriminate ice-free areas, and all
considered glaciers have been shrinking in the past recent years).

For a single experiment on the Rhone and Grosser Aletsch Glaciers,
we additionally use mass-balance data averaged between 2001 and
2016–2017 from GLAMOS (2020) as well as ice thickness change
data based on DEM differentiation (2001 and 2016–2017 available
from SwissTopo, www.swisstopo.admin.ch) to produce an observed
flux divergence field dobs with σd = 1m a−1 as the confidence level.

We now report the results of seven different optimization
schemes (defined in Table 1) including the most general form
(hereafter denoted Optimization O or Opt. O) and six variants
that exclude terms in the cost function and in the pool of opti-
mization variables (i.e. controls) to assess the added value of
each. For convenience, we named variants with the general
form name O, but specified in the index the variable or constraint
that was removed with an explicit minus symbol (e.g. O−d) when-
ever possible. With exception of the second scheme (Opt. O∗) that
is applied only to the Rhone and Grosser Aletsch Glaciers, while
all others are performed for all ten glaciers:

(i) Opt. O is the most general optimization scheme, which
consists of seeking (h, Ã, s) that minimize the full cost
function J defined by (5).

(ii) Opt. O∗ replaces Cdpoly defined by (9) in Opt. O by Cdobs
defined by (13) to impose data fitting of the flux divergence
instead of smoothness. Here, the motivation is to verify how
much prior knowledge on the flux divergence permits
preserving the equilibrium between ice dynamics and
mass balance better than an assumption on its spatial
regularity.

(iii) Opt. O−d removes the flux divergence Cdpoly in the cost func-
tion of O to quantify the resulting disequilibrium between
ice dynamics and mass balance and conclude the added-
value of Cdpoly.

(iv) Opt. O−s is a variant of O, which removes the ice surface
term Cs from the cost function and variable s from controls
to assess the impact of ice surface adjustment.

Table 1. Name, data used and definition (controls and cost function) of all
optimization schemes carried out in this paper. The first line indicates the
reference scheme (O) to which other schemes are compared to. When h
(respectively Ã) is not part of the optimization, we use the ice thickness
reconstruction from Grab and others (2021) (respectively we assume constant
Ã = 78 MPa−3 a−1).

Opt. Data Controls Cost J
O All− dobs (h, Ã, s) J def. by (5)
O∗ All (h, Ã, s) Cdpoly ⇒ Cdobs
O−d All− dobs (h, Ã, s) J − Cdpoly
O−s All− dobs (h, Ã) J − Cs
O−Ã All− dobs (h, s) J −RÃ

O−Ã, h All−hobsp (h, s) J − Ch −RÃ

O uobs, sobs (Ã, s) Cu + Cs
+Cdpoly +RÃ
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(v) Opt. O−Ã assumes Ã = 78MPa−3 a−1 and removes Ã from
controls of O to assess the importance of optimizing along
ice flow strength parametrization Ã.

(vi) Opt. O−Ã, h is a variant of O−Ã, which further removes Ch
from the cost function, i.e. it does not use any measured
ice thickness profiles, considering that such data only
exist for a restricted number of glaciers.

(vii) Opt. O takes the reconstructed ice thickness h from
Grab and others (2021), and optimizes the variables Ã and
s to fit observed ice surface and velocities while ensuring
smooth flux divergence. The goal here is to verify if adjusting
(Ã, s) from previously optimized ice thickness distributions
is sufficient to assimilate the data with the same quality level.

Unless specified differently, we use parameters αh = 10.0, β = 0.2,
γ = 0.001 and aÃ = 1.0, and lead a sensitivity analysis to measure
the impact of each one.

To measure the mass balance–ice dynamics equilibrium, we
run the forward time-evolution model after optimization using
the observed mass balance for 5 years from the optimal initial
conditions, and track the ice thickness changes similarly to
Perego and others (2014).

Figure 4 shows the evolution of the ice flow strength paramet-
rization Ã, the ice thickness distribution h, as well as the resulting
surface ice flow velocity field u s through the iterations of the opti-
mization scheme O for the Rhone and Grosser Aletsch Glaciers,
while Figure 5 shows the evolution of the ice thickness profiles
towards the targeted ones for the Rhone Glacier. Figure 6 shows
the evolution of each component of the cost function through
the iterations of the optimization.

Figure 7 shows the optimal ice flow strength parametrization
Ã, ice thickness distribution h, as well as resulting surface ice
flow velocity field u s for the Rhone and Grosser Aletsch
Glaciers, and for four optimization schemes (O, O−Ã, O−Ã, h
and O). Figure 8 additionally shows the results of Opt. O, O∗,
O−d, O−s for the Rhone Glacier, including further information
in terms of flux divergence, ice top surface and equilibrium ice
dynamics/mass balance. Figure 9 displays the ice thickness distri-
bution of the eight other glaciers after optimization.

Lastly, Table 2 summarizes the results of optimizations O,
O−Ã, O−Ã, h and O for all ten glaciers, i.e. it gives the standard
deviation (STD) for ice thickness and ice velocity obtained at
the end of the optimization procedure, as well as the ice volumes.
Table 3 provides the same results for Opt. O, O−d, O−s with add-
itional STDs for flux divergence and ice surface.

3.1. Reference optimization scheme O

For all glaciers, we found that the optimization scheme O converges
efficiently (see examples in Figs 4 and 6) within a few hundred
iterations with a smooth decrease and stabilization of cost compo-
nents (the surface misfit and the regularization of Ã take the longest
to stabilize, Fig. 6). We additionally found that the descent scheme

Fig. 3. Observed velocity fields from Millan and others (2022), locations of ice thick-
ness profiles compiled by Grab and others (2021) and of the outlines from Linsbauer
and others (2021) for the Rhone and Grosser Aletsch Glaciers.

Fig. 4. Evolution of the ice flow strength parametrization Ã (unit: MPa−3 a−1), the ice thickness distribution h (unit: m), as well as resulting surface ice flow velocity
field u s (unit: m a−1) through the iterations of the optimization problem (Opt. O) for the Rhone (a) and Grosser Aletsch (b) Glaciers. The mean value of Ã, as well as
the standard deviation (STD) between modeled and observed fields is reported at each step.
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is robust with respect to initial states (not shown), i.e. taking differ-
ent ice thicknesses h and ice flow strength Ã as the initial iterate
leads to very similar final solutions. This shows that the regulariza-
tion terms ensure the optimization problem to be well-posed and
the algorithm to converge to a unique solution.

Inherent to the glacier size, STD between observations and
optimized corresponding fields (called Σh, Sus , Σd and Σs in
Tables 2 and 3) demonstrate efficient data assimilation:

(i) The ice thickness STD Σh measuring the misfit in ice thick-
ness varies between 4 and 11 m (Table 2). In the case of the
Rhone Glacier, Figure 5 shows that the convergence of the
ice thickness toward the targeted profiles is efficient except
for the two last profiles, which show high variations and
are underfitted – a situation that could be recovered by relax-
ing the regularity parameters αh and β.

(ii) The surface ice velocity STDs Sus vary between 5 and 11 m a−1

(Table 2 and Fig. 7 for the Rhone and Grosser Aletsch Glaciers).

(iii) Optimal solutions for the Rhone and Grosser Aletsch
Glaciers show a fair match with the observed flux diver-
gences (STDs are under 1 and 2 m a−1, respectively,
Table 3), which implies the mass balance and the ice dynam-
ics to be well balanced as witnessed by relatively small
changes in the ice thickness after 5 years of integration of
the forward model (Fig. 8).

(iv) The relaxation of the top ice surface (measured by the ice
surface STD) always leads to relatively small adjustments
within the uncertainty range σs under 5 m, with two
exceptions for Grosser Aletsch Glacier (9 m) and Unteraar
(6 m).

Note that the higher misfit score of the Grosser Aletsch Glacier is
simply the result of greater dimensions – both in terms of ice
thickness and ice flow strength – as the scores are given in an
absolute manner.

3.2. Ice flow strength parametrization

For all glaciers, the optimal ice flow strength parametrization field Ã
was found relatively close to the neutral value 78MPa−3 a−1 on aver-
age (Table 3 and Fig. 4). Only the Grosser Aletsch Glacier shows a
mean value higher than 78 (Ã=82), which is the consequence of
high values over the tongue (Fig. 4) in the case of the Rhone
Glacier. When fixing Ã = 78MPa−3 a−1, optimizing for the ice
thickness and surface ice (h, s) only (Opt. O−Ã) does not signifi-
cantly change the modeled ice thickness nor the ice flow field
(Fig. 7) compared to Opt. O. Table 2 confirms the modest
added-value of optimizing Ã in terms of STD reductions for the
ice thickness of the ice velocity between Opts. O and O−Ã (compare
Σh and Sus in Table 2), and for all glaciers except Grosser Aletsch.
Our results therefore support the fact that A = 78 and c = 0 are in
general appropriate values to describe the ice flow of glaciers of
the Alps, however, a higher value of c is preferable for Grosser
Aletsch.

Fig. 5. Evolution of the ice thickness profiles (depicted in Fig. 3) through the iterations of the optimization problem (Opt. O).

Fig. 6. Evolution of each component of the cost function J (once normalized
between 0 and 1) through the iterations of the optimization problem (Opt. O) for
the Rhone Glacier.
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3.3. Ignoring ice thickness profile data

When fixing Ã = 78MPa−3 a−1, optimizing for (h, s) only with-
out using any ice profiles data in the cost function (Opt. O−Ã, h),
the ice thickness reconstruction changes to some extent (Fig. 7):
the ice thickness STD increases by a factor ∼ 3− 7 while the ice
surface velocity STD remains fairly small (compare Σh and Sus

for Opt. O−Ã and O−Ã, h in Table 2). The total volume estimate
differs by 6%, with a variability of 14 % (Table 2), indicating a
moderate bias. This is an important result as ice thickness profiles
are in general rarely available at a global scale. Here we found that
while ice profiles can strongly improve the estimation of the ice
thickness locally, their relevance to retrieve the global ice volume
is less significant at a global scale. Note that the remaining bias is
directly controlled by our hypothesis on the Ã value; for instance,
the +13% bias in terms of ice volume of the Grosser Aletsch
Glacier between Opt. O and O−Ã, h would be reduced to − 2%
using the mean value Ã = 82MPa−3 a−1 found in Opt. O instead
of Ã = 78MPa−3 a−1. Indeed, raising Ã induces an increase of the
ice flow speed, which must be compensated by a decrease of the
ice thickness to maintain the ice flux.

3.4. Added value of flux divergence and top surface constraints

Our reference scheme O imposes smoothness on the flux diver-
gence without using any observational flux divergence data.
Here we assess the added value of using mass-balance data

(Opt. O∗), as well as the importance of these two terms (Opt.
O−d and O−s). Our findings are:

(i) Comparing Opt. O and Opt. O∗ results show that both the
flux divergence misfit Cdobs and a well-tuned regularization
term Cdpoly lead to a similar fit in terms of flux divergence
STD and equilibrium between ice dynamics and mass bal-
ance as witnessed by the ice thickness change after 5 years
of forward model time integration (Fig. 8).

(ii) Not accounting for the flux divergence in the cost function
(Opt. O−d) leads to nonphysical, high-frequency variations
of the optimal flux divergence (Fig. 8) with a strong misfit
with observations (Σd in Table 3), and this results in a strong
shock when integrating the model over 5 years (Fig. 8).

(iii) Including the ice surface elevation as an additional control
(allowing small adjustments within the uncertainty range)
gives more slack to the optimization system and permits a
better match of all targeted quantities such as ice surface vel-
ocity, ice thickness, and flux divergence (Fig. 8). In particu-
lar, small adjustments of the top ice surface greatly help in
absorbing and damping the original high-frequency varia-
tions of the flux divergence (Fig. 8).

3.5. Comparison with other ice thickness reconstructions

Table 2 provides the resulting total ice volumes of the ten recon-
structed glaciers (Fig. 9) and compares them with the reference

Fig. 7. Optimal ice flow strength Ã (unit: MPa−3 a−1), ice thickness h (unit: m), resulting surface velocity field u s (unit: m a−1), and velocity difference based on Opt.
O, O−Ã, O−Ã, h , and O for the Rhone and Grosser Aletsch Glaciers.
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volumes found by Grab and others (2021). As a result, the refer-
ence optimization scheme O yields to ice thickness distributions
and ice volumes that are in line with those found by Grab and
others (2021): STDs for the ice thickness are between 8 and 16m,
while the total ice volume is 7% lower on average with an STD of
14 % (Table 2). This relatively good match was expected as our
two reconstructions involve the same ice profile data.

Figure 10 compares the ice thickness distribution obtained
with Opt. O−Ã to reconstructions from Millan and others
(2022), Grab and others (2021) and Farinotti and others (2019)

for the Rhone and Grosser Aletsch Glaciers. Note that Millan
and others (2022) used the surface ice flow speed data of Opt.
O−Ã, Grab and others (2021) used the ice thickness profile data
of Opt. O−Ã, while Farinotti and others (2019) derived a compos-
ite solution of several reconstructions. Again the distributed ice
thicknesses from Grab and others (2021) are fairly in line with
our reconstruction, while those from Farinotti and others
(2019) show more discrepancies (the ice thickness distribution
is less heterogeneous) but without significant bias. In contrast,
the reconstruction of Millan and others (2022) is notably thicker.

Additionally, Figure 10 compares the ice flow fields modeled
with the Stokes-emulated model resulting from all ice thickness
solutions. The difficulty of this comparison resides in the choice
of Ã: since all methods have their own calibration, the same
value of the ice flow strength control Ã (assumed to be spatially
constant here) may not be optimal for all reconstructions. A pre-
liminary analysis has shown that Ã = 78 MPa−3 a−1 was found
close to optimal (in terms of STD between observed and modeled
surface ice velocities) for both Grab and others (2021) and
Farinotti and others (2019), but Ã had to be reduced to Ã = 25
for Millan and others (2022) to compensate the thicker ice,
otherwise the ice flow velocities are clearly too high (Fig. 10).
Once this leveling is done, we compare all resulting ice flow pat-
terns. As a result, the ice flow field from Millan and others (2022)
is closer (STD 20 m a−1) to the targeted observation than Grab
and others (2021) (STD 36 m a−1) and Farinotti and others
(2019) (STD 30 m a−1) solutions. This was expected as only
Millan and others (2022) make use of these observation data.
For comparison, the solution obtained with Opts. O−Ã (assuming
Ã = 78) and O (further optimizing Ã spatially) reduces this misfit
to 14 and 11 m a−1, respectively. Note that our first observations
of the Rhone and Grosser Aletsch Glaciers generalize to the entire
glacier pool: STDs in ice flow speeds are twice higher with the ice
thicknesses from Grab and others (2021) compared to those
obtained with the O−Ã scheme (Table 2).

Using the ice thickness distribution reconstructed by Grab and
others (2021), we found that optimizing for (Ã, s) alone (Opt. O)
permits reducing the misfit in ice surface velocities (Table 2), but
not entirely compared to other schemes involving the ice thick-
ness (compare Opt. O and O−Ã to Opt. O in Table 2).
Additionally, the optimal field Ã is unrealistically high in some
areas (Fig. 7), which can hardly be interpreted as the values
may correct for imperfection of the ice thickness distribution.
This experiment emphasizes that the ice thickness field h is a
stronger control on the ice velocity than Ã and highlights the
necessity to include h as a control for data assimilation.

3.6. Regularization parameter sensitivity analysis

Figure 11 shows the impact of each individual parameter among αh,
β, γ, aÃ and αd for Opt. O on the Rhone Glacier. Each snapshot
shows the optimization result with default parameters αh = 10,
β = 0.2, γ = 0.001, aÃ = 0.1 with exception of the one investigated.
As a result, our findings are:

(i) Values of αh, which controls the smoothness of the ice thick-
ness, close to ten yield the optimal STD reduction.

(ii) Values of β, which controls the smoothness degree along the
flow direction, between 0.1 and 0.2, yield to the optimal STD
reduction.

(iii) Values of γ, which enforces the convexity of the cost func-
tion, below 0.002 have nearly no impact on the solution.
Furthermore, we found that the algorithm never moves out
h = 0 (the initial state) when γ = 0 and when performing
an optimization, which does not use any ice thickness profile
data, presumably because the gradients of J are zeros at h =

Fig. 8. Optimal ice flow strength Ã (unit: MPa−3 a−1), ice thickness h (unit: m), ice vel-
ocity misfit (unit: m a−1), flux divergence misfit (unit: m a−1), ice surface misfit (unit: m),
and ice thickness change over 5 years (unit: m) of forward model time integration
based on Opt. O, O∗ , O−d, O−s.

Journal of Glaciology 21

https://doi.org/10.1017/jog.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2022.41


0 in this case. In this case, a small (but non-zero) γ avoids
this issue, and therefore augment the domain of convergence
of the optimization scheme.

(iv) Values of aÃ, which controls the smoothness of Ã, have a
very limited impact on the solution. We arbitrarily selected
aÃ = 0.1 as default since it permits smooth variation over
the ice domain.

3.7. Dealing with missing data

In the last experiment, we have applied Opt. O−Ã, h (i.e. using con-
stant Ã = 78 MPa−3 a−1, and not using any ice thickness profiles)
to the Rhone Glacier, and using only a partial amount of the
observed velocity field. In more details, we have disregarded
50, 80 and 90% of the available data in Cu to mimic gaps in

Fig. 9. Ice thickness distribution of the eight remaining glaciers after optimization (Opt. O).

Table 2. Results of optimizations O, O−Ã, O−Ã, h and O for all ten glaciers: Σh is the standard deviation (STD) between modeled and measured ice thickness profiles,
Sus is the STD between modeled and measured ice surface velocities, V is the total ice volume, �VG

is the ice volume found by Grab and others (2021) relative to V,
S
G
h is the standard deviation between optimized thicknesses and the ones found by Grab and others (2021), �V is the ice volume relative to V. For Opt. O we provide

Sus without optimization (Ã = 78) and after optimizing Ã.

Opt.
O O−Ã, Ã = 78 O−Ã, h, Ã = 78 (Grab, 21) h

Use profiles Use profiles Do not use profiles Ã = 78 Opt. O

Σh Sus V �VG
S
G
h Σh Sus �V Σh Sus �V Sus Sus

Glacier m m a−1 km3 % m m m a−1 % m m a−1 % m a−1 m a−1

Aletsch 10 11 12.76 91 10 11 14 106 69 13 115 37 13
Untera. 9 11 2.78 102 15 9 12 100 64 9 73 21 17
Rhone 11 9 1.61 91 12 11 10 102 31 10 100 14 10
Corbas. 4 8 1.20 102 16 4 8 102 31 8 97 12 8
Oberal. 8 7 1.02 102 12 8 7 100 49 6 77 10 7
Trift 6 7 0.83 96 8 6 8 102 36 8 98 12 8
Findel. 5 9 0.80 125 11 5 11 109 30 11 112 23 11
Zmutt 6 10 0.77 135 9 5 12 107 31 12 108 26 11
Zinal 5 5 0.66 104 8 5 6 104 36 6 86 8 7
Otemma 7 11 0.55 121 7 7 14 100 45 14 79 27 12
MEAN 7 9 2.30 107 11 7 10 103 42 10 94 19 11
STD 2 2 3.54 14 3 2 3 3 14 3 14 9 3

Table 3. Results of optimizations O, O−d, O−s for all ten glaciers. The meaning of each column is described in the caption of Table 2. In addition,
∮
Ã denotes the

average of Ã over the glaciated area, Σd denotes the flux divergence STD and Sus denotes ice surface STD.

Opt.
O O−d O−s

Glacier Σh Sus Σd Σs
∮
Ã Σh Sus Σd Σs �V Σh Sus Σd Σs �V

m ma−1 m a−1 m m m a−1 m a−1 m % m m a−1 m a−1 m %

Aletsch 10 11 2 9 82 8 10 10 8 101 13 13 3 0 99
Untera. 9 11 − 6 73 8 8 − 4 101 9 12 − 0 101
Rhone 11 9 1 5 79 11 8 5 4 102 11 10 2 0 99
Corbas. 4 8 − 3 79 5 8 − 2 101 4 8 − 0 99
Oberal. 8 7 − 3 78 8 6 − 2 101 9 7 − 0 100
Trift 6 7 − 3 80 6 6 − 2 99 6 7 − 0 100
Findel. 5 9 − 4 78 6 8 − 4 105 5 9 − 0 100
Zmutt 6 10 − 5 75 6 9 − 5 107 6 10 − 0 102
Zinal 5 5 − 2 80 6 5 − 1 105 5 5 − 0 99
Otemma 7 11 − 5 77 7 11 − 5 102 7 12 − 0 100
MEAN 7 9 − 4 78 7 8 − 4 102 7 9 − 0 100
STD 2 2 − 2 3 2 2 − 2 2 3 2 − 0 1
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observations – the kept/rejected data being picked randomly (but
uniformly). Additionally, we carried out the same experiment by
disregarding a geometrical half part of the data (Fig. 12, top
panel). The results of these experiments are depicted in Figure 12.

As a result, we found that removing data homogeneously does
not significantly affect the quality of the reconstructed ice thickness
and ice flow up to the 80% removal level. In other words, the ice
thickness STD remains nearly the same, while the ice velocity
STD increases by only ∼ 10% (Fig. 12). Only with 90% removal
does the deterioration of the reconstruction quality becomes clearly
noticeable. As expected, removing the data non-homogeneously
leads to an uneven reconstruction quality. In contrast with the
part with disregarded data, the remaining part is well reconstructed.

3.8. Computational performances

All optimizations were performed using a Python code based on
the TensorFlow library embedded in the IGM. Computations
were performed on the laptop-integrated NVIDIA Quadro P3200
GPU card (1792 1.3 GHz cores) and on a CPU (Intel(R) Core
(TM) i7-8850H CPU with 6 2.6 GHz cores) for comparison
purposes. Solving one inversion scheme Opt. O takes about
1 min per glacier on GPU, and roughly 2–5 times more on CPU
according to the glacier size (the larger the domain, the more
advantageous the GPU).

4. Discussion

Data assimilation is a key and challenging step to initialize prog-
nostic glacier or ice-sheet evolution models (e.g. Goelzer and
others, 2018; Seddik and others, 2019). In general, data from
the glacier surface (typically surface elevation and flow speed)
are available by remote sensing, while information from the inside
of the glacier is rarely available as it requires in situ measurements
or from near-field remote sensing. The data assimilation step con-
sists of seeking the interior conditions (typically the location of
the bedrock and slipperiness information) that can best explain

Fig. 10. The ice thickness distribution from Millan and others (2022), Grab and others (2021), Farinotti and others (2019) and the one optimized in this study, the
corresponding modeled ice flow field, and the difference between the two. For the first ice thickness reconstruction, the results are shown with two parameters:
Ã = 78 and Ã = 25 MPa−3 a−1.

Fig. 11. Effect of parameters αh, β, γ on the optimized ice thickness (the three top
panels) and parameter aÃ on the optimized field of Ã (forth panel) for Opt. O of
the Rhone Glacier.
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the surface data from physical modeling (Fig. 1), which relies on
ice flow mechanics and mass conservation (MacAyeal, 1992).

In view of prognostic modeling, it is crucial to use the same
physical model for data assimilation and direct ice flow modeling.
Indeed, our results have shown that the ice thickness recon-
structed with other embedded mechanics leads to Stokes-modeled
ice velocity fields that are very different (Fig. 10). Initializing a
prognostic ice flow model with these reconstructions would result
in a shock with nonphysical transients effects. In turn, this would
require performing an artificial relaxation to adjust the glacier
surface to the modeled mechanics (e.g. Seddik and others,
2012) while the bedrock should be adjusted to the mechanics.
While the local aspect of the SIA makes its inversion a relatively
easy task, it is usually oversimplified for mountain glaciers char-
acterized by significant basal motion and/or steep slopes as it
neglects essential horizontal shear stresses. By contrast, high-
order models account for these stresses, but their inversion is a
complex and computationally expensive task (Perego and others,
2014). The approach that we introduce in this paper precisely
aims to considerably ease and speed up this task using CNN
and automatic differentiation.

For that purpose, our strategy is to work with the trained
CNN emulator introduced by Jouvet and others (2021) instead
of the primary Stokes equations. Indeed, the gradient descent
directions of the optimization problem are available by automatic
differentiation (within the TensorFlow framework) and without
having to derive manually and solve any adjoint problem.

Using a stochastic gradient descent method together with an
extra convexity term when no ice thickness profile is used in
the cost function ensures efficient and robust convergence
(Figs 4 and 6). Second, evaluating a neural network is several
orders of magnitude cheaper than solving a Stokes problem,
especially on GPU. Lastly, the loss in accuracy (10 %) of using
an emulator instead of the Stokes equations is comparatively
small (especially smaller than the uncertainty of the data to
fit) should it be used within the ‘hull’ defined by the training
dataset. The implementation of the optimization algorithm and
its automatic differentiation tools is fairly simple thanks to the
TensorFlow library with a speed-up of several order of magni-
tude compared to true Stokes-based inversion similar to the for-
ward model (Jouvet and others, 2021).

Besides its low cost, our method can easily handle multivari-
able optimization if there is enough data available to act as a con-
straint. Here we seek simultaneously for the optimum ice
thickness, ice flow strength parameterization and ice top surface
that allows a Stokes-emulated ice flow model to match a set of
observations. As a result, the optimal solutions generally show
very good data assimilation scores. For instance, in the case of
the Rhone Glacier, we simultaneously match the ice thickness
profiles, surface ice speed, top ice surface and flux divergence
with STDs of 10 m, 9 m a−1, 4 m and 1m a−1, respectively.
Furthermore, all five regularization parameters tuned to the
Rhone Glacier were found to be robust, e.g. they successfully
applied to the nine other glaciers.

In all our experiments, ice thickness was always found to be a
very strong control of the ice flow, so that the optimization
scheme must perform fine adjustments to reach the optimal
state. As an illustration of this, the ice thickness reconstructions
– the ones from Grab and others (2021) and the ones optimized
here – are both based on the same ice thickness profile data and
are therefore rather close to each other (STD ∼ 11 m, Table 2).
However, the ice thickness distribution from Grab and others
(2021) leads to a modeled ice flow field that is twice more distant
to observations than the ice thickness optimized here (Fig. 10).
By contrast, the ice flow strength parameterization Ã as well as
the ice surfaces were found to be second-order controls, and
their tuning can reduce the misfit with observations, but only
to a certain extent.

In theory, flux divergence observations (inferred from mass
balance and ice thickness change) and surface ice flow speed
observations would match if the model and observations were
free of any errors. In practice, over-constraining the ice flow inver-
sion by adding a constraint on the flux divergence (Cdpoly or Cdobs)
allows a compromised solution to be found, which matches at best
both types of observations (possibly contradictory) while being
consistent with the mechanical model (Perego and others,
2014). In our results, ignoring the flux divergence in the cost
function always led to nonphysical high-frequency variations
with a subsequent shock in the forward model. This undesired
effect is the direct result of model and/or observation errors as
explained above. However, we found that this artifact can be
strongly damped by either constraining the flux divergence to
fit the observations (Cdobs), or by imposing it to be smooth
(Cdpoly, this second option is of special interest as it does not
require any data) – both approaches lead to fairly similar results.
Additionally, we found that adding any of these constraints affects
the data assimilation quality but to a very limited degree. This
demonstrates a general coherence of the optimized ice flow
model with both types of observations (dynamics and flux diver-
gence). As a corollary, it is not advisable to include the observed
flux divergence data as an additional constraint in general if sur-
face ice flow data are available. Indeed, flux divergence data obser-
vations are more prone to errors (as indirectly reconstructed) and

Fig. 12. Restricted observed ice velocity, modeled ice thickness, ice velocity and the
difference between the two (observed and modeled) ice velocities when removing
observed ice velocity data from the constraints in the optimization problem for
Opt. O−Ã, h (constant Ã = 78 MPa−3 a−1, and without using any ice profiles).
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more fluctuating in time than surface ice flow data inferred by
remote sensing in a direct way. In fact, forcing smooth or
observed flux divergence does not perform any data assimilation
here, but instead permits us to deal with its deteriorated regular-
ity, which is expected after applying the divergence operator.

Our method allows inference of the optimal spatially varying
field Ã, or equivalently the rate factor A and sliding coefficient
c (even if they were spatially-constant at the training stage).
Although both show some spatial variability, their average values
remain close to A = 78 and c = 0 (Table 3), which is a
commonly-used value for non-sliding temperate ice. Temperate
ice is an expected feature for most of Alpine glaciers (Suter and
others, 2001). Only the Grosser Aletsch Glacier shows a mean
value notably higher than 78 (Ã=82, or c=4). A closer look at the
optimized field Ã (Fig. 4) reveals that the highest values of Ã
(and then of c) are found over the glacier tongue – a feature that
may be explained by the presence of subglacial melt water in the
ablation area, with the result of promoting basal sliding. Further
interpretation of the physical meaning of the optimal field A and
c is tricky as some patterns (like the error pattern of the flux diver-
gence) probably reflect shortcomings in our mechanical model.

Here we have applied our method to an ensemble of ten Swiss
glaciers, for which a number of measured ice thickness profiles
exist. While there exists now a global dataset of surface ice flow
velocities (Millan and others, 2022), ice thickness profile data
are only available for a relatively small number of glaciers world-
wide. Therefore, our most general optimization scheme O cannot
be applied globally. When no ice thickness profile data are avail-
able, we proposed to remove field Ã from controls (Opt. O−Ã, h) to
preserve a balance between the number of controls and constraints.
Here under the assumption of Ã = 78MPa−3 a−1 this alternative
scheme leads to less accurate ice thickness reconstruction than
expected, however, the error pattern on the ice volume suffers
from fairly small biases (Table 2). In fact, the bias is directly con-
trolled by the assumption made on Ã. We have demonstrated
that our approach is robust enough to cover gaps in data up to
80–90% levels showing that it can be used as a physically based
method to fill in missing data. In conclusion, our method has a
great potential for deriving ice thickness fields of grounded glaciers
at a global scale consistently with high-order ice flow mechanics.

There are a few challenges that must be addressed in view of
generalizing the method at a global scale (i.e. without relying
on ice thickness profile data), especially to take into account the
diversity of glaciers. First, in absence of ice thickness data the
key challenge is to tune Ã, which is expected to vary in from
site to site to account for the discrepancy in ice flow dynamics
(e.g. due to subglacial hydrology or the presence of cold ice)
and uncontrolled model biases. By contrast, the regularization
parameters involved in the cost function were found robust and
of lesser effect. Additionally, while the ‘hull’ defined by the train-
ing dataset probably already covers a large number of glaciers
worldwide (Jouvet and others, 2021), it is likely that the largest
and thickest glaciers (e.g. ice caps) are poorly represented calling
for an augmentation of the training dataset. Similarly, tidewater
glaciers or ice shelves that feature fast flowing ice could also be
included. In this case the ice flow emulator may have to be
improved to account for their larger spatial dependence (e.g.
using a U-Net instead of a CNN). Lastly, the smallest glaciers fea-
ture slow ice flow in general, and probably higher uncertainty in
the remote-sensing tracking of surface ice speeds, which is
expected to affect the quality of the ice thickness inversion.

5. Conclusions

We have described an inversion method to infer an optimal ice
thickness distribution, ice flow parametrization and ice surface

elevation that are consistent with Stokes ice flow mechanics
and fit the best observational data. We have tested our method
on ten large-size mountain glaciers in the European Alps. We
were able to simultaneously fit the ice thickness profiles, surface
ice speeds, top ice surface and flux divergence with high scores
(respectively, 7 m, 9 m a−1, 4 m, and 1 m a−1 in average) that
guarantee an equilibrium between mass balance and ice flow
mechanics, and subsequently a smooth (with a very limited ini-
tial shock) forward ice flow model. While our multivariable
optimization method is generic, it can be easily adapted to a
smaller set of controls if all data are not available. This is espe-
cially relevant for a global application as only a small number of
glaciers worldwide have ice thickness measurements. When
ignoring the ice thickness profile constraints, the induced
error shows moderate bias, suggesting a high potential for a glo-
bal scale generalization based solely on remote sensing ice flow
observations. Our method is computationally efficient thanks
to the CNN ice flow emulator and implementation on GPU.
The inversion code as well as the emulator of this study are
open-source and publicly available at https://github.com/jou-
vetg/igm. The code for training emulators is available at
https://github.com/jouvetg/dle.
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