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Abstract

A group G is called morphic if every endomorphism α : G→ G for which Gα C G satisfies G/Gα ∼=
ker(α). Call an endomorphism α ∈ end(G) regular if αβα = α for some β ∈ end(G), and call α unit
regular if β can be chosen to be an automorphism of G. The main purpose of this paper is to prove the
following group-theoretic analogue of a theorem of Ehrlich: if G is a morphic group, an endomorphism
α : G→ G for which Gα C G is unit regular if and only if it is regular. As an application, a cancellation
theorem is proved that characterizes the morphic groups among those with regular endomorphism
monoids.
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If R is a ring, an endomorphism α of an R-module R M is called (von Neumann)
regular if αβα = α for some endomorphism β. In 1976 Gertrude Ehrlich called α unit
regular if β can be chosen to be an automorphism of the module M . She showed that α
is unit regular if and only if it is regular and has the property that M/Mα ∼= ker(α), and
she went on to relate these endomorphisms to certain cancellation theorems. In this
paper we will extend these notions to the category of groups, and prove the analogue
of Ehrlich’s theorem.

If G is a group, we write end(G) for the monoid of endomorphisms α : G→ G,
and we write aut(G) for the group of automorphisms of G. Group homomorphisms
will be written on the right. As usual, we write H C G to indicate that H is a normal
subgroup of G, and we write Cn for the cyclic group of order n. If H and K are
subgroups of G, we write G = H � K to mean that H C G, K C G, G = H K and
H ∩ K = 1; and in this case we say that H and K are direct factors of the group G.
We say that G is a semidirect product of K by H (and write G = K o H) if K C G,
G = K H and H ∩ K = 1; in this case we say that K is a semidirect factor of G.

We begin with a few facts about the groups of interest here. The first result
characterizes the group endomorphisms under discussion.
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LEMMA 1. If G is a group, the following are equivalent for α ∈ end(G).

(1) Gα C G and G/Gα ∼= ker(α).
(2) There exists β ∈ end(G) with ker(α)= Gβ and Gα = ker(β).
(3) There exists β ∈ end(G) with ker(α)∼= Gβ and Gα = ker(β).

PROOF.
(1) ⇒ (2). If σ : G/Gα→ ker(α) is an isomorphism, let ϕ : G→ G/Gα denote

the coset map and define β = ϕσ . Then β ∈ end(G), Gβ = (G/Gα)σ = ker(α), and
ker(β)= Gα because σ is one-to-one.

(2)⇒ (3). This is clear.
(3)⇒ (1). Suppose that we are given β such that ker(α)∼= Gβ and Gα = ker(β).

Then Gα = ker(β)C G and then G/Gα = G/ ker(β)∼= Gβ ∼= ker(α). 2

An endomorphism α ∈ end(G) is called morphic if it satisfies the conditions in
Lemma 1. We say that α is normal if Gα C G, so α is morphic if and only if it is
normal and G/Gα ∼= ker(α).

Clearly every automorphism is morphic by (1) of Lemma 1, as is the trivial
endomorphism θ of G defined by gθ = 1 for each g ∈ G. More generally, if G =
H × K the projection (h, k) 7→ (h, 1) is morphic. If α ∈ end(G) is morphic then it is
easy to see that α is one-to one if and only if it is onto, so being morphic is a finiteness
condition on α.

LEMMA 2. The following are equivalent for a group G.

(1) Every normal endomorphism of G is morphic.
(2) If K C G is such that G/K ∼= N C G, then G/N ∼= K .

PROOF.
(1)⇒ (2). If τ : G/K → N is an isomorphism, define α ∈ end(G) by α = ϕτ where

ϕ : G→ G/K is the coset map. Then Gα = N C G, so α is morphic by (1). Hence,
by Lemma 1, G/N = G/Gα ∼= ker α = K .

(2)⇒ (1). Let Gα C G, α ∈ end(G). Since G/ ker(α)∼= Gα, (2) gives G/Gα ∼=
ker(α). 2

A group is called a morphic group if every normal endomorphism is morphic. It
is routine to verify that C2 × C4 is not morphic, so not every finite abelian group is
morphic. However, an (additive) abelian group is morphic if and only if it is morphic
as a Z-module, so [4, Theorem 26] gives the following example.

EXAMPLE 3. A finitely generated abelian group is morphic if and only if it is finite
and each p-primary component has the form (C pk )n for some n ≥ 0 and k ≥ 1.

Thus the abelian groups (C pk )n are morphic for each prime p and integer k ≥ 0.
Note that C4 × C4 is morphic by Example 3, but its (normal) subgroup C2 × C4 is not
morphic.

While Cn is morphic for each n ≥ 2, the infinite cyclic group C∞ = 〈a〉 is not
morphic by (2) of Lemma 2 because C∞/〈1〉 ∼= 〈a2

〉 but C∞〈a2
〉� 〈1〉. On the other
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hand, the infinite (additive) group Q is morphic because Q/K ∼= N ⊆Q implies that
K = 0,Q becauseQ/K is torsion (if 0 6= (m/n) ∈ K and (a/d) ∈Q then md((a/d)+
K )= 0).

A routine application of (2) of Lemma 1 gives the following example.

EXAMPLE 4. Every simple group G is morphic.

More generally, write S = S1 × S2 × · · · × Sn where the Si are simple nonabelian
groups. Then S is morphic. Indeed, S × G is morphic if G is morphic with the
descending chain condition on subgroups and no Si is an image of a normal subgroup
of G. In particular, S × G is morphic for any morphic, finite abelian group. These
results, and many others, are discussed in another paper [3].

Our present interest is in formulating the group-theoretic version of Ehrlich’s
theorem. An endomorphism π ∈ end(G) is called an idempotent if π2

= π .

LEMMA 5. Let G be a group.

(1) If π2
= π ∈ end(G) then G = ker(π)o Gπ .

(2) If π2
= π ∈ end(G) is normal then π is morphic; indeed G = ker(π)� Gπ .

(3) An idempotent endomorphism need not be normal.

PROOF.
(1). If π2

= π and g ∈ G then [g(g−1π)]π = gπ · (g−1)π2
= 1 and it follows

that G = ker(π) · Gπ . Moreover, ker(π) ∩ Gπ = 1 because gπ ∈ ker(π) implies that
1= (gπ)π = gπ .

(2). If Gπ C G, then G = Gπ � ker(π) by (1). But then G/Gπ ∼= ker(π) so π is
morphic by Lemma 1.

(3). Consider the dihedral group D3 with presentation D3 = 〈a, b〉 where |a| = 3,
|b| = 2 and aba = b. If we write A = 〈a〉 then A C G and G/A ∼= C2 ∼= 〈b〉. Define
π : G→ G by

gπ =

{
1 if g ∈ A

b if g /∈ A.

Then π is an idempotent endomorphism, but π is not normal because Gπ = 〈b〉
6 G. 2

We note in passing that D3 is a morphic group; in fact it can be shown [3] that the
dihedral group Dn is morphic if and only if n is odd.

The converse of (1) in Lemma 5 is also true: if G = K o H then G = K H and we
define π : G→ G by (kh)π = h, then π is well defined because K ∩ H = 1, and π is
an endomorphism of G because K C G. Now it is clear that π2

= π , ker(π)= K and
Gπ = H , and hence that G/K ∼= H . Note that H C G if and only if π is normal.

Following the terminology for modules, a group endomorphism α ∈ end(G) will be
called regular if αβα = α for some β ∈ end(G). Hence, every idempotent is regular,
so Lemma 5 presents a regular endomorphism that is not normal. Automorphisms
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are examples of normal, regular endomorphisms, as is the trivial endomorphism. Our
interest here is primarily in normal regular endomorphisms.

A theorem of Azumaya [1] asserts that if α is an endomorphism of a module R M
over a ring R, then α is regular if and only if both Mα and ker(α) are direct summands
of M . The group-theoretic version of Azumaya’s theorem seems to be the following
(where we extend the result to an arbitrary group homomorphism with no extra effort).

THEOREM 6. Let α : G→ H be a group homomorphism. The following are
equivalent.

(1) α is normal and αβα = α for some β : H → G.
(2) ker(α) is a semi-direct factor of G and Gα is a direct factor of H.

PROOF.
(1)⇒ (2). Let αβα = α as in (1). We may assume that also βαβ = β (replace β by

β ′ = βαβ). Consider the idempotents π = αβ ∈ end(G) and τ = βα ∈ end(H). Then
Hτ = Gα C H by hypothesis, so τ is a normal idempotent in end(H). Thus Lemma 5
shows that Gα = Hτ is a direct factor of H .

Turning to ker(α), we show that G = ker(α)o Hβ. If g ∈ G then gα = (gαβ)α
so we have g(gαβ)−1

∈ ker(α). It follows that G = ker(α) · Hβ. Next, suppose that
g ∈ ker(α) ∩ Hβ, say g = hβ, h ∈ H . Then 1= gα = hβα so, since βαβ = β, we
have 1= 1β = (hβα)β = hβ = g. This shows that ker(α) ∩ Hβ = 1.

(2) ⇒ (1). Let G = ker(α)o X and H = Gα � Y where X ⊆ G and Y ⊆ H are
subgroups. Then Gα = Xα, so H = Xα � Y . Define

β : H = Xα � Y → G by [(xα)y]β = x where x ∈ X and y ∈ Y .

This is well defined because H = Xα � Y and ker(α) ∩ X = 1. With this we can show
that β is a group homomorphism:

((xα)y · (x1α)y1)β = ((xα)(x1α) · yy1)β = ((xx1)α · yy1)β

= xx1 = ((xα)y)β · ((x1α)y1)β.

Finally, we verify that αβα = α. If g ∈ G, write gα = xα where x ∈ X . Then

g(αβα)= (xα)βα = ((xα · 1)β)α = (x)α = gα.

Since g ∈ G was arbitrary, this shows that αβα = α. 2

Note that the idempotent π in (3) of Lemma 5 is a regular endomorphism that is not
normal.

Again following module terminology, α ∈ end(G) is called unit regular if ασα = α
for some automorphism σ of the group G. Hence, the trivial endomorphism is unit
regular, as are all automorphisms and idempotents. Note that part (3) of Lemma 5
shows that a unit regular endomorphism need not be normal. We need the following
characterization of these unit regular maps.
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LEMMA 7. If α ∈ end(G) then the following are equivalent.

(1) α is unit regular.
(2) α = πσ where π2

= π ∈ end(G) and σ ∈ aut(G).
(3) α = σπ where π2

= π ∈ end(G) and σ ∈ aut(G).

PROOF. We prove that (1) is equivalent to (2); the proof that (1) and (3) are equivalent
is analogous.

(1) ⇒ (2). If α = ασα where σ ∈ aut(G), write π = ασ . Then π2
= π and

α = πσ−1.
(2)⇒ (1). If α = πσ where π2

= π and σ ∈ aut(G), then ασ−1α = πα = α. 2

Before proceeding, we need a technical lemma.

LEMMA 8. If α ∈ end(G) is morphic, so also are ασ and σα for every σ ∈ aut(G).

PROOF. Since G/Gα ∼= ker(α), these follow from:

G/Gασ = Gσ/(Gα)σ ∼= G/Gα ∼= ker(α)= ker(ασ),

G/Gσα = G/Gα ∼= ker(α)∼= [ker(α)]σ−1
= ker(σα). 2

The study of morphic rings was motivated by a result of Ehrlich [2]: a regular
endomorphism of a module R M is unit regular if and only if it is morphic. Here is the
analogue of Ehrlich’s theorem for groups.

THEOREM 9. Let G be a group and let α ∈ end(G) be normal. Then α is unit regular
if and only if it is both regular and morphic.

PROOF. Let α be unit regular. By Lemma 7, write α = σπ where π2
= π and

σ ∈ aut(G). Then π is normal because Gπ = Gα C G, and so π is morphic by
Lemma 5. But then α is morphic by Lemma 8.

Conversely, assume that α is regular and morphic. By Theorem 6, let G =
ker(α)o X and G = Gα � Y where X and Y are subgroups of G. Then Gα = Xα,
so G = Xα � Y . Since α is morphic, we have ker(α)∼= G/Gα = G/Xα ∼= Y , so let
γ : Y → ker(α) be an isomorphism. With this, define

σ : G = Xα � Y → G by (xα · y)σ = x · yγ.

As in the proof of Theorem 6, this is a well-defined endomorphism and ασα = α.
Finally, ker(σ )= 1 because γ is one-to-one and ker(α) ∩ X = 1, and Gσ = X · Yγ =
X · ker(α)= G. Hence, σ is an automorphism of G. 2

We can now prove the group-theoretic analogue of a theorem of Ehrlich that
characterizes the morphic groups among the groups with a regular endomorphism
monoid that enjoy a certain cancellation property.

THEOREM 10. Let G be a group and assume that every endomorphism in end(G) is
normal and regular. Then the following conditions are equivalent.

(1) G is morphic.
(2) If G = K � Y = K1 o Y1 where K C G, K1 C G, and if K ∼= Y1, then Y ∼= K1.
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PROOF.
(1)⇒ (2). Given the set-up in (2), we have G/K1 ∼= Y1 ∼= K . Hence, G/K ∼= K1

by (1). But then (2) follows because Y ∼= G/K .
(2)⇒ (1). Let α ∈ end(G). Since α is normal and regular by hypothesis, Theorem 6

gives
G = Gα � Y = ker(α)o X

where Y and X are subgroups of G. Then Gα ∼= G/ ker(α)∼= X so, by (2), we obtain
Y ∼= ker(α). But Y ∼= G/Gα, and (1) follows. 2

We conclude with a slight variation on the cancellation in Theorem 10.

THEOREM 11. Let G be a morphic group. If G = K � H = K1 o H1 where K C G,
K1 C G and K ∼= K1 then H ∼= H1.

PROOF. Let σ : K → K1 be an isomorphism, and use it to define α : G = K � H →
G by (kh)α = kσ for all k ∈ K and h ∈ H . As in the proof of Theorem 6, α is a
well-defined group homomorphism, and α is normal because Gα = Kσ = K1 C G.
Since G is morphic, then H1 ∼= G/K1 = G/Gα ∼= ker(α)= H . 2

QUESTION. If end(G) is regular, does the condition in Theorem 11 imply that G is
morphic?
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